
v0.15+142.g64a82e10.dirty

Handbook
Introduction • Advanced topics • Use cases

ADINA WAGNER & MICHAEL HANKE

with

Laura Waite, Kyle Meyer, Marisa Heckner,
Benjamin Poldrack, Yaroslav Halchenko,
Chris Markiewicz, Pattarawat Chormai,
Lisa N. Mochalski, Lisa Wiersch, Jean-Baptiste Poline,
Nevena Kraljevic, Alex Waite, Lya K. Paas,
Niels Reuter, Peter Vavra, Tobias Kadelka,
Peer Herholz, Alexandre Hutton, Sarah Oliveira,
Dorian Pustina, Hamzah Hamid Baagil,
Tristan Glatard, Giulia Ippoliti, Christian Mönch,
Togaru Surya Teja, Dorien Huijser, Ariel Rokem,
Remi Gau, Judith Bomba, Konrad Hinsen,
Wu Jianxiao, Małgorzata Wierzba, Stefan Appelhoff,
Michael Joseph, Tamara Cook, Stephan Heunis,
Joerg Stadler, Sin Kim, Oscar Esteban,
Michał Szczepanik, eort, Myrskyta, Thomas Guiot

CONTENTS

I Introduction 1

1 A brief overview of DataLad 2
1.1 On Data . 2
1.2 The DataLad Philosophy . 3

2 How to use the handbook 5
2.1 For whom this book is written . 5
2.2 How to read this book . 5
2.3 Let’s get going! . 8

3 Installation and configuration 10
3.1 Install DataLad . 10
3.2 Installation instructions for the JSC (JURECA and JUDAC) 14
3.3 Standard installation instructions . 18
3.4 Initial configuration . 20

4 General prerequisites 22
4.1 The Command Line . 22
4.2 Command Syntax . 23
4.3 Basic Commands . 23
4.4 The Prompt . 24
4.5 Paths . 24
4.6 Text Editors . 25
4.7 Shells . 25
4.8 Tab Completion . 26

5 What you really need to know 27
5.1 DataLad datasets . 27
5.2 Simplified local version control workflows . 28
5.3 Consumption and collaboration . 28
5.4 Dataset linkage . 29
5.5 Full provenance capture and reproducibility . 29
5.6 Third party service integration . 30
5.7 Metadata handling . 30
5.8 All in all. 31

II Basics 32

6 DataLad datasets 34

i

6.1 Create a dataset . 34
6.2 Populate a dataset . 37
6.3 Modify content . 43
6.4 Install datasets . 46
6.5 Dataset nesting . 53
6.6 Summary . 56

7 DataLad, Run! 59
7.1 Keeping track . 59
7.2 DataLad, Re-Run! . 64
7.3 Input and output . 70
7.4 Clean desk . 78
7.5 Summary . 81

8 Under the hood: git-annex 83
8.1 Data safety . 83
8.2 Data integrity . 85

9 Collaboration 92
9.1 Looking without touching . 92
9.2 Where’s Waldo? . 99
9.3 Retrace and reenact . 101
9.4 Stay up to date . 103
9.5 Networking . 105
9.6 Summary . 110

10 Tuning datasets to your needs 112
10.1 DIY configurations . 112
10.2 More on DIY configurations . 117
10.3 Configurations to go . 126
10.4 Summary . 129

11 Make the most out of datasets 135
11.1 A Data Analysis Project with DataLad . 135
11.2 YODA: Best practices for data analyses in a dataset 136
11.3 YODA-compliant data analysis projects . 143
11.4 Summary . 156

12 One step further 164
12.1 More on Dataset nesting . 164
12.2 Computational reproducibility with software containers 166
12.3 Summary . 172

13 Third party infrastructure 177
13.1 Beyond shared infrastructure . 177
13.2 Publishing datasets to Git repository hosting . 184
13.3 Walk-through: Dropbox as a special remote . 191
13.4 Walk-through: Amazon S3 as a special remote . 197
13.5 Walk-through: Git LFS as a special remote on GitHub 207
13.6 Walk-through: Dataset hosting on GIN . 208
13.7 Built-in data export . 215
13.8 Keeping (some) dataset contents private . 217
13.9 Overview: The datalad push command . 219

ii

13.10 Summary . 222

14 Help yourself 224
14.1 What to do if things go wrong . 224
14.2 Miscellaneous file system operations . 224
14.3 Back and forth in time . 245
14.4 How to get help . 258
14.5 Gists . 273

III Advanced 280

15 Advanced options 282
15.1 How to hide content from DataLad . 282
15.2 DataLad extensions . 285
15.3 DataLad’s result hooks . 287
15.4 Configure custom data access . 290
15.5 Remote Indexed Archives for dataset storage and backup 294
15.6 Prioritizing subdataset clone locations . 310
15.7 Subsample datasets using datalad copy-file . 313

16 Go big or go home 323
16.1 Going big with DataLad . 323
16.2 Calculate in greater numbers . 326
16.3 Fixing up too-large datasets . 328
16.4 Summary . 330

17 Computing on clusters 331
17.1 DataLad on High Throughput or High Performance Compute Clusters 331
17.2 DataLad-centric analysis with job scheduling and parallel computing 332
17.3 Walkthrough: Parallel ENKI preprocessing with fMRIprep 342

18 Better late than never 353
18.1 Transitioning existing projects into DataLad . 353

19 Special purpose showrooms 358
19.1 Reproducible machine learning analyses: DataLad as DVC 358

20 DataLad internals 383
20.1 DataLad’s internal design . 383
20.2 Contributing to DataLad . 384

IV Use cases 387

21 A typical collaborative data management workflow 389
21.1 The Challenge . 389
21.2 The DataLad Approach . 389
21.3 Step-by-Step . 390

22 Basic provenance tracking 394
22.1 The Challenge . 394
22.2 The DataLad Approach . 394

iii

22.3 Step-by-Step . 394

23 Writing a reproducible paper 399
23.1 The Challenge . 399
23.2 The DataLad Approach . 400
23.3 Step-by-Step . 400
23.4 Automation with existing tools . 403

24 Student supervision in a research project 407
24.1 The Challenge . 407
24.2 The DataLad Approach . 408
24.3 Step-by-Step . 408

25 A basic automatically and computationally reproducible neuroimaging analysis 412
25.1 The Challenge . 412
25.2 The DataLad Approach . 412
25.3 Step-by-Step . 413

26 An automatically and computationally reproducible neuroimaging analysis from
scratch 420
26.1 The Challenge . 420
26.2 The DataLad Approach . 421
26.3 Step-by-Step . 421

27 Scaling up: Managing 80TB and 15 million files from the HCP release 433
27.1 The Challenge . 434
27.2 The DataLad Approach . 434
27.3 Step-by-Step . 435

28 Building a scalable data storage for scientific computing 443
28.1 The Challenge . 443
28.2 The DataLad approach . 444
28.3 Step-by-step . 445

29 Using Globus as a data store for the Canadian Open Neuroscience Portal 449
29.1 The Challenge . 449
29.2 The Datalad Approach . 450
29.3 Step-by-Step . 451
29.4 Resources . 453

30 DataLad for reproducible machine-learning analyses 454
30.1 The Challenge . 454
30.2 The DataLad Approach . 455
30.3 Step-by-Step . 455
30.4 References . 468

31 Contributing 469

V Appendix 470

A Glossary 471

iv

B Frequently Asked Questions 479
B.1 What is Git? . 479
B.2 Where is Git’s “staging area” in DataLad datasets? 479
B.3 What is git-annex? . 479
B.4 What does DataLad add to Git and git-annex? . 480
B.5 Does DataLad host my data? . 480
B.6 How does GitHub relate to DataLad? . 481
B.7 Does DataLad scale to large dataset sizes? . 481
B.8 What is the difference between a superdataset, a subdataset, and a dataset? 481
B.9 How can I convert/import/transform an existing Git or git-annex repository into a

DataLad dataset? . 481
B.10 How can I cite DataLad? . 481
B.11 How can I help others get started with a shared dataset? 482
B.12 What is the difference between DataLad, Git LFS, and Flywheel? 485
B.13 What is the difference between DataLad and DVC? 485
B.14 DataLad version-controls my large files – great. But how much is saved in total? . 486
B.15 How can I copy data out of a DataLad dataset? 486
B.16 Is there Python 2 support for DataLad? . 486
B.17 Is there a graphical user interface for DataLad? 486
B.18 How does DataLad interface with OpenNeuro? 486
B.19 BIDS validator issues in datasets with missing file content 487
B.20 What is the git-annex branch? . 487
B.21 Help - Why does Github display my dataset with git-annex as the default branch? 487

C So. . . Windows. . . eh? 490
C.1 Windows-Deficiencies . 491
C.2 DataLad-on-Windows-Deficiencies . 492
C.3 User documentation deficiencies . 493
C.4 So, overall. 493
C.5 Are there feasible alternatives? . 493

D DataLad cheat sheet 496

E Contributing 498
E.1 Software setup . 498
E.2 Directives and demos . 499
E.3 Easy pull requests . 501
E.4 Desired structure of the book . 501
E.5 Tweaking the CSS of the book . 504
E.6 Acknowledging Contributors . 504

F Teaching with the DataLad Handbook 505
F.1 Use the handbook as a textbook/syllabus . 505
F.2 Use slides from the DataLad course . 505
F.3 Enhance talks and workshops with code demos . 506
F.4 Use artwork used in the handbook . 506
F.5 Use the handbook as a template for your own teaching material 506

G Acknowledgements 507

H Boxes, Figures, Tables 509
H.1 List of important notes . 509

v

H.2 List of notes for Git users . 510
H.3 List of info boxes . 510
H.4 List of Windows-wits . 512

Index 517

vi

Part I

Introduction

1

CHAPTER

ONE

A BRIEF OVERVIEW OF DATALAD

There can be numerous reasons why you ended up with this handbook in front of you – We do
not know who you are, or why you are here. You could have any background, any amount of
previous experience with DataLad, any individual application to use it for, any level of maturity
in your own mental concept of what DataLad is, and any motivational strength to dig into this
software.

All this brief section tries to do is to provide a minimal, abstract explanation of what DataLad
is, to give you, whoever you may be, some idea of what kind of tool you will learn to master in
this handbook, and to combat some prejudices or presumptions about DataLad one could have.

To make it short, DataLad is a software tool developed to aid with everything related to the
evolution of digital objects.

It is not only keeping track of code, it is not only keeping track of data, it is not only making
sharing, retrieving and linking data (and metadata) easy, but it assists with the combination
of all things necessary in the digital workflow of data and science.

As built-in, but optional features, DataLad yields FAIR resources – for example METADATA and
PROVENANCE – and anything (or everything) can be easily shared should the user want this.

1.1 On Data

Everyone uses data. But once it exists, it does not suffice for most data to simply reside un-
changed in a single location for eternity.

Most data need to be shared – may it be a digital collection of family photos, a genomic
database between researchers around the world, or inventory lists of one company division
to another. Some data are public and should be accessible to everyone. Other data should
circulate only among a select few. There are various ways to distribute data, from emailing
files to sending physical storage media, from pointers to data locations on shared file systems
to using cloud computing or file hosting services. But what if there was an easy, generic way
of sharing and obtaining data?

Most data changes and evolves. A scientist extends a data collection or performs computations
on it. When applying for a new job, you update your personal CV. The documents required for
an audit need to comply to a new version of a common naming standard and the data files
are thus renamed. It may be easy to change data, but it can be difficult to revert a change,
get information on previous states of this data, or even simply find out how a piece of data
came into existence. This latter aspect, the PROVENANCE of data – information on its lineage
and how it came to be in its current state – is often key to understanding or establishing trust
in data. In collaborative fields that work with small-sized data such as Wikipedia pages or

2

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

software development, VERSION CONTROL tools are established and indispensable. These tools
allow users to keep track of changes, view previous states, or restore older versions. How about
a version control system for data?

If data are shared as a copy of one state of its history, keeping all shared copies of this data
up-to-date once the original data changes or evolves is at best tedious, but likely impossible.
What about ways to easily update data and its shared copies?

The world is full of data. The public and private sector make use of it to understand, improve,
and innovate the complex world we live in. Currently, this process is far from optimal. In
order for society to get the most out of public data collections, public data need to be FAIR1:
Findable, Accessible, Interoperable, and Reusable. Apart from easy ways to share or update
shared copies of data, extensive metadata is required to identify data, link data collections
together, and make them findable and searchable in a standardized way. Can we also easily
attach metadata to our data and its evolution?

DataLad is a general purpose tool for managing everything involved in the digital workflow of
using data – regardless of the data’s type, content, size, location, generation, or development. It
provides functionality to share, search, obtain, and version control data in a distributed fashion,
and it aids managing the evolution of digital objects in a way that fulfills the FAIR2 principles.

1.2 The DataLad Philosophy

From a software point of view, DataLad is a command line tool, with an additional Python API
to use its features within your software and scripts. While being a general, multi-purpose tool,
there are also plenty of extensions that provide helpful, domain specific features that may very
well fit your precise use case.

But beyond software facts, DataLad is built up on a handful of principles. It is this underlying
philosophy that captures the spirit of what DataLad is, and here is a brief overview on it.

1. DataLad only cares (knows) about two things: Datasets and files. A DataLad dataset
is a collection of files in folders. And a file is the smallest unit any dataset can contain.
Thus, a DataLad dataset has the same structure as any directory on your computer, and
DataLad itself can be conceptualized as a content-management system that operates on
the units of files. As most people in any field work with files on their computer, at its core,
DataLad is a completely domain-agnostic, general-purpose tool to manage data. You
can use it whether you have a PhD in Neuroscience and want to share one of the largest
whole brain MRI images in the world3, organize your private music library, keep track of
all cat memes4 on the internet, or anything else5.

2. A dataset is a Git repository. All features of the VERSION CONTROL system GIT also
apply to everything managed by DataLad – plus many more. If you do not know or use
Git yet, there is no need to panic – there is no necessity to learn all of Git to follow
along in learning and using DataLad. You will experience much of Git working its magic
underneath the hood when you use DataLad, and will soon start to appreciate its features.
Later, you may want to know more on how DataLad uses Git as a fundamental layer and
learn some of Git.

1 https://www.go-fair.org/
2 https://www.go-fair.org/
3 https://github.com/datalad-datasets/bmmr-t1w-250um
4 https://www.diabloii.net/gallery/data/500/medium/moar6-cat.jpg
5 https://media.giphy.com/media/3o6YfXCehdioMXYbcs/giphy.gif

1.2. The DataLad Philosophy 3

https://www.go-fair.org/
https://www.go-fair.org/
https://github.com/datalad-datasets/bmmr-t1w-250um
https://github.com/datalad-datasets/bmmr-t1w-250um
https://www.diabloii.net/gallery/data/500/medium/moar6-cat.jpg
https://media.giphy.com/media/3o6YfXCehdioMXYbcs/giphy.gif

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

3. A DataLad dataset can take care of managing and version controlling arbitrarily
large data. To do this, it has an optional annex for (large) file content. Thanks to this
ANNEX, DataLad can easily track files that are many TB or PB in size (something that Git
could not do, and allows you to transform, work with, and restore previous versions of
data, while capturing all PROVENANCE, or share it with whomever you want). At the same
time, DataLad does all of the magic necessary to get this awesome feature to work quietly
in the background. The annex is set-up automatically, and the tool GIT-ANNEX (https://
git-annex.branchable.com) manages it all underneath the hood. Worry-free large-content
data management? Check!

4. Deep in the core of DataLad lies the social principle to minimize custom procedures and
data structures. DataLad will not transform your files into something that only DataLad
or a specialized tool can read. A PDF file (or any other type of file) stays a PDF file
(or whatever other type of file it was) whether it is managed by DataLad or not. This
guarantees that users will not lose data or access if DataLad would vanish from their
system (or from the face of the Earth). Using DataLad thus does not require or generate
data structures that can only be used or read with DataLad – DataLad does not tie you
down, it liberates you.

5. Furthermore, DataLad is developed for complete decentralization. There is no required
central server or service necessary to use DataLad. In this way, no central infrastructure
needs to be maintained (or paid for). Your own laptop is the perfect place for your Data-
Lad project to live, as is your institution’s webserver, or any other common computational
infrastructure you might be using.

6. Simultaneously, though, DataLad aims to maximize the (re-)use of existing 3rd-party
data resources and infrastructure. Users can use existing central infrastructures should
they want to. DataLad works with any infrastructure from GITHUB to Dropbox6, Figshare7

or institutional repositories, enabling users to harvest all of the advantages of their pre-
ferred infrastructure without tying anyone down to central services.

These principles hopefully gave you some idea of what to expect from DataLad, cleared some
worries that you might have had, and highlighted what DataLad is and what it is not. The
section What you really need to know (page 27) will give you a one-page summary of the func-
tionality and commands you will learn with this handbook. But before we get there, let’s get
ready to use DataLad. For this, the next section will show you how to use the handbook.

6 https://www.dropbox.com
7 https://figshare.com/

4 Chapter 1. A brief overview of DataLad

https://git-annex.branchable.com
https://git-annex.branchable.com
https://www.dropbox.com
https://figshare.com/

CHAPTER

TWO

HOW TO USE THE HANDBOOK

2.1 For whom this book is written

The DataLad handbook is not the DataLad documentation, and it is also not an explanation of
the computational magic that happens in the background. Instead, it is a procedurally oriented,
hands-on crash-course that invites you to fire up your terminal and follow along.

If you are interested in learning how to use DataLad, this handbook is for you.

You do not need to be a programmer, computer scientist, or Linux-crank. If you have never
touched your computer’s shell before, you will be fine. No knowledge about GIT or GIT-ANNEX

is required or necessary. Regardless of your background and personal use cases for DataLad,
the handbook will show you the principles of DataLad, and from chapter 1 onwards you will be
using them.

2.2 How to read this book

First of all: be excited. DataLad can help you to manage your digital data workflow in various
ways, and in this book you will use many of them right from the start. There are many topics
you can explore, if you wish: local or collaborative workflows, reproducible analyses, data
publishing, and so on. If anything seems particularly exciting, you can go ahead, read it, and
do it. Therefore, grab your computer, and be ready to use it.

Every chapter will give you different challenges, starting from basic local workflows to more
advanced commands, and you will see your skills increase with each. While learning, it will be
easy to find use cases in your own work for the commands you come across.

Throughout the book numerous terms for concepts and technical components are used. They
are all defined in a Glossary (page 471), and are printed in small-caps, such as GIT, or COMMIT

MESSAGE.

As the handbook is to be a practical guide it includes as many hands-on examples as we can fit
into it. Code snippets look like this, and you should copy them into your own terminal to try
them out, but you can also modify them to fit your custom needs in your own use cases.
Note how we distinguish comments (#) from commands ($) and their output in the example
below (it shows the creation of a DataLad dataset):

this is a comment used for additional explanations.
Anything preceded by $ is a command to try.
if the line starts with neither # nor $, its the output of a command
$ datalad create myfirstrepo

(continues on next page)

5

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[INFO] Creating a new annex repo at /home/adina/DataLad-101
create(ok): /home/adina/DataLad-101 (dataset)

When copying code snippets into your own terminal, do not copy the leading $ – this only
indicates that the line is a command, and would lead to an error when executed. Don’t worry if
you do not want to code along (page 9), though.

Instead of copying manually, you can also click on the clipboard icon at the top right of each
code snippet. Clicking on that icon will copy all relevant lines from the code snippet, and will
drop all comments and the $ automatically.

The book is split into different parts. The upcoming chapters are the Basics that intend to show
you the core DataLad functionality and challenge you to use it. If you want to learn how to
use DataLad, it is recommended to start with this part and read it from start to end. In the
part use cases, you will find concrete examples of DataLad applications for general inspiration
– this is the second part of this book. If you want to get an overview of what is possible with
DataLad, this section will show you in a concise and non-technical manner. Pick whatever
you find interesting and disregard the rest. Afterwards, you might even consider Contributing
(page 498) to this book by sharing your own use case.

Note that many challenges can have straightforward and basic solutions, but a lot of additional
options or improvements are possible. Sometimes one could get lost in all of the available
DataLad functionality, or in some interesting backgrounds about a command. For this reason
we put all of the basics in plain sight, and those basics will let you master a given task and get
along comfortably. Having the basics will be your multi-purpose swiss army knife. But if you
want to have the special knowledge for a very peculiar type of problem set or that extra increase
in skill or understanding, you’ll have to do a detour into some of the “hidden” parts of the book:
When there are command options or explanations that go beyond basics and best practices, we
put them in special boxes in order to not be too distracting for anyone only interested in the
basics. You can decide for yourself whether you want to check them out:

“Find-out-more” boxes contain general additional information:

M2.1 For curious minds

Sections like this contain content that goes beyond the basics necessary to complete a
challenge.

“Git user notes” elaborate on technical details from under the hood:

G2.1 For (future) Git experts

DataLad uses GIT and GIT-ANNEX underneath the hood. Readers that are familiar with
these tools can find occasional notes on how a DataLad command links to a Git(-annex)
command or concept in boxes like this. There is, however, absolutely no knowledge of
Git or git-annex necessary to follow this book. You will, though, encounter Git commands
throughout the book when there is no better alternative, and executing those commands
will suffice to follow along.

If you are a Windows 10 user with a native (i.e., not Windows Subsystem for Linux (WSL)8-
based DataLad installation, pay close attention to the special notes in so-called “Windows-Wits”:
8 https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

6 Chapter 2. How to use the handbook

https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

W2.1 For Windows users only

A range of file system issues can affect the behavior of DataLad or its underlying tools
on Windows 10. If necessary, the handbook provides workarounds for problems, expla-
nations, or at least apologies for those inconveniences. If you want to help us make
the handbook or DataLad better for Windows users, please get in touch9 – every little
improvement or bug report can help.
9 https://github.com/datalad-handbook/book/issues/new/

Apart from core DataLad commands (introduced in the Basics part of this book), DataLad also
comes with many extensions and advanced commands not (yet) referenced in this handbook.
The development of many of these features is ongoing, and this handbook will incorporate all
DataLad commands and extensions once they are stable (that is, once the command(-structure)
is likely not to change anymore). If you are looking for a feature but cannot find it in this
handbook, please take a look at the documentation10, write11 or request12 an additional chapter
if you believe it is a worthwhile addition, or ask a question on Neurostars.org13 with a datalad
tag if you need help.

What you will learn in this book

This handbook will teach you simple, yet advanced principles of data management for repro-
ducible, comprehensible, transparent, and FAIR14 data projects. It does so with hands-on tool
use of DataLad and its underlying software, blended with clear explanations of relevant theo-
retical backgrounds whenever necessary, and by demonstrating organizational and procedural
guidelines and standards for data related projects on concrete examples.

You will learn how to create, consume, structure, share, publish, and use DataLad datasets:
modular, reusable components that can be version-controlled, linked, and that are able to cap-
ture and track full provenance of their contents, if used correctly.

At the end of the Basics section, these are some of the main things you will know how to do,
and understand why doing them is useful:

• Version-control data objects, regardless of size, keep track of and update (from) their
sources and shared copies, and capture the provenance of all data objects whether you
consume them from any source or create them yourself.

• Build up complete projects with data as independent, version-controlled, provenance-
tracked, and linked DataLad dataset(s) that allow distribution, modular reuse, and are
transparent both in their structure and their development to their current and future
states.

• Bind modular components into complete data analysis projects, and comply to procedural
and organizational principles that will help to create transparent and comprehensible
projects to ease collaboration and reproducibility.

• Share complete data objects, version-controlled as a whole, but including modular com-
ponents (such as data) in a way that preserves the history, provenance, and linkage of its

10 http://docs.datalad.org
11 http://handbook.datalad.org/en/latest/contributing.html
12 https://github.com/datalad-handbook/book/issues/new
13 https://neurostars.org/latest
14 https://www.go-fair.org/fair-principles/

2.2. How to read this book 7

https://github.com/datalad-handbook/book/issues/new/
http://docs.datalad.org
http://handbook.datalad.org/en/latest/contributing.html
https://github.com/datalad-handbook/book/issues/new
https://neurostars.org/latest
https://www.go-fair.org/fair-principles/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

components.

After having read this handbook, you will find it easy to create, build up, and share intuitively
structured and version-controlled data projects that fulfill high standards for reproducibility
and FAIRness. You are able to decide for yourself how deep you want to delve into the DataLad
world based on your individual use cases, and with every section you will learn more about
state-of-the-art data management.

The storyline

Most of the sections in the upcoming chapter follow a continuous narrative. This narrative
aims to be as domain-agnostic and relatable as possible, but it also needs to be able to showcase
all of the principles and commands of DataLad. Therefore, together we will build up a DataLad
project for the fictional educational course DataLad-101.

Envision yourself in the last educational course you took or taught. You have probably created
some files with notes you took, a directory with slides or books for further reading, and a
place where you stored assignments and their solutions. This is what we will be doing as
well. This project will start with creating the necessary directory structures, populating them
by installing and creating several DATALAD SUBDATASETs, adding files and changing their
content, and executing simple scripts with input data to create results we can share and publish
with DataLad.

2.3 Let’s get going!

If you have DataLad installed, you can dive straight into chapter 1, Create a dataset (page 34).
For everyone new, there are the sections General prerequisites (page 22) as a minimal tutorial to
using the shell and Installation and configuration (page 10) to get your DataLad installation set
up.

8 Chapter 2. How to use the handbook

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M2.2 I can not/do not want to code along. . .

If you do not want to follow along and only read, there is a showroom dataset of the
complete DataLad-101 project at github.com/datalad-handbook/DataLad-10115. This
dataset contains a separate BRANCH for each section that introduced changes in the repos-
itory. The branches have the names of the sections, e.g., sct_create_a_dataset marks
the repository state at the end of the first section in the first chapter. You can checkout
a branch with git checkout <branch-name> to explore how the dataset looks like at the
end of a given section.
Note that this “public” dataset has a number of limitations, but it is useful for an overview
of the dataset history (and thus the actions performed throughout the “course”), a good
display of how many and what files will be present in the end of the book, and a demon-
stration of how subdatasets are linked.
15 https://github.com/datalad-handbook/DataLad-101

2.3. Let’s get going! 9

https://github.com/datalad-handbook/DataLad-101

CHAPTER

THREE

INSTALLATION AND CONFIGURATION

3.1 Install DataLad

Feedback on installation instructions

The installation methods presented in this chapter are based on experience and have
been tested carefully. However, operating systems and other software are continuously
evolving, and these guides might have become outdated. Please file an issue16, if you
encounter problems installing DataLad, and help keeping this information up-to-date.

16 https://github.com/datalad-handbook/book/issues/new

In general, the DataLad installation requires Python 3 (see the Find-out-more M3.1 on the
difference between Python 2 and 3 (page 11) to learn why this is required), GIT, and GIT-ANNEX,
and for some functionality 7-Zip17. The instructions below detail how to install the core DataLad
tool and its dependencies on common operating systems. They do not cover the various DataLad
extensions (page 285) that need to be installed separately, if desired.

The following sections provide targeted installation instructions for a set of common scenarios,
operating systems, or platforms.

Windows 10

There are countless ways to install software on Windows. Here we describe one possible ap-
proach that should work on any Windows computer, like one that you may have just bought.

Python: Windows itself does not ship with Python, it must be installed separately. If you al-
ready did that, please check the Find-out-more M3.1 on Python versions (page 11), if it

17 https://7-zip.org/

10

https://github.com/datalad-handbook/book/issues/new
https://7-zip.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M3.1 Python 2, Python 3, what’s the difference?

DataLad requires Python 3.6, or a more recent version, to be installed on your system.
The easiest way to verify that this is the case is to open a terminal and type python to
start a Python session:

$ python
Python 3.9.1+ (default, Jan 20 2021, 14:49:22)
[GCC 10.2.1 20210110] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

If this fails, or reports a Python version with a leading 2, such as Python 2.7.18, try
starting python3, which some systems use to disambiguate between Python 2 and Python
3. If this fails, too, you need to obtain a recent release of Python 3. On Windows,
attempting to run commands that are not installed might cause a Windows Store window
to pop up. If this happens, it means you have no Python installed. Please check the
Windows 10 (page 10) installation instructions, and do not install Python via the Windows
Store.
Python 2 is an outdated, in technical terms “deprecated”, version of Python. Although it
still exist as the default Python version on many systems, it is no longer maintained since
2020, and thus, most software has dropped support for Python 2. If you only run Python
2 on your system, most Python software, including DataLad, will be incompatible, and
hence unusable, resulting in errors during installation and execution.
But does that mean that you should uninstall Python 2? No! Keep it installed, especially
if you are using Linux or MacOS. Python 2 existed for 20 years and numerous software
has been written for it. It is quite likely that some basic operating system components
or legacy software on your computer is depending on it, and uninstalling a preinstalled
Python 2 from your system will likely render it unusable. Install Python 3, and have both
versions coexist peacefully.

3.1. Install DataLad 11

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

matches the requirements. Otherwise, head over to the download section of the Python
website18, and download an installer. Unless you have specific requirements, go with the
64bit installer of the latest Python 3 release.

W3.1 Avoid installing Python from the Windows store

We recommend to not install Python via the Windows store, even if it opens after
you typed python, as this version requires additional configurations by hand (in
particular of your $PATH ENVIRONMENT VARIABLE).

When you run the installer, make sure to select the Add Python to PATH option, as this is
required for subsequent installation steps and interactive use later on. Other than that,
using the default installation settings is just fine.

Git: Windows also does not come with Git. If you happen to have it installed already, please
check, if you have configured it for command line use. You should be able to open the
Windows command prompt and run a command like git --version. It should return a
version number and not an error.

To install Git, visit the Git website19 and download an installer. If in doubt, go with
the 64bit installer of the latest version. The installer itself provides various customization
options. We recommend to leave the defaults as they are, in particular the target directory,
but configure the following settings (they are distributed over multiple dialogs):

• Enable Use a TrueType font in all console windows

• Select Git from the command line and also from 3rd-party software

• Enable file system caching

• Enable symbolic links

Git-annex: The most convenient way to deploy git-annex is via the DataLad installer20. Once
Python is available, it can be installed with the Python package manager pip. Open a
command prompt and run:

> pip install datalad-installer

Afterwards, open another command prompt in administrator mode and run:

> datalad-installer git-annex -m datalad/packages

This will download a recent git-annex, and configure it for your Git installation. The
admin command prompt can be closed afterwards, all other steps do not need it.

For performance improvements, we recommend to also set the following git-annex con-
figuration:

> git config --global filter.annex.process "git-annex filter-process"

DataLad: With Python, Git, and git-annex installed, DataLad can be installed, and later also
upgraded using pip by running:

18 https://www.python.org/downloads
19 https://git-scm.com/download/win
20 https://github.com/datalad/datalad-installer

12 Chapter 3. Installation and configuration

https://www.python.org/downloads
https://www.python.org/downloads
https://git-scm.com/download/win
https://github.com/datalad/datalad-installer

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

> pip install datalad

7-Zip (optional, but highly recommended): Download it from the 7-zip website21 (64bit in-
staller when in doubt), and install it into the default target directory.

There are many other ways to install DataLad on Windows, check for example the Windows-
wit W3.2 on the Windows Subsystem 2 for Linux (page 13). One particularly attractive
approach is Conda (page 19). However, at the moment git-annex is not available from Conda
on Windows. If you want to use Conda, perform the Conda (page 19)-based DataLad installation
first, and then install git-annex via the DataLad installer, as described above.

W3.2 Install DataLad using the Windows Subsystem 2 for Linux

With the Windows Subsystem for Linux, you will be able to use a Unix system despite
being on Windows. You need to have a recent build of Windows 10 in order to get WSL2
– we do not recommend WSL1.
You can find out how to install the Windows Subsystem for Linux at
docs.microsoft.com22. Afterwards, proceed with your installation as described in
the installation instructions for Linux.
22 https://docs.microsoft.com/en-us/windows/wsl/install-win10

Using DataLad on Windows has a few peculiarities. There is a dedicated summary, So. . . Win-
dows. . . eh? (page 490) with an overview. In general, DataLad can feel a bit sluggish on
non-WSL2 Windows systems. This is due to various filesystem issues that also affect the version
control system GIT itself, which DataLad relies on. The core functionality of DataLad works,
and you should be able to follow most contents covered in this book. You will notice, however,
that some Unix commands displayed in examples may not work, and that terminal output can
look different from what is displayed in the code examples of the book, and that some depen-
dencies for additional functionality are not available for Windows. If you are a Windows user
and want to help improve the handbook for Windows users, please get in touch23. Dedicated
notes, “Windows-wits”, contain important information, alternative commands, or warnings. If
you on a native Windows 10 system, you should pay close attention to them.

Mac OSX

Modern Macs come with a compatible Python 3 version installed by default. The Find-out-
more M3.1 on Python versions (page 11) has instructions on how to confirm that.

DataLad is available via OS X’s homebrew24 package manager. First, install the homebrew
package manager, which requires Xcode25 to be installed from the Mac App Store.

Next, install datalad and its dependencies:

$ brew install datalad

Likewise, the optional, but recommended, p7zip26 dependency can be installed via brew as well.
21 https://7-zip.org
23 https://github.com/datalad-handbook/book/issues/new
24 https://brew.sh
25 https://apps.apple.com/us/app/xcode/id497799835
26 http://p7zip.sourceforge.net/

3.1. Install DataLad 13

https://7-zip.org
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://github.com/datalad-handbook/book/issues/new
https://brew.sh
https://apps.apple.com/us/app/xcode/id497799835
http://p7zip.sourceforge.net/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Alternatively, you can exclusively use brew for DataLad’s non-Python dependencies, and then
check the Find-out-more M3.2 on how to install DataLad via Python’s package manager
(page 15).

3.2 Installation instructions for the JSC (JURECA and JUDAC)

Read this if you want to use DataLad at the JSC.

Software installation

One common INM-7 use case for DataLad is using DataLad in conjunction with the
datalad-containers extension on JUDAC27 and JURECA28. Due to inode limitations29, the
installation of all relevant software needs to create as few files as possible. Else, a default
installation on these two systems will exhaust a user’s inode limit completely, preventing the
creation of any additional files. In order to avoid this, the installation needs to proceed in a way
that is shared between JURECA and JUDAC:

1. Once you have a JuDoor30 account, log into JUDAC:

$ ssh <user-ID>@judac.fz-juelich.de

2. Download the latest Miniconda installer and install it into the shared/ directory. While
you have separate $HOME directories on both HPC systems, shared/ is a directory that both
systems can access:

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O␣
→˓shared/Miniconda3-latest-Linux-x86_64.sh
$ bash shared/Miniconda3-latest-Linux-x86_64.sh -p ~/shared/miniconda3
An interactive installer will ask you to read and agree to the
license terms, and will ask you to confirm the installation location.
reply "yes" when asked whether to perform a conda init

3. Open a new shell. Install all required software via conda:

$ conda install -c conda-forge datalad datalad-container p7zip

Subsequently, DataLad and all relevant software should be available on JUDAC, and you should
be able to run any DataLad command from the terminal. This is because the final part of the
Miniconda installation should have adjusted your .bashrc file such that conda and all software
installed via conda install is accessible from the command line.

M3.3 What’s this modification exactly?

It looks like this:

27 https://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/JUDAC_node.html
28 https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
29 https://www.fz-juelich.de/SharedDocs/FAQs/IAS/JSC/EN/JUST/FAQ_01_Data_limitiations.html?nn=1765188
30 https://judoor.fz-juelich.de/login

14 Chapter 3. Installation and configuration

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/JUDAC_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
https://www.fz-juelich.de/SharedDocs/FAQs/IAS/JSC/EN/JUST/FAQ_01_Data_limitiations.html?nn=1765188
https://judoor.fz-juelich.de/login

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M3.2 Install DataLad via pip on MacOSX

If Git/git-annex are installed already (via brew), DataLad can also be installed via
Python’s package manager pip, which should be installed by default on your system:

$ pip install datalad

Recent macOS versions may use pip3 instead of pip – use TAB COMPLETION to find out
which is installed.
Recent macOS versions may warn after installation that scripts were installed into loca-
tions that were not on PATH:

The script chardetect is installed in
'/Users/MYUSERNAME/Library/Python/3.7/bin' which is not on PATH.
Consider adding this directory to PATH or, if you prefer to
suppress this warning, use --no-warn-script-location.

To fix this, add these paths to the $PATH environment variable. You can either do this
for your own user (1), or for all users of the computer (2) (requires using sudo and
authenticating with your computer’s password):

(1) Add something like (exchange the user name accordingly)

export PATH=$PATH:/Users/MYUSERNAME/Library/Python/3.7/bin

to the profile file of your shell. If you use a BASH shell, this may be ~/.bashrc or
~/.bash_profile, if you are using a ZSH shell, it may be ~/.zshrc or ~/.zprofile.
Find out which shell you are using by typing echo $SHELL into your terminal.

(2) Alternatively, configure it system-wide, i.e., for all users of your computer by adding
the the path /Users/MYUSERNAME/Library/Python/3.7/bin to the file /etc/paths,
e.g., with the editor NANO:

sudo nano /etc/paths

The contents of this file could look like this afterwards (the last line was added):

/usr/local/bin
/usr/bin
/bin
/usr/sbin
/sbin
/Users/MYUSERNAME/Library/Python/3.7/bin

3.2. Installation instructions for the JSC (JURECA and JUDAC) 15

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ cat .bashrc
[...]
#
>>> conda initialize >>>
!! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/p/home/jusers/<user-ID>/judac/shared/miniconda3/bin/conda'
→˓'shell.bash' 'hook' 2> /dev/null)"
if [$? -eq 0]; then

eval "$__conda_setup"
else

if [-f "/p/home/jusers/<user-ID>/judac/shared/miniconda3/etc/profile.d/conda.sh
→˓"]; then

. "/p/home/jusers/<user-ID>/judac/shared/miniconda3/etc/profile.d/conda.sh"
else

export PATH="/p/home/jusers/<user-ID>/judac/shared/miniconda3/bin:$PATH"
fi

fi
unset __conda_setup
<<< conda initialize <<<

It may look a bit messy if you are unfamiliar with bash, but worry not – it simply points
your shell to the location of all conda-installed programs so that their commands become
available to you.

To get everything to work on JURECA as well requires that your .bashrc file on JURECA gets
the same modifications. This is some extra work, but done in a few command line calls:

1. Adjust paths in the .bashrc file to remove judac/ with the stream editor sed31:

$ sed -i 's/judac\/shared\/miniconda3\//shared\/miniconda3\//' .bashrc

2. Move the .bashrc file into shared/, and create a SYMLINK in its place:

$ mv .bashrc shared/
create a symlink
$ ln -s shared/.bashrc .bashrc

3. Log out of JUDAC and log into JURECA from your local machine:

$ ssh <user-ID>@jureca.fz-juelich.de

4. Make sure that your .bashrc on JURECA does not contain any precious content. It should
look something like this:

$ cat .bashrc
**
bash environment file in $HOME
Please see:
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/OnlineStorage/JUST/
→˓FAQ/just-FAQ_node.html
for more information and possible modifications to this file
**

Source global definitions: Copied from CentOS 7 /etc/skel/.bashrc

(continues on next page)

31 https://www.gnu.org/software/sed/manual/sed.html

16 Chapter 3. Installation and configuration

https://www.gnu.org/software/sed/manual/sed.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

if [-f /etc/bashrc]; then
. /etc/bashrc

fi

M3.4 What if it contains other content than this?

The content in the .bashrc file above is not precious, because the .bashrc file you
placed into shared should already contain them. If there is more, e.g., configura-
tions you made yourself, make sure that you copy and paste them into the .bashrc
file in shared/. Usually, there should be no need to adjust paths.

5. Remove the .bashrc file and symlink the .bashrc file in shared/ instead:

$ rm .bashrc
$ ln -s shared/.bashrc .bashrc

6. Open a new session on JURECA. You should now have access to the software you just
installed on JUDAC.

M3.5 Troubleshooting inode quotas

The inode limit from the JSC is quite strict. If you receive an e-mail that you have
exceeded your quota, here is what you can do:

• Verify that it is inode limitations that you ran into by running jutil user dataquota
-u <user-ID>. Check the table columns “inode-usage” and “inode-<soft|hard>-
limit”.

• Check that your installation does not consume more inodes than expected. On
JURECA, cd into the shared/ directory and run the ncdu command. Once the
command finished scanning, press c and confirm that your miniconda3 directory
consumes about 40k inodes.

• Remove caches and unused packages by running conda clean --all to reduce the
inode usage by a few thousand.

• On JURECA, run ncdu in your $HOME directory to check whether there are other
directories that consume many inodes.

The installation takes up almost all available inodes, so be aware that you can only have
a few thousand files in any of the two systems $HOME directories.

Configurations on JURECA und JUDAC

In order to use DataLad, it is highly recommended to configure your Git identity. While it is not
strictly necessary, it makes sense to do it in a way that is shared between the two HPC systems
as well.

On any of the two systems, provide your Name and e-mail address to the git config command:

$ git config --global --add user.name "Bob McBobFace"
$ git config --global --add user.email bob@example.com

This will create a .gitconfig file in your $HOME directory. Just as done with the .bashrc file,
move this file into the shared/ directory, and create a symlink in its place:

3.2. Installation instructions for the JSC (JURECA and JUDAC) 17

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ mv .gitconfig shared/
$ ln -s shared/.gitconfig .gitconfig
$ logout
log into the other machine
$ ssh <user-ID>@<jureca|judac>.fz-juelich.de
create a symlink to the shared .gitconfig file
$ ln -s shared/.gitconfig .gitconfig

Afterwards, you are done, and ready to use DataLad on the HPC systems of the JSC.

3.3 Standard installation instructions

Read this, if you want to install DataLad on your own computer, or any system that is not part
of the JSC.

Linux: (Neuro)Debian, Ubuntu, and similar systems

DataLad is part of the Debian and Ubuntu operating systems. However, the particular DataLad
version included in a release may be a bit older (check the versions for Debian32 and Ubuntu33

to see which ones are available).

For some recent releases of Debian-based operating systems, NeuroDebian34 provides more re-
cent DataLad versions (check the availability table35). In order to install from NeuroDebian,
follow its installation documentation36, which only requires copy-pasting three lines into a ter-
minal. Also, should you be confused by the name: enabling this repository will not do any harm
if your field is not neuroscience.

Whichever repository you end up using, the following command installs DataLad and all of its
software dependencies (including GIT-ANNEX and p7zip37):

$ sudo apt-get install datalad

The command above will also upgrade existing installations to the most recent available version.

Linux: CentOS, Redhat, Fedora, or similar systems

For CentOS, Redhat, Fedora, or similar distributions, there is an RPM package for git-annex38.
A suitable version of Python and GIT should come with the operating system, although some
servers may run fairly old releases.

DataLad itself can be installed via pip:

$ pip install datalad

32 https://packages.debian.org/datalad
33 https://packages.ubuntu.com/datalad
34 http://neuro.debian.net
35 http://neuro.debian.net/pkgs/datalad.html
36 http://neuro.debian.net/install_pkg.html?p=datalad
37 http://p7zip.sourceforge.net/
38 https://git-annex.branchable.com/install/rpm_standalone/

18 Chapter 3. Installation and configuration

https://packages.debian.org/datalad
https://packages.ubuntu.com/datalad
http://neuro.debian.net
http://neuro.debian.net/pkgs/datalad.html
http://neuro.debian.net/install_pkg.html?p=datalad
http://p7zip.sourceforge.net/
https://git-annex.branchable.com/install/rpm_standalone/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Alternatively, DataLad can be installed together with GIT and GIT-ANNEX via Conda (page 19)
as outlined in the section below.

Linux-machines with no root access (e.g. HPC systems)

The most convenient user-based installation can be achieved via Conda (page 19).

Conda

Conda is a software distribution available for all major operating systems, and its Miniconda39

installer offers a convenient way to bootstrap a DataLad installation. Importantly, it does not
require admin/root access to a system.

Detailed, platform-specific installation instruction40 are available in the Conda documentation.
In short: download and run the installer, or, from the command line, run

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-<YOUR-OS>-x86_64.sh
$ bash Miniconda3-latest-<YOUR-OS>-x86_64.sh

In the above call, replace <YOUR-OS> with an identifier for your operating system, such as “Linux”
or “MacOSX”. During the installation, you will need to accept a license agreement (press En-
ter to scroll down, and type “yes” and Enter to accept), confirm the installation into the de-
fault directory, and you should respond “yes” to the prompt “Do you wish the installer to
initialize Miniconda3 by running conda init? [yes|no]”. Afterwards, you can remove the
installation script by running rm ./Miniconda3-latest-*-x86_64.sh.

The installer automatically configures the shell to make conda-installed tools accessible, so no
further configuration is necessary. Once Conda is installed, the DataLad package can be installed
from the conda-forge channel:

$ conda install -c conda-forge datalad

In general, all of DataLad’s software dependencies are automatically installed, too. This makes
a conda-based deployment very convenient. A from-scratch DataLad installation on a HPC
system, as a normal user, is done in three lines:

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash Miniconda3-latest-Linux-x86_64.sh
acknowledge license, keep everything at default
$ conda install -c conda-forge datalad

In case a dependency is not available from Conda (e.g., there is no git-annex package for Win-
dows in Conda), please refer to the platform-specific instructions above.

To update an existing installation with conda, use:

$ conda update datalad

39 https://docs.conda.io/en/latest/miniconda.html
40 https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html

3.3. Standard installation instructions 19

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

W3.3 Install Unix command-line tools on Windows with Conda

On Windows, many Unix command-line tools such as cp that a frequently used in this
handbook are not available by default. You can get a good set of tools by installing
CONDAs m2-base package via conda install m2-base.

The DataLad installer41 also supports setting up a Conda environment, in case a suitable Python
version is already available.

Using Python’s package manager pip

As mentioned above, DataLad can be installed via Python’s package manager pip42. pip comes
with any Python distribution from python.org43, and is available as a system-package in nearly
all GNU/Linux distributions.

If you have Python and pip set up, to automatically install DataLad and most of its software
dependencies, type

$ pip install datalad

If this results in a permission denied error, you can install DataLad into a user’s home directory:

$ pip install --user datalad

On some systems, in particular macOS, you may need to call pip3 instead of pip:

$ pip3 install datalad
or, in case of a "permission denied error":
$ pip3 install --user datalad

An existing installation can be upgraded with pip install -U datalad.

pip is not able to install non-Python software, such as 7-zip or GIT-ANNEX. But you can install
the DataLad installer44 via a pip install datalad-installer. This is a command-line tool that
aids installation of DataLad and its key software dependencies on a range of platforms.

3.4 Initial configuration

Initial configurations only concern the setup of a GIT identity. If you are a Git-user, you should
hence be good to go.

If you have not used the version control system Git before, you will need to tell Git some
information about you. This needs to be done only once. In the following example, exchange
Bob McBobFace with your own name, and bob@example.com with your own email address.

enter your home directory using the ~ shortcut
% cd ~
% git config --global --add user.name "Bob McBobFace"
% git config --global --add user.email bob@example.com

41 https://github.com/datalad/datalad-installer
42 https://pip.pypa.io/en/stable/
43 https://www.python.org
44 https://github.com/datalad/datalad-installer

20 Chapter 3. Installation and configuration

https://github.com/datalad/datalad-installer
https://pip.pypa.io/en/stable/
https://www.python.org
https://github.com/datalad/datalad-installer

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Don't forget to configure
 your Git identity!

This information is used to track changes in the DataLad projects you will be working on. Based
on this information, changes you make are associated with your name and email address, and
you should use a real email address and name – it does not establish a lot of trust nor is it
helpful after a few years if your history, especially in a collaborative project, shows that changes
were made by Anonymous with the email youdontgetmy@email.fu. And do not worry, you won’t
get any emails from Git or DataLad.

3.4. Initial configuration 21

CHAPTER

FOUR

GENERAL PREREQUISITES

DataLad uses command-line arguments in a terminal. This means that there is no graphical user
interface with buttons to click on, but a set of commands and options users type into their shell.
If you are not used to working with command-line arguments, DataLad can appear intimidating.
Luckily, the set of possible commands is limited, and even without prior experience with a shell,
one can get used to it fairly quickly.

This chapter aims at providing novices with general basics about the shell, common Unix com-
mands, and some general file system facts. This chapter is also a place to return to and (re-)read
if you come across a non-DataLad command or principle you want to remind yourself of. If you
are already familiar with the shell and know the difference between an absolute and a relative
path, you can safely skip this chapter and continue to the DataLad Basics.

Almost all of this chapter is based on parts of a wonderful lab documentation Alex Waite wrote.

4.1 The Command Line

The shell (sometimes also called a terminal, console, or CLI) is an interactive, text based in-
terface. If you have used Matlab or IPython, then you are already familiar with the basics of a
command line interface.

Fig. 4.1: A terminal window in a standard desktop environment.

22

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

4.2 Command Syntax

Commands are case sensitive and follow the syntax of: command [options...] <arguments...>.
Whenever you see some example code in the code snippets of this book, make sure that you
capitalize exactly as shown if you try it out yourself. The options modify the behavior of the
program, and are usually preceded by - or --. In this example

$ ls -l output.txt
-rw-r--r-- 1 adina adina 25165824 Jul 29 10:07 output.txt

ls is the command. The option -l tells ls to use a long listing format and thus display more
information. output.txt is the argument — the file that ls is listing. The difference between
options preceded by - and -- is their length: Usually, all options starting with a single dash are
single letters. Often, a long, double-dashed option exists for these short options as well. For
example, to list the size of a file in a human-readable format, supply the short option -h, or,
alternatively, its longer form, --human-readable.

$ ls -lh output.txt # note that short options can be combined!
or alternatively
$ ls -l --human-readable output.txt
-rw-r--r-- 1 adina adina 24M Jul 29 10:07 output.txt

Every command has many of those options (often called “flags”) that modify their behavior.
There are too many to even consider memorizing. Remember the ones you use often, and
the rest you will lookup in their documentation or via your favorite search engine. DataLad
commands naturally also come with many options, and in the next chapters and later examples
you will get to see many of them.

4.3 Basic Commands

The following commands can appear in our examples or are generally useful to know: They can
help you to explore and navigate in your file system (cd, ls), copy, move, or remove files (cp,
mv, rm), or create new directories (mkdir).

ls -lah <folder> list the contents of a folder, including hidden files (-a), and all their infor-
mation (-l); print file sizes in human readable units (-h)

cd <folder> change to another folder

cp <from> <to> copy a file

cp -R <from> <to> copy a folder and its contents (-R)

mv <from> <to> move/rename a file or folder

rm <file> delete a file

rm -Rv <folder> delete a folder and its contents (-R) and list each file as it’s being deleted (-v)

mkdir <folder> create a folder

rmdir <folder> delete an empty folder

4.2. Command Syntax 23

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

4.4 The Prompt

When you first login on the command line, you are greeted with “the prompt”, and it will likely
look similar to this:

adina@muninn: ~$

This says I am the user adina on the machine muninn and I am in the folder ~, which is short-
hand for the current user’s home folder (in this case /home/adina).

The $ sign indicates that the prompt is interactive and awaiting user input. In this handbook,
we will use $ as a shorthand for the prompt, to allow the reader to quickly differentiate between
lines containing commands vs the output of those commands.

4.5 Paths

Let’s say I want to create a new folder in my home folder, I can run the following command:

$ mkdir /home/adina/awesome_datalad_project

And that works. /home/adina/awesome_datalad_project is what is called an absolute path.
Absolute paths always start with a /, and define the folder’s location with no ambiguity.

However, much like in spoken language, using someone’s full proper name every time would be
exhausting, and thus pronouns are used.

This shorthand is called relative paths, because they are defined (wait for it. . .) relative to your
current location on the file system. Relative paths never start with a /.

Unix knows a few shortcuts to refer to file system related directories, and you will come across
them often. Whenever you see a ., .., or ~ in a DataLad command, here is the translation to
this cryptic punctuation:

. the current directory

.. the parent directory

~ the current user’s home directory

So, taking the above example again: given that I am in my home (~) folder, the following
commands all would create the new folder in the exact same place.

mkdir /home/adina/awesome_datalad_project
mkdir ~/awesome_datalad_project
mkdir awesome_datalad_project
mkdir ./awesome_datalad_project

To demonstrate this further, consider the following: In my home directory /home/adina I have
added a folder for my current project, awesome_datalad_project/. Let’s take a look at how this
folder is organized:

$ tree
home

adina
awesome_datalad_project

aligned

(continues on next page)

24 Chapter 4. General prerequisites

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

code
sub-01

bold3T
...
sub-xx

bold3T

Now let’s say I want to change from my home directory /home/adina into the code/ folder of
the project. I could use absolute paths:

cd /home/adina/awesome_datalad_project/aligned/code

But that is a bit wordy. It is much easier with a relative path:

$ cd awesome_datalad_project/aligned/code

Relative to my starting location (/home/adina), I navigated into the subfolders.

I can change back to my home directory also with a relative path:

$ cd ../../../

The first ../ takes me from code/ to its parent aligned/, the second ../ to
awesome_datalad_project/, and the last ../ back to my home directory adina/.

However, since I want to go back to my home folder, it’s much faster to run:

$ cd ~

4.6 Text Editors

Text editors are a crucial tool for any Linux user, but regardless of your operating system, if you
use DataLad, you will occasionally find yourself in your default text editor to write a COMMIT

MESSAGE to describe a change you performed in your DataLad dataset.

Religious wars have been fought over which is “the best” editor. From the smoldering ashes,
this is the breakdown:

nano Easy to use; medium features. If you do not know which to use, start with this.

vim Powerful and light; lots of features and many plugins; steep learning curve. Two resources
to help get the most out of vim are the vimtutor program and vimcasts.org. If you acci-
dentally enter vim unprepared, typing :q will get you out of there.

emacs Powerful; tons of features; written in Lisp; huge ecosystem; advanced learning curve.

4.7 Shells

Whenever you use the command line on a Unix-based system, you do that in a command-line
interpreter that is referred to as a shell.

The shell is used to start commands and display the output of those commands. It also comes
with its own primitive (yet surprisingly powerful) scripting language.

4.6. Text Editors 25

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Many shells exist, though most belong to a family of shells called “Bourne Shells” that descend
from the original sh. This is relevant, because they share (mostly) a common syntax.

Two common shells are:

Bash The bourne-again shell (bash) is the default shell on many *nix systems (most Linux
distros, MacOS).

zsh The Z shell (zsh) comes with many additional features, the highlights being: shared history
across running shells, smarter tab-completion, spelling correction, and better theming.

To determine what shell you’re in, run the following:

$ echo $SHELL
usr/bin/bash

4.8 Tab Completion

One of the best features ever invented is tab completion. Imagine your favorite animal sitting
on your shoulder. Now imagine that animal shouting “TAB!” every time you’ve typed the first 3
letters of a word. Listen to that animal.

Tab completion autocompletes commands and paths when you press the Tab key. If there are
multiple matching options, pressing Tab twice will list them.

The greatest advantage of tab completion is not increased speed (though that is a nice benefit)
but rather the near elimination of typos — and the resulting reduction of cognitive load. You
can actually focus on the task you’re working on, rather than your typing. Tab-completion will
autocomplete a DataLad command, options you give to it, or paths.

For an example of tab-completion with paths, consider the following directory structure:

Desktop
Documents

my_awesome_project
my_comics

xkcd
is_it_worth_the_time.png

Downloads

You’re in your home directory, and you want to navigate to your xkcd45 comic selection in
Documents/my_comics/xkcd. Instead of typing the full path error-free, you can press Tab after
the first few letters. If it is unambiguous, such as cd Doc <Tab>, it will expand to cd Documents.
If there are multiple matching options, such as cd Do, you will be prompted for more letters.
Pressing Tab again will list the matching options (Documents and Downloads in this case).

That’s it – equipped with the basics of Unix, you are good to go on your DataLad adven-
ture!

45 https://xkcd.com/1205/

26 Chapter 4. General prerequisites

https://xkcd.com/1205/

CHAPTER

FIVE

WHAT YOU REALLY NEED TO KNOW

DataLad is a data management multitool that can assist you in handling the entire life cycle
of digital objects. It is a command-line tool, free and open source, and available for all major
operating systems.

This document is the 10.000 feet overview of important concepts, commands, and capacities of
DataLad. Each section briefly highlights one type of functionality or concept and the associated
commands, and the upcoming Basics chapters will demonstrate in detail how to use them.

5.1 DataLad datasets

Every command affects or uses DataLad datasets, the core data structure of DataLad. A dataset
is a directory on a computer that DataLad manages.

.... or transform existing directories into datasets

create new, empty datasets to populate...

% datalad create

% datalad create -f

You can create new, empty datasets from scratch and populate them, or transform existing
directories into datasets.

27

../basics/101-101-create.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

5.2 Simplified local version control workflows

Building on top of GIT and GIT-ANNEX, DataLad allows you to version control arbitrarily large
files in datasets.

save
changes

modify the
dataset

version 1

version 2

version 3

% datalad save

Thus, you can keep track of revisions of data of any size, and view, interact with or restore any
version of your dataset’s history.

5.3 Consumption and collaboration

DataLad lets you consume datasets provided by others, and collaborate with them. You can
install existing datasets and update them from their sources, or create sibling datasets that you
can publish updates to and pull updates from for collaboration and data sharing.

Consume existing datasets and stay up-to-date

Create sibling datasets to publish to or update from

1 1

% datalad create-sibling

% datalad publish

% datalad update
% datalad clone

your workstation a different place

Cloud

Additionally, you can get access to publicly available open data collections with THE DATALAD

SUPERDATASET ///.

28 Chapter 5. What you really need to know

../basics/101-107-summary.html
../basics/101-120-summary.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

5.4 Dataset linkage

Datasets can contain other datasets (subdatasets), nested arbitrarily deep. Each dataset has an
independent revision history, but can be registered at a precise version in higher-level datasets.
This allows to combine datasets and to perform commands recursively across a hierarchy of
datasets, and it is the basis for advanced provenance capture abilities.

Paper
B

Raw
data

Analysis
A

Paper
A

Analysis
B

Preprocessed

Nest modular datasets to create a linked hierarchy of datasets,
and enable recursive operations throughout the hierarchy

5.5 Full provenance capture and reproducibility

DataLad allows to capture full PROVENANCE: The origin of datasets, the origin of files obtained
from web sources, complete machine-readable and automatically reproducible records of how
files were created (including software environments).

1
2

2
1

link input, code, containerized
 software environments, and output,

or re-run previous executions

% datalad run

% datalad rerun

capture the origin
of files obtained
from web sources

% datalad download-url

% datalad run-procedure

You or your collaborators can thus re-obtain or reproducibly recompute content with a single
command, and make use of extensive provenance of dataset content (who created it, when, and
how?).

5.4. Dataset linkage 29

../basics/101-106-nesting.html
../basics/101-113-summary.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

5.6 Third party service integration

Export datasets to third party services such as GitHub46, GitLab47, or Figshare48 with built-in
commands.

% datalad create-sibling-gitlab

% datalad create-sibling-github

% datalad export-to-figshare

Alternatively, you can use a multitude of other available third party services such as Dropbox49,
Google Drive50, Amazon S351, owncloud52, or many more that DataLad datasets are compatible
with.

5.7 Metadata handling

Extract, aggregate, and query dataset metadata. This allows to automatically obtain metadata
according to different metadata standards (EXIF, XMP, ID3, BIDS, DICOM, NIfTI1, . . .), store
this metadata in a portable format, share it, and search dataset contents.

NIDM

DICOM
BIDS

00ce
405e

-658
9-11

e8↩

-b74
9-a0

369f
b55d

b0

RAW

"dicom":{ },"xmp":{ },}

{

...

...

...

{ }

"bids":{ }}

{

...

"ni
dm"

:{
}}

{

...STan ardizedD raw

std

ana

ANAlysis

raw

XMP
. . .

metadata format homogenization to JSON-LD
juxtapose representation of metadata plurality

 Automated metadata

 extraction from any

 number and selection

of formats

Subda
taset

 metad
ata a

ggre
gatio

n

into
supe

rdata
sets

full metadata export and query
in superdatasets

independent of data and subdataset availablity

 3rd-party metadata

 extractor support,

 extract once, use

everywhere

b910
1f1e

-ebc
9-4b

d5↩

-a46
9-50

5baa
a573

87
fc501

7a1-
bea6

-4ea
c↩

-9bd
3-26

640f
9d95

0f

T1
d41d

8cd9
8f00

b204
↩

 e98
0099

8ecf8
427e

 identifiers for datasets,
 file content and location
FAIR

 "path": "inputs/openneuro_ds008/sub-15/anat/sub-15_t1w.nii.gz",
 "metadata: {
 "datalad":{"dataset":"b9101f1e-ebc9-4bd5-a469-505baaa57387", },
 "annex":{"key":"d41d8cd98f00b204e9800998ecf8427e", ,
 "url":["http://openneuro.s3.amazonaws.com/ _R1.1.0/ Z9",]}},

{

...

...

}... ...

% datalad --output-format json search \
 bids.subject.sex:female bids.subject.age:24 bids.type:t1

46 https://github.com/
47 https://about.gitlab.com/
48 https://figshare.com/
49 https://dropbox.com
50 https://drive.google.com/drive/my-drive
51 https://aws.amazon.com/de/s3/
52 https://owncloud.org/

30 Chapter 5. What you really need to know

https://github.com/
https://about.gitlab.com/
https://figshare.com/
https://dropbox.com
https://drive.google.com/drive/my-drive
https://aws.amazon.com/de/s3/
https://owncloud.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

5.8 All in all. . .

You can use DataLad for a variety of use cases. At its core, it is a domain-agnostic and self-
effacing tool: DataLad allows to improve your data management without custom data structures
or the need for central infrastructure or third party services. If you are interested in more
high-level information on DataLad, you can find answers to common questions in the section
Frequently Asked Questions (page 479), and a concise command cheat-sheet in section DataLad
cheat sheet (page 496).

But enough of the introduction now – let’s dive into the Basics (page 33)

5.8. All in all. . . 31

Part II

Basics

32

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The Basics will show you the building blocks of DataLad in a continuous narrative. Start up a
terminal, and code along! For the best experience, try reading the Basics chapter sequentially.

33

CHAPTER

SIX

DATALAD DATASETS

1

6.1 Create a dataset

We are about to start the educational course DataLad-101. In order to follow along and organize
course content, let us create a directory on our computer to collate the materials, assignments,
and notes in.

Since this is DataLad-101, let’s do it as a DATALAD DATASET. You might associate the term
“dataset” with a large spreadsheet containing variables and data. But for DataLad, a dataset is
the core data type: As noted in A brief overview of DataLad (page 2), a dataset is a collection of
files in folders, and a file is the smallest unit any dataset can contain. Although this is a very sim-
ple concept, datasets come with many useful features. Because experiencing is more insightful
than just reading, we will explore the concepts of DataLad datasets together by creating one.

Find a nice place on your computer’s file system to put a dataset for DataLad-101, and create a
fresh, empty dataset with the datalad create command (datalad-create manual).

Note the command structure of datalad create (optional bits are enclosed in []):

datalad create [--description "..."] [-c <config options>] PATH

M6.1 What is the description option of datalad-create?

The optional --description flag allows you to provide a short description of the location
of your dataset, for example with

34

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

datalad create --description "course on DataLad-101 on my private Laptop" -c␣
→˓text2git DataLad-101

If you want, use the above command instead of the create command below to provide
a description. Its use will not be immediately clear, the chapter Collaboration (page 92))
will show you where this description ends up and how it may be useful.

Let’s start:

$ datalad create -c text2git DataLad-101
[INFO] Creating a new annex repo at /home/me/dl-101/DataLad-101
[INFO] scanning for unlocked files (this may take some time)
[INFO] Running procedure cfg_text2git
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
create(ok): /home/me/dl-101/DataLad-101 (dataset)

This will create a dataset called DataLad-101 in the directory you are currently in. For now,
disregard -c text2git. It applies a configuration template, but there will be other parts of this
book to explain this in detail.

Once created, a DataLad dataset looks like any other directory on your file system. Currently, it
seems empty.

$ cd DataLad-101
$ ls # ls does not show any output, because the dataset is empty.

However, all files and directories you store within the DataLad dataset can be tracked (should
you want them to be tracked). Tracking in this context means that edits done to a file are
automatically associated with information about the change, the author of the edit, and the time
of this change. This is already informative important on its own – the PROVENANCE captured
with this can for example be used to learn about a file’s lineage, and can establish trust in
it. But what is especially helpful is that previous states of files or directories can be restored.
Remember the last time you accidentally deleted content in a file, but only realized after you
saved it? With DataLad, no mistakes are forever. We will see many examples of this later in the
book, and such information is stored in what we will refer to as the history of a dataset.

This history is almost as small as it can be at the current state, but let’s take a look at it. For
looking at the history, the code examples will use git log, a built-in GIT command56 that works
right in your terminal. Your log might be opened in a terminal pager53 that lets you scroll up
and down with your arrow keys, but not enter any more commands. If this happens, you can
get out of git log by pressing q.

$ git log
commit a19b634693d18bf507214839520f0031aca371c7
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:20:24 2021 +0200

Instruct annex to add text files to Git

commit 9098f563383dce3858c351343e4e671f70bd8243

(continues on next page)

56 A tool we can recommend as an alternative to git log is TIG. Once installed, exchange any git log command
you see here with the single word tig.

53 https://en.wikipedia.org/wiki/Terminal_pager

6.1. Create a dataset 35

https://en.wikipedia.org/wiki/Terminal_pager

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:20:23 2021 +0200

[DATALAD] new dataset

We can see two COMMITs in the history of the repository. Each of them is identified by a unique
40 character sequence, called a SHASUM.

W6.1 Your Git log may be more extensive - use “git log master” instead!

The output of git log shown in the handbook and the output you will see in your own
datasets when executing the same commands may not always match – many times you
might see commits about a “git-annex adjusted branch” in your history. This is expected,
and if you want to read up more about this, please progress on to chapter 3 and after-
wards take a look at this part of git-annex documentation54.
In order to get a similar experience in your dataset, please add the name of your default
BRANCH (it will likely have the name main or master) to every git log command. This
should display the same output that the handbook display. The reason behind this is that
datasets are using a special BRANCH to be functional on Windows. This branch’s history
differs from the history that would be in the default branch. With this workaround, you
will be able to display the dataset history from the same branch that handbook and all
other operating system display. Thus, whenever the handbook code snippet contains a
line that starts with git log, copy it and append the term main or master, whichever is
appropriate.
If you are eager to help to improve the handbook, you could do us a favor by reporting
any places with mismatches between Git logs on Windows and in the handbook. Get in
touch55!
54 https://git-annex.branchable.com/design/adjusted_branches/
55 https://github.com/datalad-handbook/book/issues/new/

Highlighted in this output is information about the author and about the time, as well as a
COMMIT MESSAGE that summarizes the performed action concisely. In this case, both commit
messages were written by DataLad itself. The most recent change is on the top. The first commit
written to the history therefore states that a new dataset was created, and the second commit is
related to the -c text2git option (which uses a configuration template to instruct DataLad to
store text files in Git, but more on this later). While these commits were produced and described
by DataLad, in most other cases, you will have to create the commit and an informative commit
message yourself.

G6.1 Create internals

datalad create uses git init and git-annex init. Therefore, the DataLad dataset is
a Git repository. Large file content in the dataset is tracked with git-annex. An ls -a
reveals that Git has secretly done its work:

$ ls -a # show also hidden files
.
..
.datalad
.git
.gitattributes

36 Chapter 6. DataLad datasets

https://git-annex.branchable.com/design/adjusted_branches/
https://github.com/datalad-handbook/book/issues/new/
https://github.com/datalad-handbook/book/issues/new/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

For non-Git-Users: these hidden dot-directories are necessary for all Git magic to
work. Please do not tamper with them, and, importantly, do not delete them.

Congratulations, you just created your first DataLad dataset! Let us now put some content
inside.

6.2 Populate a dataset

The first lecture in DataLad-101 referenced some useful literature. Even if we end up not
reading those books at all, let’s download them nevertheless and put them into our dataset. You
never know, right? Let’s first create a directory to save books for additional reading in.

$ mkdir books

Let’s take a look at the current directory structure with the tree command62:

$ tree
.

books

1 directory, 0 files

Arguably, not the most exciting thing to see. So let’s put some PDFs inside. Below is a short list
of optional readings. We decide to download them (they are all free, in total about 15 MB), and
save them in DataLad-101/books.

• Additional reading about the command line: The Linux Command Line57

• An intro to Python: A byte of Python58

You can either visit the links and save them in books/, or run the following commands63 to
download the books right from the terminal. Note that we line break the command with \
signs. In your own work you can write commands like this into a single line. If you copy them
into your terminal as they are presented here, make sure to check the Windows-wit W6.2 on
peculiarities of its terminals (page 37).

W6.2 Terminals other than Git Bash can’t handle multi-line commands

In Unix shells, \ can be used to split a command into several lines, for example to aid
readability. Standard Windows terminals (including the Anaconda prompt) do not sup-
port this. They instead use the ^ character:

62 tree is a Unix command to list file system content. If it is not yet installed, you can get it with your native package
manager (e.g., apt, brew, or conda). For example, if you use OSX, brew install tree will get you this tool. On
Windows, if you have the Miniconda-based installation described in Installation and configuration (page 10), you
can install the m2-base package (conda install m2-base), which contains tree along with many other Unix-like
commands. Note that this tree works slightly different than its Unix equivalent - it will only display directories,
not files, and it doesn’t accept common options or flags. It will also display hidden directories, i.e., those that start
with a . (dot).

57 https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/download
58 https://github.com/swaroopch/byte-of-python/releases/download/v14558db59a326ba99eda0da6c4548c48ccb

4cd0f/byte-of-python.pdf
63 wget is a Unix command for non-interactively downloading files from the web. If it is not yet installed, you can

get it with your native package manager (e.g., apt or brew). For example, if you use OSX, brew install wget will
get you this tool.

6.2. Populate a dataset 37

https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/download
https://github.com/swaroopch/byte-of-python/releases/download/v14558db59a326ba99eda0da6c4548c48ccb4cd0f/byte-of-python.pdf

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ wget -q https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.
→˓pdf/download ^
-O TLCL.pdf

If you are not using the Git Bash, you will either need to copy multi-line commands into
a single line, or use ^ (make sure that there is no space afterwards) instead of \.

$ cd books
$ wget -q https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/
→˓download \
-O TLCL.pdf

$ wget -q https://homepages.uc.edu/~becktl/byte_of_python.pdf \
-O byte-of-python.pdf

get back into the root of the dataset
$ cd ../
2021-07-29 16:20:26 URL:https://jztkft.dl.sourceforge.net/project/linuxcommand/TLCL/19.01/
→˓TLCL-19.01.pdf [2120211/2120211] -> "TLCL.pdf" [1]
2021-07-29 16:20:27 URL:https://github-releases.githubusercontent.com/6501727/56225300-
→˓af61-11ea-8d7f-be2b68e479be?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
→˓Credential=AKIAIWNJYAX4CSVEH53A%2F20210729%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-
→˓Date=20210729T142026Z&X-Amz-Expires=300&X-Amz-
→˓Signature=a9ed817c078f32f88ba17d479828e7496c075bfd27c0528087129b0dd0ca06ee&X-Amz-
→˓SignedHeaders=host&actor_id=0&key_id=0&repo_id=6501727&response-content-
→˓disposition=attachment%3B%20filename%3Dbyte-of-python.pdf&response-content-
→˓type=application%2Foctet-stream [4208954/4208954] -> "byte-of-python.pdf" [1]

Some machines will not have wget available by default, but any command that can download
a file can work as an alternative. See the Windows-wit W6.3 for the popular alternative curl
(page 38).

W6.3 You can use curl instead of wget

Many versions of Windows do not ship with the tool wget. You can install it, but it may
be easier to use the pre-installed curl command:

$ cd books
$ curl -L https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.
→˓pdf/download \
-o TLCL.pdf

$ curl -L https://homepages.uc.edu/~becktl/byte_of_python.pdf \
-o byte-of-python.pdf

$ cd ../

Let’s see what happened. First of all, in the root of DataLad-101, show the directory structure
with tree:

$ tree
.

books
byte-of-python.pdf
TLCL.pdf

1 directory, 2 files

Now what does DataLad do with this new content? One command you will use very often

38 Chapter 6. DataLad datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

is datalad status (datalad-status manual). It reports on the state of dataset content, and
regular status reports should become a habit in the wake of DataLad-101.

$ datalad status
untracked: books (directory)

Interesting; the books/ directory is “untracked”. Remember how content can be tracked if a
user wants to? Untracked means that DataLad does not know about this directory or its content,
because we have not instructed DataLad to actually track it. This means that DataLad does
not store the downloaded books in its history yet. Let’s change this by saving the files to the
dataset’s history with the datalad save command (datalad-save manual).

This time, it is your turn to specify a helpful COMMIT MESSAGE with the -m option (although
the DataLad command is datalad save, we talk about commit messages because datalad save
ultimately uses the command git commit to do its work):

$ datalad save -m "add books on Python and Unix to read later"
add(ok): books/TLCL.pdf (file)
add(ok): books/byte-of-python.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
save (ok: 1)

If you ever forget to specify a message, or made a typo, not all is lost. A Find-out-more M6.2
explains how to amend a saved state (page 39).

M6.2 “Oh no! I forgot the -m option for datalad-save!”

If you forget to specify a commit message with the -m option, DataLad will write
[DATALAD] Recorded changes as a commit message into your history. This is not par-
ticularly informative. You can change the last commit message with the Git command
git commit --amend. This will open up your default editor and you can edit the commit
message. Careful – the default editor might be VIM! The section Back and forth in time
(page 245) will show you many more ways in which you can interact with a dataset’s
history.

As already noted, any files you save in this dataset, and all modifications to these files that you
save, are tracked in this history. Importantly, this file tracking works regardless of the size of the
files – a DataLad dataset could be your private music or movie collection with single files being
many GB in size. This is one aspect that distinguishes DataLad from many other version control
tools, among them Git. Large content is tracked in an annex that is automatically created and
handled by DataLad. Whether text files or larger files change, all of these changes can be written
to your DataLad dataset’s history.

Let’s see how the saved content shows up in the history of the dataset with git log. The option
-n 1 specifies that we want to take a look at the most recent commit. In order to get a bit more
details, we add the -p flag. If you end up in a pager, navigate with up and down arrow keys
and leave the log by typing q:

$ git log -p -n 1
commit 7ad3b1b54cf743983d2cdb8449ab7968d66bdb1a
Author: Elena Piscopia <elena@example.net>

(continues on next page)

6.2. Populate a dataset 39

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M6.3 DOs and DON’Ts for commit messages

DOs
• Write a title line with 72 characters or less (as we did so far)
• it should be in imperative voice, e.g., “Add notes from lecture 2”
• Often, a title line is not enough to express your changes and reasoning

behind it. In this case, add a body to your commit message by hitting
enter twice (before closing the quotation marks), and continue writing
a brief summary of the changes after a blank line. This summary should
explain “what” has been done and “why”, but not “how”. Close the
quotation marks, and hit enter to save the change with your message.

DON’Ts
• passive voice is hard to read afterwards
• extensive formatting (hashes, asterisks, quotes, . . .) will most likely

make your shell complain
• it should be obvious: do not say nasty things about other people

(continued from previous page)

Date: Thu Jul 29 16:20:28 2021 +0200

add books on Python and Unix to read later

diff --git a/books/TLCL.pdf b/books/TLCL.pdf
new file mode 120000
index 0000000..4c84b61
--- /dev/null
+++ b/books/TLCL.pdf
@@ -0,0 +1 @@
+../.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
\ No newline at end of file
diff --git a/books/byte-of-python.pdf b/books/byte-of-python.pdf
new file mode 120000
index 0000000..adaec61
--- /dev/null
+++ b/books/byte-of-python.pdf

Now this might look a bit cryptic (and honestly, tig64 makes it look prettier). But this tells us
the date and time in which a particular author added two PDFs to the directory books/, and
thanks to that commit message we have a nice human-readable summary of that action. A
Find-out-more M6.3 explains what makes a good message (page 40).

G6.2 There is no staging area in DataLad

Just as in Git, new files are not tracked from their creation on, but only when explicitly
added to Git (in Git terms with an initial git add). But different from the common Git
workflow, DataLad skips the staging area. A datalad save combines a git add and a git
commit, and therefore, the commit message is specified with datalad save.

Cool, so now you have added some files to your dataset history. But what is a bit inconvenient is
that both books were saved together. You begin to wonder: “A Python book and a Unix book do

64 See TIG. Once installed, exchange any git log command you see here with the single word tig.

40 Chapter 6. DataLad datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

not have that much in common. I probably should not save them in the same commit. And . . .
what happens if I have files I do not want to track? datalad save -m "some commit message"
would save all of what is currently untracked or modified in the dataset into the history!”

Regarding your first remark, you’re absolutely right! It is good practice to save only those
changes together that belong together. We do not want to squish completely unrelated changes
into the same spot of our history, because it would get very nasty should we want to revert some
of the changes without affecting others in this commit.

Luckily, we can point datalad save to exactly the changes we want it to record. Let’s try this by
adding yet another book, a good reference work about git, Pro Git59:

$ cd books
$ wget -q https://github.com/progit/progit2/releases/download/2.1.154/progit.pdf
$ cd ../
2021-07-29 16:20:31 URL:https://github-releases.githubusercontent.com/15400220/57552a00-
→˓9a49-11e9-9144-d9607ed4c2db?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
→˓Credential=AKIAIWNJYAX4CSVEH53A%2F20210729%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-
→˓Date=20210729T142029Z&X-Amz-Expires=300&X-Amz-
→˓Signature=407a1a69062337b27895dd52a4cbe7424ec23ba0dc02fe2e589e4a9533fa0d86&X-Amz-
→˓SignedHeaders=host&actor_id=0&key_id=0&repo_id=15400220&response-content-
→˓disposition=attachment%3B%20filename%3Dprogit.pdf&response-content-type=application
→˓%2Foctet-stream [12465653/12465653] -> "progit.pdf" [1]

datalad status shows that there is a new untracked file:

$ datalad status
untracked: books/progit.pdf (file)

Let’s give datalad save precisely this file by specifying its path after the commit message:

$ datalad save -m "add reference book about git" books/progit.pdf
add(ok): books/progit.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Regarding your second remark, you’re right that a datalad save without a path specification
would write all of the currently untracked files or modifications to the history. But check the
Find-out-more M6.4 on how to tell it otherwise (page 41).

M6.4 How to save already tracked dataset components only?

A datalad save -m "concise message" --updated (or the shorter form of --updated,
-u) will only write modifications to the history, not untracked files. Later, we will also
see .gitignore files that let you hide content from version control. However, it is good
practice to safely store away modifications or new content. This improves your dataset
and workflow, and will be a requirement for executing certain commands.

A datalad status should now be empty, and our dataset’s history should look like this:

59 https://git-scm.com/book/en/v2

6.2. Populate a dataset 41

https://git-scm.com/book/en/v2

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

lets make the output a bit more concise with the --oneline option
$ git log --oneline
ca8582d add reference book about git
7ad3b1b add books on Python and Unix to read later
a19b634 Instruct annex to add text files to Git
9098f56 [DATALAD] new dataset

“Wonderful! I’m getting a hang on this quickly”, you think. “Version controlling files is not as
hard as I thought!”

But downloading and adding content to your dataset “manually” has two disadvantages: For
one, it requires you to download the content and save it. Compared to a workflow with no
DataLad dataset, this is one additional command you have to perform (and that additional time
adds up, after a while60). But a more serious disadvantage is that you have no electronic record
of the source of the contents you added. The amount of PROVENANCE, the time, date, and
author of file, is already quite nice, but we don’t know anything about where you downloaded
these files from. If you would want to find out, you would have to remember where you got the
content from – and brains are not made for such tasks.

Luckily, DataLad has a command that will solve both of these problems: The datalad
download-url command (datalad-download-url manual). We will dive deeper into the
provenance-related benefits of using it in later chapters, but for now, we’ll start with best-
practice-building. datalad download-url can retrieve content from a URL (following any URL-
scheme from https, http, or ftp or s3) and save it into the dataset together with a human-
readable commit message and a hidden, machine-readable record of the origin of the content.
This saves you time, and captures PROVENANCE information about the data you add to your
dataset. To experience this, let’s add a final book, a beginner’s guide to bash61, to the dataset.
We provide the command with a URL, a pointer to the dataset the file should be saved in (.
denotes “current directory”), and a commit message.

$ datalad download-url \
http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf \
--dataset . \
-m "add beginners guide on bash" \
-O books/bash_guide.pdf

[INFO] Downloading 'http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
→˓' into '/home/me/dl-101/DataLad-101/books/bash_guide.pdf'
download_url(ok): /home/me/dl-101/DataLad-101/books/bash_guide.pdf (file)
add(ok): books/bash_guide.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

Afterwards, a fourth book is inside your books/ directory:

$ ls books
bash_guide.pdf
byte-of-python.pdf
progit.pdf
TLCL.pdf

60 https://xkcd.com/1205/
61 https://tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf

42 Chapter 6. DataLad datasets

https://xkcd.com/1205/
https://xkcd.com/1205/
https://tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

However, the datalad status command does not return any output – the dataset state is
“clean”:

$ datalad status
nothing to save, working tree clean

This is because datalad download-url took care of saving for you:

$ git log -p -n 1
commit 19306998c57dc14e0d735a2a50512905c33c5779
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:20:36 2021 +0200

add beginners guide on bash

diff --git a/books/bash_guide.pdf b/books/bash_guide.pdf
new file mode 120000
index 0000000..00ca6bd
--- /dev/null
+++ b/books/bash_guide.pdf
@@ -0,0 +1 @@
+../.git/annex/objects/WF/Gq/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-
→˓s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
\ No newline at end of file

At this point in time, the biggest advantage may seem to be the time save. However, soon you
will experience how useful it is to have DataLad keep track for you where file content came
from.

To conclude this section, let’s take a final look at the history of your dataset at this point:

$ git log --oneline
1930699 add beginners guide on bash
ca8582d add reference book about git
7ad3b1b add books on Python and Unix to read later
a19b634 Instruct annex to add text files to Git
9098f56 [DATALAD] new dataset

Well done! Your DataLad-101 dataset and its history are slowly growing.

6.3 Modify content

So far, we’ve only added new content to the dataset. And we have not done much to that
content up to this point, to be honest. Let’s see what happens if we add content, and then
modify it.

For this, in the root of DataLad-101, create a plain text file called notes.txt. It will contain all
of the notes that you take throughout the course.

Let’s write a short summary of how to create a DataLad dataset from scratch:

“One can create a new dataset with ‘datalad create [–description] PATH’. The dataset
is created empty”.

This is meant to be a note you would take in an educational course. You can take this note
and write it to a file with an editor of your choice. The code below, however, contains this note

6.3. Modify content 43

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

within the start and end part of a here document65. You can also copy the full code snippet,
starting from cat << EOT > notes.txt, including the EOT in the last line, in your terminal to
write this note from the terminal (without any editor) into notes.txt.

M6.5 How does a here-document work?

The code snippet below makes sure to write lines of text into a file (that so far does not
exist) called notes.txt.
To do this, the content of the “document” is wrapped in between delimiting identifiers.
Here, these identifiers are EOT (short for “end of text”), but naming is arbitrary as long
as the two identifiers are identical. The first “EOT” identifies the start of the text stream,
and the second “EOT” terminates the text stream.
The characters << redirect the text stream into “standard input” (stdin)66, the standard
location that provides the input for a command. Thus, the text stream becomes the
input for the cat command67, which takes the input and writes it to “standard output”
(stdout)68.
Lastly, the > character takes stdout can creates a new file notes.txt with stdout as its
contents.
It might seem like a slightly convoluted way to create a text file with a note in it. But it
allows to write notes from the terminal, enabling this book to create commands you can
execute with nothing other than your terminal. You are free to copy-paste the snippets
with the here-documents, or find a workflow that suites you better. The only thing im-
portant is that you create and modify a .txt file over the course of the Basics part of this
handbook.
66 https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)
67 https://en.wikipedia.org/wiki/Cat_(Unix)
68 https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)

Running the command below will create notes.txt in the root of your DataLad-101 dataset:

W6.4 Heredocs don’t work under non-Git-Bash Windows terminals

Heredocs rely on Unix-type redirection and multi-line commands – which is not sup-
ported on most native Windows terminals or the Anaconda prompt on Windows. If you
are using an Anaconda prompt or a Windows terminal other than Git Bash, instead of
executing heredocs, please open up an editor and paste and save the text into it.
The relevant text in the snippet below would be:

One can create a new dataset with 'datalad create [--description] PATH'.
The dataset is created empty

If you are using Git Bash, however, here docs will work just fine.

$ cat << EOT > notes.txt
One can create a new dataset with 'datalad create [--description] PATH'.
The dataset is created empty

EOT

Run datalad status to confirm that there is a new, untracked file:

65 https://en.wikipedia.org/wiki/Here_document

44 Chapter 6. DataLad datasets

https://en.wikipedia.org/wiki/Here_document
https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)
https://en.wikipedia.org/wiki/Cat_(Unix)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad status
untracked: notes.txt (file)

Save the current state of this file in your dataset’s history. Because it is the only modification in
the dataset, there is no need to specify a path.

$ datalad save -m "Add notes on datalad create"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

But now, let’s see how changing tracked content works. Modify this file by adding another note.
After all, you already know how to use datalad save, so write a short summary on that as well.

Again, the example below uses Unix commands (cat and redirection, this time however with
>> to append new content to the existing file) to accomplish this, but you can take any editor of
your choice.

$ cat << EOT >> notes.txt
The command "datalad save [-m] PATH" saves the file (modifications) to
history.
Note to self: Always use informative, concise commit messages.

EOT

Let’s check the dataset’s current state:

$ datalad status
modified: notes.txt (file)

and save the file in DataLad:

$ datalad save -m "add note on datalad save"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Let’s take another look into our history to see the development of this file. We’re using git log
-p -n 2 to see last two commits and explore the difference to the previous state of a file within
each commit.

$ git log -p -n 2
commit 13cc7f73f0ff5054aef855aebcceca203f98ed09
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:20:41 2021 +0200

add note on datalad save

diff --git a/notes.txt b/notes.txt
index 3a7a1fe..0142412 100644
--- a/notes.txt
+++ b/notes.txt

(continues on next page)

6.3. Modify content 45

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

@@ -1,3 +1,7 @@
One can create a new dataset with 'datalad create [--description] PATH'.
The dataset is created empty

+The command "datalad save [-m] PATH" saves the file (modifications) to
+history.
+Note to self: Always use informative, concise commit messages.
+

commit cc213c2d401c467f3944559bc97acb1eecd026fe
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:20:40 2021 +0200

Add notes on datalad create

diff --git a/notes.txt b/notes.txt
new file mode 100644

We can see that the history can not only show us the commit message attached to a commit,
but also the precise change that occurred in the text file in the commit. Additions are marked
with a +, and deletions would be shown with a leading -. From the dataset’s history, we can
therefore also find out how the text file evolved over time. That’s quite neat, isn’t it?

M6.6 git log has many more useful options

git log, as many other Git commands, has a good number of options which you can
discover if you run git log --help. Those options could help to find specific changes
(e.g., which added or removed a specific word with -S), or change how git log output
will look (e.g., --word-diff to highlight individual word changes in the -p output).

6.4 Install datasets

So far, we have created a DataLad-101 course dataset. We saved some additional readings into
the dataset, and have carefully made and saved notes on the DataLad commands we discovered.
Up to this point, we therefore know the typical, local workflow to create and populate a dataset
from scratch.

But we’ve been told that with DataLad we could very easily get vast amounts of data to our
computer. Rumor has it that this would be only a single command in the terminal! Therefore,
everyone in today’s lecture excitedly awaits today’s topic: Installing datasets.

“With DataLad, users can install clones of existing DataLad datasets from paths, URLs, or open-
data collections” our lecturer begins. “This makes accessing data fast and easy. A dataset that
others could install can be created by anyone, without a need for additional software. Your
own datasets can be installed by others, should you want that, for example. Therefore, not only
accessing data becomes fast and easy, but also sharing.” “That’s so cool!”, you think. “Exam
preparation will be a piece of cake if all of us can share our mid-term and final projects easily!”
“But today, let’s only focus on how to install a dataset”, she continuous. “Damn it! Can we not
have longer lectures?”, you think and set alarms to all of the upcoming lecture dates in your
calendar. There is so much exciting stuff to come, you can not miss a single one.

“Psst!” a student from the row behind reaches over. “There are a bunch of audio recordings of

46 Chapter 6. DataLad datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

a really cool podcast, and they have been shared in the form of a DataLad dataset! Shall we try
whether we can install that?”

“Perfect! What a great way to learn how to install a dataset. Doing it now instead of looking at
slides for hours is my preferred type of learning anyway”, you think as you fire up your terminal
and navigate into your DataLad-101 dataset.

In this demonstration, we’re using one of the many openly available datasets that DataLad pro-
vides in a public registry that anyone can access. One of these datasets is a collection of audio
recordings of a great podcast, the longnow seminar series71. It consists of audio recordings
about long-term thinking, and while the DataLad-101 course is not a long-term thinking sem-
inar, those recordings are nevertheless a good addition to the large stash of yet-to-read text
books we piled up. Let’s get this dataset into our existing DataLad-101 dataset.

To keep the DataLad-101 dataset neat and organized, we first create a new directory, called
recordings.

we are in the root of DataLad-101
$ mkdir recordings

There are two commands that can be used to obtain a dataset: datalad install
(datalad-install manual) and datalad clone (datalad-clone manual). Throughout this
handbook, we will use datalad clone to obtain datasets. The command has a less complex
structure but slightly simplified behavior, and the Findoutmore (page 98) in section Looking
without touching (page 92) will elaborate on the differences between the two commands. Let’s
install the longnow podcasts in this new directory with datalad clone.

The command takes a location of an existing dataset to clone. This source can be a URL or a
path to a local directory, or an SSH server70. The dataset to be installed lives on GITHUB, at
https://github.com/datalad-datasets/longnow-podcasts.git69, and we can give its GitHub URL
as the first positional argument. Optionally, the command also takes as second positional argu-
ment a path to the destination, – a path to where we want to install the dataset to. In this case
it is recordings/longnow. Because we are installing a dataset (the podcasts) into an existing
dataset (the DataLad-101 dataset), we also supply a -d/--dataset flag to the command. This
specifies the dataset to perform the operation on, and allows us to install the podcasts as a
subdataset of DataLad-101. Because we are in the root of the DataLad-101 dataset, the pointer
to the dataset is a . (which is Unix’ way of saying “current directory”).

As before with long commands, we line break the code below with a \. You can copy it as it is
presented here into your terminal, but in your own work you can write commands like this into
a single line.

$ datalad clone --dataset . \
https://github.com/datalad-datasets/longnow-podcasts.git recordings/longnow
[INFO] Cloning dataset to Dataset(/home/me/dl-101/DataLad-101/recordings/longnow)
[INFO] Attempting to clone from https://github.com/datalad-datasets/longnow-podcasts.git␣
→˓to /home/me/dl-101/DataLad-101/recordings/longnow
[INFO] Start enumerating objects

(continues on next page)

71 The longnow podcasts are lectures and conversations on long-term thinking produced by the LongNow foundation
and we can wholeheartedly recommend them for their worldly wisdoms and compelling, thoughtful ideas. Sub-
scribe to the podcasts at https://longnow.org/seminars/podcast. Support the foundation by becoming a member:
https://longnow.org/membership. https://longnow.org

70 Additionally, a source can also be a pointer to an open-data collection, for example THE DATALAD SUPERDATASET

/// – more on what this is and how to use it later, though.
69 https://github.com/datalad-datasets/longnow-podcasts

6.4. Install datasets 47

https://github.com/datalad-datasets/longnow-podcasts
https://longnow.org/seminars/podcast
https://longnow.org/membership
https://longnow.org

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/DataLad-101/recordings/
→˓longnow)
[INFO] scanning for unlocked files (this may take some time)
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): recordings/longnow (dataset)
add(ok): recordings/longnow (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

This command copied the repository found at the URL https://github.com/datalad-datasets/
longnow-podcasts.git into the existing DataLad-101 dataset, into the directory recordings/
longnow. The optional destination is helpful: If we had not specified the path recordings/
longnow as a destination for the dataset clone, the command would have installed the dataset
into the root of the DataLad-101 dataset, and instead of longnow it would have used the name
of the remote repository “longnow-podcasts”. But the coolest feature of datalad clone is yet
invisible: This command also recorded where this dataset came from, thus capturing its origin
as PROVENANCE. Even though this is not obvious at this point in time, later chapters in this
handbook will demonstrate how useful this information can be.

M6.7 Do I have to install from the root of datasets?

No. Instead of from the root of the DataLad-101 dataset, you could have also installed
the dataset from within the recordings, or books directory. In the case of installing
datasets into existing datasets you however need to adjust the paths that are given with
the -d/--dataset option: -d needs to specify the path to the root of the dataset. This
is important to keep in mind whenever you do not execute the clone command from
the root of this dataset. Luckily, there is a shortcut: -d^ will always point to root of the
top-most dataset. For example, if you navigate into recordings the command would be:

datalad clone -d^ https://github.com/datalad-datasets/longnow-podcasts.git longnow

M6.8 What if I do not install into an existing dataset?

If you do not install into an existing dataset, you only need to omit the -d/--dataset
option. You can try:

datalad clone https://github.com/datalad-datasets/longnow-podcasts.git

anywhere outside of your DataLad-101 dataset to install the podcast dataset into a new
directory called longnow-podcasts. You could even do this inside of an existing dataset.
However, whenever you install datasets into of other datasets, the -d/--dataset option is
necessary to not only install the dataset, but also register it automatically into the higher
level superdataset. The upcoming section will elaborate on this.

48 Chapter 6. DataLad datasets

https://github.com/datalad-datasets/longnow-podcasts.git
https://github.com/datalad-datasets/longnow-podcasts.git

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

G6.3 Clone internals

The datalad clone command uses git clone. A dataset that is installed from an existing
source, e.g., a path or URL, is the DataLad equivalent of a clone in Git.

Here is the repository structure:

W6.5 tree -d may fail

If you have installed CONDAs m2-base package for access to Unix commands such as tree,
you will have the tree command. However, this version of tree does not support the use
of any command flags, so please just run tree instead of tree -d.

$ tree -d # we limit the output to directories
.

books
recordings

longnow
Long_Now__Conversations_at_The_Interval
Long_Now__Seminars_About_Long_term_Thinking

5 directories

We can see that recordings has one subdirectory, our newly installed longnow dataset.
Within the dataset are two other directories, Long_Now__Conversations_at_The_Interval and
Long_Now__Seminars_About_Long_term_Thinking. If we navigate into one of them and list its
content, we’ll see many .mp3 files (here is an excerpt).

$ cd recordings/longnow/Long_Now__Seminars_About_Long_term_Thinking
$ ls
2003_11_15__Brian_Eno__The_Long_Now.mp3
2003_12_13__Peter_Schwartz__The_Art_Of_The_Really_Long_View.mp3
2004_01_10__George_Dyson__There_s_Plenty_of_Room_at_the_Top__Long_term_Thinking_About_
→˓Large_scale_Computing.mp3
2004_02_14__James_Dewar__Long_term_Policy_Analysis.mp3
2004_03_13__Rusty_Schweickart__The_Asteroid_Threat_Over_the_Next_100_000_Years.mp3
2004_04_10__Daniel_Janzen__Third_World_Conservation__It_s_ALL_Gardening.mp3
2004_05_15__David_Rumsey__Mapping_Time.mp3
2004_06_12__Bruce_Sterling__The_Singularity__Your_Future_as_a_Black_Hole.mp3
2004_07_10__Jill_Tarter__The_Search_for_Extra_terrestrial_Intelligence__Necessarily_a_
→˓Long_term_Strategy.mp3
2004_08_14__Phillip_Longman__The_Depopulation_Problem.mp3
2004_09_11__Danny_Hillis__Progress_on_the_10_000_year_Clock.mp3
2004_10_16__Paul_Hawken__The_Long_Green.mp3
2004_11_13__Michael_West__The_Prospects_of_Human_Life_Extension.mp3

Dataset content identity and availability information

Surprised, you turn to your fellow student and wonder about how fast the dataset was installed.
Should a download of that many .mp3 files not take much more time?

Here you can see another import feature of DataLad datasets and the datalad clone command:
Upon installation of a DataLad dataset, DataLad retrieves only small files (for example text files
or markdown files) and (small) metadata information about the dataset. It does not, however,

6.4. Install datasets 49

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

download any large files (yet). The metadata exposes the dataset’s file hierarchy for exploration
(note how you are able to list the dataset contents with ls), and downloading only this metadata
speeds up the installation of a DataLad dataset of many TB in size to a few seconds. Just now,
after installing, the dataset is small in size:

$ cd ../ # in longnow/
$ du -sh # Unix command to show size of contents
3.7M .

This is tiny indeed!

If you executed the previous ls command in your own terminal, you might have seen the .mp3
files highlighted in a different color than usually. On your computer, try to open one of the .mp3
files. You will notice that you cannot open any of the audio files. This is not your fault: None of
these files exist on your computer yet.

Wait, what?

This sounds strange, but it has many advantages. Apart from a fast installation, it allows you
to retrieve precisely the content you need, instead of all the contents of a dataset. Thus, even if
you install a dataset that is many TB in size, it takes up only few MB of space after the install,
and you can retrieve only those components of the dataset that you need.

Let’s see how large the dataset would be in total if all of the files were present. For this, we
supply an additional option to datalad status. Make sure to be (anywhere) inside of the
longnow dataset to execute the following command:

$ datalad status --annex
236 annex'd files (15.4 GB recorded total size)
nothing to save, working tree clean

Woah! More than 200 files, totaling more than 15 GB? You begin to appreciate that DataLad
did not download all of this data right away! That would have taken hours given the crappy
internet connection in the lecture hall, and you are not even sure whether your hard drive has
much space left. . .

But you nevertheless are curious on how to actually listen to one of these .mp3s now. So how
does one actually “get” the files?

The command to retrieve file content is datalad get (datalad-get manual). You can specify
one or more specific files, or get all of the dataset by specifying datalad get . (with . denoting
“current directory”).

First, we get one of the recordings in the dataset – take any one of your choice (here, its the
first).

$ datalad get Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_
→˓Now.mp3
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_Now.
→˓mp3 (file) [from web...]

Try to open it – it will now work.

If you would want to get the rest of the missing data, instead of specifying all files individually,
we can use . to refer to all of the dataset like this:

50 Chapter 6. DataLad datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad get .

However, with a total size of more than 15GB, this might take a while, so do not do that now. If
you did execute the command above, interrupt it by pressing CTRL + C – Do not worry, this will
not break anything.

Isn’t that easy? Let’s see how much content is now present locally. For this, datalad status
--annex all has a nice summary:

$ datalad status --annex all
236 annex'd files (35.7 MB/15.4 GB present/total size)
nothing to save, working tree clean

This shows you how much of the total content is present locally. With one file, it is only a
fraction of the total size.

Let’s get a few more recordings, just because it was so mesmerizing to watch DataLad’s fancy
progress bars.

$ datalad get Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_
→˓Now.mp3 \
Long_Now__Seminars_About_Long_term_Thinking/2003_12_13__Peter_Schwartz__The_Art_Of_The_
→˓Really_Long_View.mp3 \
Long_Now__Seminars_About_Long_term_Thinking/2004_01_10__George_Dyson__There_s_Plenty_of_
→˓Room_at_the_Top__Long_term_Thinking_About_Large_scale_Computing.mp3
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2003_12_13__Peter_Schwartz__The_Art_
→˓Of_The_Really_Long_View.mp3 (file) [from web...]
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2004_01_10__George_Dyson__There_s_
→˓Plenty_of_Room_at_the_Top__Long_term_Thinking_About_Large_scale_Computing.mp3 (file)␣
→˓[from web...]
action summary:
get (notneeded: 1, ok: 2)

Note that any data that is already retrieved (the first file) is not downloaded again. DataLad
summarizes the outcome of the execution of get in the end and informs that the download of
one file was notneeded and the retrieval of the other files was ok.

G6.4 Get internals

datalad get uses git annex get underneath the hood.

Keep whatever you like

“Oh shit, oh shit, oh shit. . . ” you hear from right behind you. Your fellow student apparently
downloaded the full dataset accidentally. “Is there a way to get rid of file contents in dataset,
too?”, they ask. “Yes”, the lecturer responds, “you can remove file contents by using datalad
drop. This is really helpful to save disk space for data you can easily re-obtain, for example”.

The datalad drop command (datalad drop manual) will remove file contents completely from
your dataset. You should only use this command to remove contents that you can get again, or
generate again (for example with next chapter’s datalad run command), or that you really do
not need anymore.

Let’s remove the content of one of the files that we have downloaded, and check what this does
to the total size of the dataset. Here is the current amount of retrieved data in this dataset:

6.4. Install datasets 51

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad status --annex all
236 annex'd files (135.1 MB/15.4 GB present/total size)
nothing to save, working tree clean

We drop a single recording that’s content we previously downloaded with get . . .

$ datalad drop Long_Now__Seminars_About_Long_term_Thinking/2004_01_10__George_Dyson__
→˓There_s_Plenty_of_Room_at_the_Top__Long_term_Thinking_About_Large_scale_Computing.mp3
drop(ok): /home/me/dl-101/DataLad-101/recordings/longnow/Long_Now__Seminars_About_Long_
→˓term_Thinking/2004_01_10__George_Dyson__There_s_Plenty_of_Room_at_the_Top__Long_term_
→˓Thinking_About_Large_scale_Computing.mp3 (file) [checking http://podcast.longnow.org/
→˓salt/redirect/salt-020040109-dyson-podcast.mp3...]

. . . and check the size of the dataset again:

$ datalad status --annex all
236 annex'd files (93.5 MB/15.4 GB present/total size)
nothing to save, working tree clean

Dropping the file content of one mp3 file saved roughly 40MB of disk space. Whenever you need
the recording again, it is easy to re-retrieve it:

$ datalad get Long_Now__Seminars_About_Long_term_Thinking/2004_01_10__George_Dyson__There_
→˓s_Plenty_of_Room_at_the_Top__Long_term_Thinking_About_Large_scale_Computing.mp3
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2004_01_10__George_Dyson__There_s_
→˓Plenty_of_Room_at_the_Top__Long_term_Thinking_About_Large_scale_Computing.mp3 (file)␣
→˓[from web...]

Re-obtained!

This was only a quick digression into datalad drop. The main principles of this command will
become clear after chapter Under the hood: git-annex (page 83), and its precise use is shown in
the paragraph on removing file contents. At this point in time, however, you already know that
datasets allow you do drop file contents flexibly. If you want to, you could have more podcasts
(or other data) on your computer than you have disk space available by using DataLad datasets
– and that really is a cool feature to have.

Dataset archeology

You have now experienced how easy it is to (re-)obtain shared data with DataLad. But beyond
only sharing the data in the dataset, when sharing or installing a DataLad dataset, all copies
also include the datasets history.

For example, we can find out who created the dataset in the first place (the output shows an
excerpt of git log --reverse, which displays the history from first to most recent commit):

$ git log --reverse
commit 8df130bb825f99135c34b8bf0cbedb1b05edd581
Author: Michael Hanke <michael.hanke@gmail.com>
Date: Mon Jul 16 16:08:23 2018 +0200

[DATALAD] Set default backend for all files to be MD5E

commit 3d0dc8f5e9e4032784bc5a08d243995ad5cf92f9

(continues on next page)

52 Chapter 6. DataLad datasets

101-136-filesystem.html#removing-annexed-content-entirely

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

Author: Michael Hanke <michael.hanke@gmail.com>
Date: Mon Jul 16 16:08:24 2018 +0200

[DATALAD] new dataset

But that’s not all. The seminar series is ongoing, and more recordings can get added to the
original repository shared on GitHub. Because an installed dataset knows the dataset it was
installed from, your local dataset clone can be updated from its origin, and thus get the new
recordings, should there be some. Later in this handbook, we will see examples of this.

Now you can not only create datasets and work with them locally, you can also consume ex-
isting datasets by installing them. Because that’s cool, and because you will use this command
frequently, make a note of it into your notes.txt, and datalad save the modification.

in the root of DataLad-101:
$ cd ../../
$ cat << EOT >> notes.txt
The command 'datalad clone URL/PATH [PATH]' installs a dataset from
e.g., a URL or a path. If you install a dataset into an existing
dataset (as a subdataset), remember to specify the root of the
superdataset with the '-d' option.

EOT
$ datalad save -m "Add note on datalad clone"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Empty files can be confusing

Listing files directly after the installation of a dataset will work if done in a terminal with
ls. However, certain file managers (such as OSX’s Finder72) may fail to display files that
are not yet present locally (i.e., before a datalad get was run). Therefore, be mindful
when exploring a dataset hierarchy with a file manager – it might not show you the
available but not yet retrieved files. More about why this is will be explained in section
Data integrity (page 85).
72 You can also upgrade your file manager to display file types in a DataLad datasets (e.g., with the git-

annex-turtle extension73 for Finder)

6.5 Dataset nesting

Without noticing, the previous section demonstrated another core principle and feature of Data-
Lad datasets: Nesting.

Within DataLad datasets one can nest other DataLad datasets arbitrarily deep. We for example
just installed one dataset, the longnow podcasts, into another dataset, the DataLad-101 dataset.
This was done by supplying the --dataset/-d flag in the command call.

At first glance, nesting does not seem particularly spectacular – after all, any directory on a file
system can have other directories inside of it.

6.5. Dataset nesting 53

https://github.com/andrewringler/git-annex-turtle
https://github.com/andrewringler/git-annex-turtle

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The possibility for nested Datasets, however, is one of many advantages DataLad datasets have:

One aspect of nested datasets is that any lower-level DataLad dataset (the subdataset) has a
stand-alone history. The top-level DataLad dataset (the superdataset) only stores which version
of the subdataset is currently used.

Let’s dive into that. Remember how we had to navigate into recordings/longnow to see the his-
tory, and how this history was completely independent of the DataLad-101 superdataset history?
This was the subdataset’s own history.

Apart from stand-alone histories of super- or subdatasets, this highlights another very important
advantage that nesting provides: Note that the longnow dataset is a completely independent,
standalone dataset that was once created and published. Nesting allows for a modular re-use
of any other DataLad dataset, and this re-use is possible and simple precisely because all of the
information is kept within a (sub)dataset.

But now let’s also check out how the superdataset’s (DataLad-101) history looks like after the
addition of a subdataset. To do this, make sure you are outside of the subdataset longnow. Note
that the first commit is our recent addition to notes.txt, so we’ll look at the second most recent
commit in this excerpt.

$ git log -p -n 3
commit 6cd43dd1c70c480a9745d7bfdfdfdbcbc4b32f43
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:20:47 2021 +0200

[DATALAD] modified subdataset properties

diff --git a/.gitmodules b/.gitmodules
index 1b59b8c..9bc9ee9 100644
--- a/.gitmodules
+++ b/.gitmodules
@@ -2,3 +2,4 @@

path = recordings/longnow
url = https://github.com/datalad-datasets/longnow-podcasts.git
datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e

+ datalad-url = https://github.com/datalad-datasets/longnow-podcasts.git

commit 24722102f8ebfd5857298142cb2d3846a8339359
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:20:47 2021 +0200

[DATALAD] Recorded changes

diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 0000000..1b59b8c
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,4 @@
+[submodule "recordings/longnow"]
+ path = recordings/longnow
+ url = https://github.com/datalad-datasets/longnow-podcasts.git
+ datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e
diff --git a/recordings/longnow b/recordings/longnow
new file mode 160000
index 0000000..dcc34fb

(continues on next page)

54 Chapter 6. DataLad datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

--- /dev/null
+++ b/recordings/longnow
@@ -0,0 +1 @@
+Subproject commit dcc34fbe669b06ced84ced381ba0db21cf5e665f

commit 13cc7f73f0ff5054aef855aebcceca203f98ed09

We have highlighted the important part of this rather long commit summary. Note that you
can not see any .mp3s being added to the dataset, as was previously the case when we datalad
saved PDFs that we downloaded into books/. Instead, DataLad stores what it calls a subproject
commit of the subdataset. The cryptic character sequence in this line is the SHASUM we have
briefly mentioned before, and it is how DataLad internally identifies files and changes to files.
Exactly this SHASUM is what describes the state of the subdataset.

Navigate back into longnow and try to find the highlighted shasum in the subdataset’s history:

$ cd recordings/longnow
$ git log --oneline
dcc34fb Update aggregated metadata
36a30a1 [DATALAD RUNCMD] Update from feed
bafdc04 Uniformize JSON-LD context with DataLad's internal extractors
004e484 [DATALAD RUNCMD] .datalad/maint/make_readme.py
7ee3ded Sort episodes newest-first
e829615 Link to the handbook as a source of wisdom
4b37790 Fix README generator to parse correct directory

We can see that it is the most recent commit shasum of the subdataset (albeit we can see only
the first seven characters here – a git log would show you the full shasum). Thus, your dataset
does not only know the origin of its subdataset, but also its version, i.e., it has an identifier of
the stage of the subdatasets evolution. This is what is meant by “the top-level DataLad dataset
(the superdataset) only stores which version of the subdataset is currently used”.

Importantly, once we learn how to make use of the history of a dataset, we can set subdatasets
to previous states, or update them.

M6.9 Do I have to navigate into the subdataset to see it’s history?

Previously, we used cd to navigate into the subdataset, and subsequently opened the
Git log. This is necessary, because a git log in the superdataset would only return the
superdatasets history. While moving around with cd is straightforward, you also found it
slightly annoying from time to time to use the cd command so often and also to remember
in which directory you currently are in. There is one trick, though: git -C (note that it is
a capital C) lets you perform any Git command in a provided path. Providing this option
together with a path to a Git command let’s you run the command as if Git was started
in this path instead of the current working directory. Thus, from the root of DataLad-101,
this command would have given you the subdataset’s history as well:

$ git -C recordings/longnow log --oneline

In the upcoming sections, we’ll experience the perks of dataset nesting frequently, and every-
thing that might seem vague at this point will become clearer. To conclude this demonstration,
the figure below illustrates the current state of the dataset and nesting schematically:

Thus, without being consciously aware of it, by taking advantage of dataset nesting, we took a

6.5. Dataset nesting 55

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

sub-ds

 super-ds
Dataset structure is fully flexible
to be able to accommodate
domain standards or personal
preferences. !

!
DataLad can obtain required
subdataset content on demand.
Only content elements actually
required for an analysis are
present. Directory structure is
expanded recursively as needed.

A dataset can be populated with
any type of files, and these files
can be saved to the dataset. !
Published repositories can be
installed as subdatasets. This
nesting can be arbitrily deep.
Datasets can be installed from a
path, URL., or data collection.!

Any content is referenced via
the dataset that contains it.
Dataset state provides unambi-
guous version specification for
the subdataset.!

DataLad-101/
books/

TLCL.pdf
recordings/

notes.txt

byte-of-python.pdf

longnow/
Long_Now__Conv[...]/

...

progit.pdf

Long_Now__Seminars[...]/

...
2003_11_15[...]
2003_12_13[...]

Fig. 6.1: Virtual directory tree of a nested DataLad dataset

dataset longnow and installed it as a subdataset within the superdataset DataLad-101.

If you have executed the above code snippets, make sure to go back into the root of the dataset
again:

$ cd ../../

6.6 Summary

In the last few sections, we have discovered the basics of starting a DataLad dataset from scratch,
and making simple modifications locally.

• An empty dataset can be created with the datalad create command. It’s useful to add
a description to the dataset and use the -c text2git configuration, but we will see later
why. This is the command structure:

datalad create --description "here is a description" -c text2git PATH

• Thanks to GIT and GIT-ANNEX, the dataset has a history to track files and their modifi-
cations. Built-in Git tools (git log) or external tools (such as tig) allow to explore the
history.

• The datalad save command records the current state of the dataset to the history. Make it
a habit to specify a concise commit message to summarize the change. If several unrelated
modifications exist in your dataset, specify the path to the precise file (change) that should
be saved to history. Remember, if you run a datalad save without specifying a path, all
untracked files and all file changes will be committed to the history together! This is the
command structure:

datalad save -m "here is a commit message" [PATH]

• The typical local workflow is simple: Modify the dataset by adding or modifying files, save
the changes as meaningful units to the history, repeat:

56 Chapter 6. DataLad datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Fig. 6.2: A simple, local version control workflow with DataLad.

• datalad status reports the current state of the dataset. It’s a very helpful command you
should run frequently to check for untracked or modified content.

• datalad download-url can retrieve files from websources and save them automatically
to your dataset. This does not only save you the time of one datalad save, but it also
records the source of the file as hidden PROVENANCE information.

Furthermore, we have discovered the basics of installing a published DataLad dataset, and
experienced the concept of modular nesting datasets.

• A published dataset can be installed with the datalad clone command:

$ datalad clone [--dataset PATH] SOURCE-PATH/URL [DESTINATION PATH]

It can be installed “on its own”, or within an existing dataset.

• The command takes a location of an existing dataset as a positional argument, and option-
ally a path to where you want the dataset to be installed. If you do not specify a path, the
dataset will be installed into the current directory, with the original name of the dataset.

• If a dataset is installed inside of a dataset as a subdataset, the --dataset/-d option needs
to specify the root of the superdataset.

• The source can be a URL (for example of a GitHub repository, as in section Install datasets
(page 46)), but also paths, or open data collections.

• After datalad clone, only small files and metadata about file availability are present
locally. To retrieve actual file content of larger files, datalad get PATH downloads large
file content on demand.

• datalad status --annex or datalad status --annex all are helpful to determine total
repository size and the amount of data that is present locally.

• Remember: Super- and subdatasets have standalone histories. A superdataset only stores
which version of the subdataset is currently used.

Now what I can do with that?

Simple, local workflows allow you to version control changing small files, for example your CV,
your code, or a book that you are working on, but you can also add very large files to your
datasets history. Currently, this can be considered “best-practice building”: Frequent datalad
status commands, datalad save commands to save dataset modifications, and concise COMMIT

MESSAGEs are the main take aways from this. You can already explore the history of a dataset
and you know about many types of provenance information captured by DataLad, but for now,
its been only informative, and has not been used for anything more fancy. Later on, we will look
into utilizing the history in order to undo mistakes, how the origin of files or datasets becomes

6.6. Summary 57

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

helpful when sharing datasets or removing file contents, and how to make changes to large
content (as opposed to small content we have been modifying so far).

Additionally, you learned the basics on extending the DataLad-101 dataset and consuming ex-
isting datasets: You have procedurally experienced how to install a dataset, and simultaneously
you have learned a lot about the principles and features of DataLad datasets. Cloning datasets
and getting their content allows you to consume published datasets. By nesting datasets within
each other, you can re-use datasets in a modular fashion. While this may appear abstract,
upcoming sections will demonstrate many examples of why this can be handy.

58 Chapter 6. DataLad datasets

CHAPTER

SEVEN

DATALAD, RUN!

7.1 Keeping track

In previous examples, with the exception of datalad download-url, all changes that happened
to the dataset or the files it contains were saved to the dataset’s history by hand. We added
larger and smaller files and saved them, and we also modified smaller file contents and saved
these modifications.

Often, however, files get changed by shell commands or by scripts. Consider a data scientist74.
She has data files with numeric data, and code scripts in Python, R, Matlab or any other pro-
gramming language that will use the data to compute results or figures. Such output is stored
in new files, or modifies existing files.

But only a few weeks after these scripts were executed she finds it hard to remember which
script was modified for which reason or created which output. How did this result came to be?
Which script would she need to run again on which data to produce this particular figure?

In this section we will experience how DataLad can help to record the changes in a dataset
after executing a script from the shell. Just as datalad download-url was able to associate a
74 https://xkcd.com/1838/

59

https://xkcd.com/1838/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

file with its origin and store this information, we want to be able to associate a particular file
with the commands, scripts, and inputs it was produced from, and thus capture and store full
PROVENANCE.

Let’s say, for example, that you enjoyed the longnow podcasts a lot, and you start a podcast-
night with friends to wind down from all of the exciting DataLad lectures. They propose to
make a list of speakers and titles to cross out what they’ve already listened to, and ask you to
prepare such a list.

“Mhh. . . probably there is a DataLad way to do this. . . wasn’t there also a note about metadata
extraction at some point?” But as we’re not that far into the lectures, you decide to write a short
shell script to generate a text file that lists speaker and title name instead.

To do this, we’re following a best practice that will reappear in the later section on YODA
principles: Collecting all additional scripts that work with content of a subdataset outside of this
subdataset, in a dedicated code/ directory, and collating the output of the execution of these
scripts outside of the subdataset as well – and therefore not modifying the subdataset.

The motivation behind this will become clear in later sections, but for now we’ll start with
best-practice building. Therefore, create a subdirectory code/ in the DataLad-101 superdataset:

$ mkdir code
$ tree -d
.

books
code
recordings

longnow
Long_Now__Conversations_at_The_Interval
Long_Now__Seminars_About_Long_term_Thinking

6 directories

Inside of DataLad-101/code, create a simple shell script list_titles.sh. This script will carry
out a simple task: It will loop through the file names of the .mp3 files and write out speaker
names and talk titles in a very basic fashion. The content of this script is written below – the
cat command will write it into the script.

W7.1 Here’s a script for Windows users

Please use an editor of your choice to create a file list_titles.sh inside of the code
directory. These should be the contents:

for i in recordings/longnow/Long_Now__Seminars*/*.mp3; do
get the filename
base=$(basename "$i");
strip the extension
base=${base%.mp3};
date as yyyy-mm-dd
printf "${base%%__*}\t" | tr '_' '-';
name and title without underscores
printf "${base#*__}\n" | tr '_' ' ';

done

Note that this is not identical to the one below – it lacks a few \ characters, which is a
meaningful difference.

60 Chapter 7. DataLad, Run!

101-127-yoda.html
101-127-yoda.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

W7.2 Be mindful of hidden extensions when creating files!

By default, Windows does not show common file extensions when you view directory
contents with a file explorer. Instead, it only displays the base of the file name and
indicates the file type with the display icon. You can see if this is the case for you, too, by
opening the books\ directory in a file explorer, and checking if the file extension (.pdf)
is a part of the file name displayed underneath its PDF icon.
Hidden file extensions can be a confusing source of errors, because some Windows editors
(for example Notepad) automatically add a .txt extension to your files – when you save
the script above under the name list_titles.sh, your editor may add an extension
(list_titles.sh.txt), and the file explorer displays your file as list_titles.sh (hiding
the .txt extension).
To prevent confusion, configure the file explorer to always show you the file extension.
For this, open the Explorer, click on the “View” tab, and tick the box “File name exten-
sions”.
Beyond this, double check the correct naming of your file, ideally in the terminal.

$ cat << EOT > code/list_titles.sh
for i in recordings/longnow/Long_Now__Seminars*/*.mp3; do

get the filename
base=\$(basename "\$i");
strip the extension
base=\${base%.mp3};
date as yyyy-mm-dd
printf "\${base%%__*}\t" | tr '_' '-';
name and title without underscores
printf "\${base#*__}\n" | tr '_' ' ';

done
EOT

Save this script to the dataset.

$ datalad status
untracked: code (directory)

$ datalad save -m "Add short script to write a list of podcast speakers and titles"
add(ok): code/list_titles.sh (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Once we run this script, it will simply print dates, names and titles to your terminal. We can
save its outputs to a new file recordings/podcasts.tsv in the superdataset by redirecting these
outputs with bash code/list_titles.sh > recordings/podcasts.tsv.

Obviously, we could create this file, and subsequently save it to the superdataset. However, just
as in the example about the data scientist, in a bit of time, we will forget how this file came into
existence, or that the script code/list_titles.sh is associated with this file, and can be used
to update it later on.

The datalad run command (datalad-run manual) can help with this. Put simply, it records a
command’s impact on a dataset. Put more technically, it will record a shell command, and save
all changes this command triggered in the dataset – be that new files or changes to existing

7.1. Keeping track 61

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

files.

Let’s try the simplest way to use this command: datalad run, followed by a commit message
(-m "a concise summary"), and the command that executes the script from the shell: bash
code/list_titles.sh > recordings/podcasts.tsv. It is helpful to enclose the command in
quotation marks.

Note that we execute the command from the root of the superdataset. It is recommended to
use datalad run in the root of the dataset you want to record the changes in, so make sure to
run this command from the root of DataLad-101.

$ datalad run -m "create a list of podcast titles" \
"bash code/list_titles.sh > recordings/podcasts.tsv"

[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): recordings/podcasts.tsv (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (notneeded: 1, ok: 1)

M7.1 Why is there a “notneeded” in the command summary?

If you have stumbled across the command execution summary save (notneeded: 1,
ok: 1) and wondered what is “notneeded”: the datalad save at the end of a datalad
run will query all potential subdatasets recursively for modifications, and as there are no
modifications in the longnow subdataset, this part of save returns a “notneeded” sum-
mary. Thus, after a datalad run, you’ll get a “notneeded” for every subdataset with no
modifications in the execution summary.

Let’s take a look into the history:

$ git log -p -n 1 # On Windows, you may just want to type "git log".
commit f0aab98d14a86fbe1100d991fe6fc46ef95e39c6
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:21:34 2021 +0200

[DATALAD RUNCMD] create a list of podcast titles

=== Do not change lines below ===
{
"chain": [],
"cmd": "bash code/list_titles.sh > recordings/podcasts.tsv",
"dsid": "8e04afb0-af85-4070-be29-858d30d85017",
"exit": 0,
"extra_inputs": [],
"inputs": [],
"outputs": [],
"pwd": "."

}
^^^ Do not change lines above ^^^

diff --git a/recordings/podcasts.tsv b/recordings/podcasts.tsv
new file mode 100644
index 0000000..f691b53
--- /dev/null

(continues on next page)

62 Chapter 7. DataLad, Run!

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

+++ b/recordings/podcasts.tsv
@@ -0,0 +1,206 @@
+2003-11-15 Brian Eno The Long Now
+2003-12-13 Peter Schwartz The Art Of The Really Long View
+2004-01-10 George Dyson There s Plenty of Room at the Top Long term Thinking␣
→˓About Large scale Computing
+2004-02-14 James Dewar Long term Policy Analysis

The commit message we have supplied with -m directly after datalad run appears in our history
as a short summary. Additionally, the output of the command, recordings/podcasts.tsv, was
saved right away.

But there is more in this log entry, a section in between the markers

=== Do not change lines below === and

^^^ Do not change lines above ^^^.

This is the so-called run record – a recording of all of the information in the datalad run
command, generated by DataLad. In this case, it is a very simple summary. One informative
part is highlighted: "cmd": "bash code/list_titles.sh" is the command that was run in the
terminal. This information therefore maps the command, and with it the script, to the output
file, in one commit. Nice, isn’t it?

Arguably, the RUN RECORD is not the most human-readable way to display information. This
representation however is less for the human user (the human user should rely on their infor-
mative commit message), but for DataLad, in particular for the datalad rerun command, which
you will see in action shortly. This run record is machine-readable provenance that associates
an output with the command that produced it.

You have probably already guessed that every datalad run command ends with a datalad save.
A logical consequence from this fact is that any datalad run does not result in any changes in
a dataset (no modification of existing content; no additional files) will not produce any record
in the dataset’s history (just as a datalad save with no modifications present will not create a
history entry). Try to run the exact same command as before, and check whether anything in
your log changes:

$ datalad run -m "Try again to create a list of podcast titles" \
"bash code/list_titles.sh > recordings/podcasts.tsv"

[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
action summary:
save (notneeded: 2)

$ git log --oneline
f0aab98 [DATALAD RUNCMD] create a list of podcast titles
a76bf3b Add short script to write a list of podcast speakers and titles
f5fcfd5 Add note on datalad clone
6cd43dd [DATALAD] modified subdataset properties

The most recent commit is still the datalad run command from before, and there was no second
datalad run commit created.

The datalad run can therefore help you to keep track of what you are doing in a dataset and
capture provenance of your files: When, by whom, and how exactly was a particular file created
or modified? The next sections will demonstrate how to make use of this information, and also

7.1. Keeping track 63

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

how to extend the command with additional arguments that will prove to be helpful over the
course of this chapter.

7.2 DataLad, Re-Run!

So far, you created a .tsv file of all speakers and talk titles in the longnow/ podcasts subdataset.
Let’s actually take a look into this file now:

$ less recordings/podcasts.tsv
2003-11-15 Brian Eno The Long Now
2003-12-13 Peter Schwartz The Art Of The Really Long View
2004-01-10 George Dyson There s Plenty of Room at the Top Long term Thinking␣
→˓About Large scale Computing
2004-02-14 James Dewar Long term Policy Analysis
2004-03-13 Rusty Schweickart The Asteroid Threat Over the Next 100 000 Years
2004-04-10 Daniel Janzen Third World Conservation It s ALL Gardening
2004-05-15 David Rumsey Mapping Time
2004-06-12 Bruce Sterling The Singularity Your Future as a Black Hole
2004-07-10 Jill Tarter The Search for Extra terrestrial Intelligence Necessarily␣
→˓a Long term Strategy
2004-08-14 Phillip Longman The Depopulation Problem
2004-09-11 Danny Hillis Progress on the 10 000 year Clock
2004-10-16 Paul Hawken The Long Green
2004-11-13 Michael West The Prospects of Human Life Extension
2004-12-04 Ken Dychtwald The Consequences of Human Life Extension

Not too bad, and certainly good enough for the podcast night people. What’s been cool about
creating this file is that it was created with a script within a datalad run command. Thanks to
datalad run, the output file podcasts.tsv is associated with the script it generated.

Upon reviewing the list you realized that you made a mistake, though: you only listed the talks
in the SALT series (the Long_Now__Seminars_About_Long_term_Thinking/ directory), but not in
the Long_Now__Conversations_at_The_Interval/ directory. Let’s fix this in the script. Replace
the contents in code/list_titles.sh with the following, fixed script:

W7.3 Here’s a script adjustment for Windows users

Please use an editor of your choice to replace the contents of list_titles.sh inside of
the code directory with the following:

for i in recordings/longnow/Long_Now*/*.mp3; do
get the filename
base=$(basename "$i");
strip the extension
base=${base%.mp3};
date as yyyy-mm-dd
printf "${base%%__*}\t" | tr '_' '-';
name and title without underscores
printf "${base#*__}\n" | tr '_' ' ';

done

$ cat << EOT >| code/list_titles.sh
for i in recordings/longnow/Long_Now*/*.mp3; do

(continues on next page)

64 Chapter 7. DataLad, Run!

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

get the filename
base=\$(basename "\$i");
strip the extension
base=\${base%.mp3};
printf "\${base%%__*}\t" | tr '_' '-';
name and title without underscores
printf "\${base#*__}\n" | tr '_' ' ';

done
EOT

Because the script is now modified, save the modifications to the dataset. We can use the
shorthand “BF” to denote “Bug fix” in the commit message.

$ datalad status
modified: code/list_titles.sh (file)

$ datalad save -m "BF: list both directories content" \
code/list_titles.sh

add(ok): code/list_titles.sh (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

What we could do is run the same datalad run command as before to recreate the file, but now
with all of the contents:

do not execute this!
$ datalad run -m "create a list of podcast titles" \
"bash code/list_titles.sh > recordings/podcasts.tsv"

However, think about any situation where the command would be longer than this, or that is
many months past the first execution. It would not be easy to remember the command, nor
would it be very convenient to copy it from the run record.

Luckily, a fellow student remembered the DataLad way of re-executing a run command, and
he’s eager to show it to you.

“In order to re-execute a datalad run command, find the commit and use its SHASUM (or a
TAG, or anything else that Git understands) as an argument for the datalad rerun command
(datalad-rerun manual)! That’s it!”, he says happily.

So you go ahead and find the commit SHASUM in your history:

$ git log -n 2
commit 85330eaca98a1e1a6a6fa0a5d8118c1cf08cb9eb
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:21:37 2021 +0200

BF: list both directories content

commit f0aab98d14a86fbe1100d991fe6fc46ef95e39c6
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:21:34 2021 +0200

(continues on next page)

7.2. DataLad, Re-Run! 65

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[DATALAD RUNCMD] create a list of podcast titles

Take that shasum and paste it after datalad rerun (the first 6-8 characters of the shasum would
be sufficient, here we’re using all of them).

$ datalad rerun f0aab98d14a86fbe1100d991fe6fc46ef95e39c6
[INFO] run commit f0aab98; (create a list of ...)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): recordings/podcasts.tsv (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (notneeded: 1, ok: 1)
unlock (notneeded: 1)

Now DataLad has made use of the run record, and re-executed the original command based
on the information in it. Because we updated the script, the output podcasts.tsv has changed
and now contains the podcast titles of both subdirectories. You’ve probably already guessed it,
but the easiest way to check whether a datalad rerun has changed the desired output file is to
check whether the rerun command appears in the datasets history: If a datalad rerun does not
add or change any content in the dataset, it will also not be recorded in the history.

$ git log -n 1
commit d5edb1866bcbafc998233e819432321185e51e85
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:21:38 2021 +0200

[DATALAD RUNCMD] create a list of podcast titles

=== Do not change lines below ===
{
"chain": [
"f0aab98d14a86fbe1100d991fe6fc46ef95e39c6"
],
"cmd": "bash code/list_titles.sh > recordings/podcasts.tsv",
"dsid": "8e04afb0-af85-4070-be29-858d30d85017",
"exit": 0,
"extra_inputs": [],
"inputs": [],
"outputs": [],
"pwd": "."

}
^^^ Do not change lines above ^^^

In the dataset’s history, we can see that a new datalad run was recorded. This action is com-
mitted by DataLad under the original commit message of the run command, and looks just like
the previous datalad run commit apart from the execution time.

Two cool tools that go beyond the git log are the datalad diff (datalad-diff manual) and
git diff commands. Both commands can report differences between two states of a dataset.
Thus, you can get an overview of what changed between two commits. Both commands have a
similar, but not identical structure: datalad diff compares one state (a commit specified with
-f/--from, by default the latest change) and another state from the dataset’s history (a commit

66 Chapter 7. DataLad, Run!

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

specified with -t/--to). Let’s do a datalad diff between the current state of the dataset and
the previous commit (called “HEAD~1” in Git terminology75):

W7.4 please use datalad diff –from master –to HEAD 1

While this example works on Unix file systems, it will not provide the same output on
Windows. This is due to different file handling on Windows. When executing this com-
mand, you will see all files being modified between the most recent and the second-most
recent commit. On a technical level, this is correct given the underlying file handling on
Windows, and chapter Under the hood: git-annex (page 83) will shed light on why that
is.
For now, to get the same output as shown in the code snippet below, use the following
command where main (or master) is the name of your default branch:

datalad diff --from main --to HEAD~1

The --from argument specifies a different starting point for the comparison - the main or
MASTER BRANCH, which would be the starting point on most Unix-based systems.

$ datalad diff --to HEAD~1
modified: recordings/podcasts.tsv (file)

This indeed shows the output file as “modified”. However, we do not know what exactly
changed. This is a task for git diff (get out of the diff view by pressing q):

$ git diff HEAD~1
diff --git a/recordings/podcasts.tsv b/recordings/podcasts.tsv
index f691b53..d77891d 100644
--- a/recordings/podcasts.tsv
+++ b/recordings/podcasts.tsv
@@ -1,3 +1,31 @@
+2017-06-09 How Digital Memory Is Shaping Our Future Abby Smith Rumsey
+2017-06-09 Pace Layers Thinking Stewart Brand Paul Saffo
+2017-06-09 Proof The Science of Booze Adam Rogers
+2017-06-09 Seveneves at The Interval Neal Stephenson
+2017-06-09 Talking with Robots about Architecture Jeffrey McGrew
+2017-06-09 The Red Planet for Real Andy Weir
+2017-07-03 Transforming Perception One Sense at a Time Kara Platoni
+2017-08-01 How Climate Will Evolve Government and Society Kim Stanley Robinson
+2017-09-01 Envisioning Deep Time Jonathon Keats
+2017-10-01 Thinking Long term About the Evolving Global Challenge The Refugee␣
→˓Reality
+2017-11-01 The Web In An Eye Blink Jason Scott
+2017-12-01 Ideology in our Genes The Biological Basis for Political Traits Rose␣
→˓McDermott
+2017-12-07 Can Democracy Survive the Internet Nathaniel Persily
+2018-01-02 The New Deal You Don t Know Louis Hyman

This output actually shows the precise changes between the contents created with the first
version of the script and the second script with the bug fix. All of the files that are added after
the second directory was queried as well are shown in the diff, preceded by a +.

Quickly create a note about these two helpful commands in notes.txt:

75 The section Back and forth in time (page 245) will elaborate more on common GIT commands and terminology.

7.2. DataLad, Re-Run! 67

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ cat << EOT >> notes.txt
There are two useful functions to display changes between two
states of a dataset: "datalad diff -f/--from COMMIT -t/--to COMMIT"
and "git diff COMMIT COMMIT", where COMMIT is a shasum of a commit
in the history.

EOT

Finally, save this note.

$ datalad save -m "add note datalad and git diff"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Note that datalad rerun can re-execute the run records of both a datalad run or a datalad
rerun command, but not with any other type of datalad command in your history such as a
datalad save on results or outputs after you executed a script. Therefore, make it a habit to
record the execution of scripts by plugging it into datalad run.

This very basic example of a datalad run is as simple as it can get, but it is already convenient
from a memory-load perspective: Now you do not need to remember the commands or scripts
involved in creating an output. DataLad kept track of what you did, and you can instruct it to
“rerun” it. Also, incidentally, we have generated PROVENANCE information. It is now recorded
in the history of the dataset how the output podcasts.tsv came into existence. And we can
interact with and use this provenance information with other tools than from the machine-
readable run record. For example, to find out who (or what) created or modified a file, give
the file path to git log (prefixed by --):

W7.5 use “git log master – recordings/podcasts.tsv”

A previous Windows Wit already advised to append main or master, the common “default
BRANCH”, to any command that starts with git log. Here, the last part of the command
specifies a file (-- recordings/podcasts.tsv). Please append main or master to git log,
prior to the file specification.

$ git log -- recordings/podcasts.tsv
commit d5edb1866bcbafc998233e819432321185e51e85
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:21:38 2021 +0200

[DATALAD RUNCMD] create a list of podcast titles

=== Do not change lines below ===
{
"chain": [
"f0aab98d14a86fbe1100d991fe6fc46ef95e39c6"
],
"cmd": "bash code/list_titles.sh > recordings/podcasts.tsv",
"dsid": "8e04afb0-af85-4070-be29-858d30d85017",
"exit": 0,
"extra_inputs": [],

(continues on next page)

68 Chapter 7. DataLad, Run!

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

"inputs": [],
"outputs": [],
"pwd": "."

}
^^^ Do not change lines above ^^^

commit f0aab98d14a86fbe1100d991fe6fc46ef95e39c6
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:21:34 2021 +0200

[DATALAD RUNCMD] create a list of podcast titles

=== Do not change lines below ===
{
"chain": [],
"cmd": "bash code/list_titles.sh > recordings/podcasts.tsv",
"dsid": "8e04afb0-af85-4070-be29-858d30d85017",
"exit": 0,
"extra_inputs": [],
"inputs": [],
"outputs": [],
"pwd": "."

}
^^^ Do not change lines above ^^^

Neat, isn’t it?

Still, this datalad run was very simple. The next section will demonstrate how datalad run
becomes handy in more complex standard use cases: situations with locked contents.

But prior to that, make a note about datalad run and datalad rerun in your notes.txt file.

$ cat << EOT >> notes.txt
The datalad run command can record the impact a script or command has
on a Dataset. In its simplest form, datalad run only takes a commit
message and the command that should be executed.

Any datalad run command can be re-executed by using its commit shasum
as an argument in datalad rerun CHECKSUM. DataLad will take
information from the run record of the original commit, and re-execute
it. If no changes happen with a rerun, the command will not be written
to history. Note: you can also rerun a datalad rerun command!

EOT

Finally, save this note.

$ datalad save -m "add note on basic datalad run and datalad rerun"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

7.2. DataLad, Re-Run! 69

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

7.3 Input and output

In the previous two sections, you created a simple .tsv file of all speakers and talk titles in
the longnow/ podcasts subdataset, and you have re-executed a datalad run command after a
bug-fix in your script.

But these previous datalad run and datalad rerun command were very simple. Maybe you
noticed some values in the run record were empty: inputs and outputs for example did not
have an entry. Let’s experience a few situations in which these two arguments can become
necessary.

In our DataLad-101 course we were given a group assignment. Everyone should give a small
presentation about an open DataLad dataset they found. Conveniently, you decided to settle for
the longnow podcasts right away. After all, you know the dataset quite well already, and after
listening to almost a third of the podcasts and enjoying them a lot, you also want to recommend
them to the others.

Almost all of the slides are ready, but what’s still missing is the logo of the longnow podcasts.
Good thing that this is part of the subdataset, so you can simply retrieve it from there.

The logos (one for the SALT series, one for the Interval series – the two directories in the
subdataset) were originally extracted from the podcasts metadata information by DataLad. In
a while, we will dive into the metadata aggregation capabilities of DataLad, but for now, let’s
just use the logos instead of finding out where they come from – this will come later. As part
of the metadata of the dataset, the logos are in the hidden paths .datalad/feed_metadata/
logo_salt.jpg and .datalad/feed_metadata/logo_interval.jpg:

$ ls recordings/longnow/.datalad/feed_metadata/*jpg
recordings/longnow/.datalad/feed_metadata/logo_interval.jpg
recordings/longnow/.datalad/feed_metadata/logo_salt.jpg

For the slides you decide to prepare images of size 400x400 px, but the logos’ original size is
much larger (both are 3000x3000 pixel). Therefore let’s try to resize the images – currently,
they’re far too large to fit on a slide.

To resize an image from the command line we can use the Unix command convert -resize
from the ImageMagick tool76. The command takes a new size in pixels as an argument, a path
to the file that should be resized, and a filename and path under which a new, resized image will
be saved. To resize one image to 400x400 px, the command would thus be convert -resize
400x400 path/to/file.jpg path/to/newfilename.jpg.

W7.6 Tool installation

ImageMagick77 is not installed on Windows systems by default. To use it, you need to
install it, using the provided Windows Binary Release on the Download page78.
During installation, it is important to install the tool into a place where it is eas-
ily accessible to your terminal. The easiest way to do this is by selecting the in-
stallation directory to be within Miniconda3 (i.e., just as during the installation of
git-annex as described in Installation and configuration (page 10), install is into
C:\Users\<user-name>\miniconda3\Library). Do also make sure to tick the box “install
legacy commands” in the installation wizard.

76 https://imagemagick.org/index.php

70 Chapter 7. DataLad, Run!

https://imagemagick.org/index.php
https://imagemagick.org/index.php
https://imagemagick.org/script/download.php

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

77 https://imagemagick.org/index.php
78 https://imagemagick.org/script/download.php

Remembering the last lecture on datalad run, you decide to plug this into datalad run. Even
though this is not a script, it is a command, and you can wrap commands like this conveniently
with datalad run. Because they will be quite long, we line break the commands in the upcoming
examples for better readability – in your terminal, you can always write the commands into a
single line.

$ datalad run -m "Resize logo for slides" \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
[INFO] == Command start (output follows) =====
convert-im6.q16: unable to open image `recordings/longnow/.datalad/feed_metadata/logo_
→˓salt.jpg': No such file or directory @ error/blob.c/OpenBlob/2924.
convert-im6.q16: no images defined `recordings/salt_logo_small.jpg' @ error/convert.c/
→˓ConvertImageCommand/3229.
[INFO] == Command exit (modification check follows) =====
[INFO] The command had a non-zero exit code. If this is expected, you can save the␣
→˓changes with 'datalad save -d . -r -F .git/COMMIT_EDITMSG'
CommandError: 'convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_
→˓salt.jpg recordings/salt_logo_small.jpg' failed with exitcode 1 under /home/me/dl-101/
→˓DataLad-101

Oh, crap! Why didn’t this work?

Let’s take a look at the error message DataLad provides. In general, these error messages might
seem wordy, and maybe a bit intimidating as well, but usually they provide helpful information
to find out what is wrong. Whenever you encounter an error message, make sure to read it,
even if it feels like a mushroom cloud exploded in your terminal.

A datalad run error message has several parts. The first starts after

[INFO] == Command start (output follows) =====.

This is displaying errors that the terminal command threw: The convert tool complains that it
can not open the file, because there is “No such file or directory”.

The second part starts after

[INFO] == Command exit (modification check follows) =====.

DataLad adds information about a “non-zero exit code”. A non-zero exit code indicates that
something went wrong81. In principle, you could go ahead and google what this specific exit
status indicates. However, the solution might have already occurred to you when reading the
first error report: The file is not present.

How can that be?

“Right!”, you exclaim with a facepalm. Just as the .mp3 files, the .jpg file content is not present
locally after a datalad clone, and we did not datalad get it yet!

This is where the -i/--input option for a datalad run becomes useful. The content of everything
that is specified as an input will be retrieved prior to running the command.
81 In shell programming, commands exit with a specific code that indicates whether they failed, and if so, how.

Successful commands have the exit code zero. All failures have exit codes greater than zero. A few lines lower,
DataLad even tells us the specific error code: The command failed with exit code 1.

7.3. Input and output 71

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_salt.jpg" \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
or shorter:
$ datalad run -m "Resize logo for slides" \
-i "recordings/longnow/.datalad/feed_metadata/logo_salt.jpg" \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
[INFO] Making sure inputs are available (this may take some time)
get(ok): recordings/longnow/.datalad/feed_metadata/logo_salt.jpg (file) [from web...]
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): recordings/salt_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 1, ok: 1)
save (notneeded: 1, ok: 1)

Cool! You can see in this output that prior to the data command execution, DataLad did a
datalad get. This is useful for several reasons. For one, it saved us the work of manually
getting content. But moreover, this is useful for anyone with whom we might share the dataset:
With an installed dataset one can very simply rerun datalad run commands if they have the
input argument appropriately specified. It is therefore good practice to specify the inputs appro-
priately. Remember from section Install datasets (page 46) that datalad get will only retrieve
content if it is not yet present, all input already downloaded will not be downloaded again – so
specifying inputs even though they are already present will not do any harm.

M7.2 What if there are several inputs?

Often, a command needs several inputs. In principle, every input (which could be files,
directories, or subdatasets) gets its own -i/--input flag. However, you can make use of
GLOBBING. For example,

datalad run --input "*.jpg" "COMMAND"

will retrieve all .jpg files prior to command execution.

If outputs already exist. . .

W7.7 Good news! Here is something that is easier on Windows

The section below describes something that is very confusing for people that have just
started with DataLad: Some files in a dataset can’t be modified, and if one tries, it results
in a “permission denied” error. Why is that? The remainder of this section and the
upcoming chapter Under the hood: git-annex (page 83) contain a procedural explanation.
However: This doesn’t happen on Windows. The “unlocking” that is necessary on almost
all other systems to modify a file is already done on Windows. Thus, all files in your
dataset will be readily modifiable, sparing you the need to adjust to the unexpected
behavior that is described below. While it is easier, it isn’t a “more useful” behavior,
though. A different Windows Wit in the next chapter will highlight how it rather is a

72 Chapter 7. DataLad, Run!

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

suboptimal workaround.
Please don’t skip the next section – it is useful to know how datasets behave on other sys-
tems. Just be mindful that you will not encounter the errors that the handbook displays
next. And while this all sounds quite cryptic and vague, an upcoming Windows Wit will
provide more information.

Looking at the resulting image, you wonder whether 400x400 might be a tiny bit to small.
Maybe we should try to resize it to 450x450, and see whether that looks better?

Note that we can not use a datalad rerun for this: if we want to change the dimension option
in the command, we have to define a new datalad run command.

To establish best-practices, let’s specify the input even though it is already present:

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_salt.jpg" \
"convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
or shorter:
$ datalad run -m "Resize logo for slides" \
-i "recordings/longnow/.datalad/feed_metadata/logo_salt.jpg" \
"convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
convert-im6.q16: unable to open image `recordings/salt_logo_small.jpg': Permission denied␣
→˓@ error/blob.c/OpenBlob/2924.
[INFO] == Command exit (modification check follows) =====
[INFO] The command had a non-zero exit code. If this is expected, you can save the␣
→˓changes with 'datalad save -d . -r -F .git/COMMIT_EDITMSG'
CommandError: 'convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_
→˓salt.jpg recordings/salt_logo_small.jpg' failed with exitcode 1 under /home/me/dl-101/
→˓DataLad-101

Oh wtf. . . What is it now?

A quick glimpse into the error message shows a different error than before: The tool complains
that it is “unable to open” the image, because the “Permission [is] denied”.

We have not seen anything like this before, and we need to turn to our lecturer for help. Con-
fused about what we might have done wrong, we raise our hand to ask the instructor. Know-
ingly, she smiles, and tells you about how DataLad protects content given to it:

“Content in your DataLad dataset is protected by GIT-ANNEX from accidental changes” our in-
structor begins.

“Wait!” we interrupt. “First off, that wasn’t accidental. And second, I was told this course does
not have git-annex-101 as a prerequisite?”

“Yes, hear me out” she says. “I promise you two different solutions at the end of this explanation,
and the concept behind this is quite relevant”.

DataLad usually gives content to GIT-ANNEX to store and track. git-annex, let’s just say, takes this
task really seriously. One of its features that you have just experienced is that it locks content.

If files are locked down, their content can not be modified. In principle, that’s not a bad thing:
It could be your late grandma’s secret cherry-pie recipe, and you do not want to accidentally

7.3. Input and output 73

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

change that. Therefore, a file needs to be consciously unlocked to apply modifications.

In the attempt to resize the image to 450x450 you tried to overwrite recordings/
salt_logo_small.jpg, a file that was given to DataLad and thus protected by git-annex.

There is a DataLad command that takes care of unlocking file content, and thus making locked
files modifiable again: datalad unlock (datalad-unlock manual). Let us check out what it
does:

W7.8 What happens if I run this on Windows?

Nothing. All of the files in your dataset are always unlocked, and actually can not be
locked at all. Consequently, there will be nothing to show for datalad status afterwards
(as shown a few paragraphs below). This is due to a file system limitation, and will be
explained in more detail in chapter Under the hood: git-annex (page 83).

$ datalad unlock recordings/salt_logo_small.jpg
unlock(ok): recordings/salt_logo_small.jpg (file)

Well, unlock(ok) does not sound too bad for a start. As always, we feel the urge to run a
datalad status on this:

$ datalad status
modified: recordings/salt_logo_small.jpg (file)

“Ah, do not mind that for now”, our instructor says, and with a wink she continues: “We’ll talk
about symlinks and object trees a while later”. You are not really sure whether that’s a good
thing, but you have a task to focus on. Hastily, you run the command right from the terminal:

$ convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg

Hey, no permission denied error! You note that the instructor still stands right next to you.
“Sooo. . . now what do I do to lock the file again?” you ask.

“Well. . . what you just did there was quite suboptimal. Didn’t you want to use datalad run?
But, anyway, in order to lock the file again, you would need to run a datalad save.”

$ datalad save -m "resized picture by hand"
add(ok): recordings/salt_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

“So”, you wonder aloud, “whenever I want to modify I need to datalad unlock it, do the
modifications, and then datalad save it?”

“Well, this is certainly one way of doing it, and a completely valid workflow if you would do
that outside of a datalad run command. But within datalad run there is actually a much easier
way of doing this. Let’s use the --output argument.”

datalad run retrieves everything that is specified as --input prior to command execution, and
it unlocks everything specified as --output prior to command execution. Therefore, whenever
the output of a datalad run command already exists and is tracked, it should be specified as an
argument in the -o/--output option.

74 Chapter 7. DataLad, Run!

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M7.3 But what if I have a lot of outputs?

The use case here is simplistic – a single file gets modified. But there are commands
and tools that create full directories with many files as an output, for example FSL79, a
neuro-imaging tool. The easiest way to specify this type of output is by supplying the
directory name, or the directory name and a GLOBBING character, such as -o directory/
*.dat. This would unlock all files with a .dat extension inside of directory. To glob for
files in multiple levels of directories, set one * per level, for example -o directory/*/*.
dat when operating with DataLad version <=0.15.4. If your version of DataLad is more
recent than that, use ** (a so-called globstar80) for a recursive glob through any number
directories. And, just as for -i/--input, you could use multiple --output specifications.
79 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
80 https://www.linuxjournal.com/content/globstar-new-bash-globbing-option

In order to execute datalad run with both the -i/--input and -o/--output flag and see their
magic, let’s crop the second logo, logo_interval.jpg:

W7.9 Wait, would I need to specify outputs, too?

Given that nothing in your dataset is locked, is there a need for you to bother with creating
--output flags? Not for you personally, if you only stay on your Windows machine.
However, you will be doing others that you share your dataset with a favour if they are
not using Windows – should you or others want to rerun a run record, --output flags
will make it work on all operating systems.

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
--output "recordings/interval_logo_small.jpg" \
"convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_interval.jpg␣
→˓recordings/interval_logo_small.jpg"

or shorter:
$ datalad run -m "Resize logo for slides" \
-i "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
-o "recordings/interval_logo_small.jpg" \
"convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_interval.jpg␣
→˓recordings/interval_logo_small.jpg"
[INFO] Making sure inputs are available (this may take some time)
get(ok): recordings/longnow/.datalad/feed_metadata/logo_interval.jpg (file) [from web...]
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): recordings/interval_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 1, ok: 1)
save (notneeded: 1, ok: 1)

This time, with both --input and --output options specified, DataLad informs about the
datalad get operations it performs prior to the command execution, and datalad run executes
the command successfully. It does not inform about any datalad unlock operation, because
the output recordings/interval_logo_small.jpg does not exist before the command is run.
Should you rerun this command however, the summary will include a statement about content

7.3. Input and output 75

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.linuxjournal.com/content/globstar-new-bash-globbing-option

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

unlocking. You will see an example of this in the next section.

Note now how many individual commands a datalad run saves us: datalad get, datalad
unlock, and datalad save! But even better: Beyond saving time now, running commands
reproducibly and recorded with datalad run saves us plenty of time in the future as soon as we
want to rerun a command, or find out how a file came into existence.

With this last code snippet, you have experienced a full datalad run command: commit mes-
sage, input and output definitions (the order in which you give those two options is irrelevant),
and the command to be executed. Whenever a command takes input or produces output you
should specify this with the appropriate option.

Make a note of this behavior in your notes.txt file.

$ cat << EOT >> notes.txt
You should specify all files that a command takes as input with an
-i/--input flag. These files will be retrieved prior to the command
execution. Any content that is modified or produced by the command
should be specified with an -o/--output flag. Upon a run or rerun of
the command, the contents of these files will get unlocked so that
they can be modified.

EOT

Save yourself the preparation time

version requirement for –assume-ready

The option --assume-ready was introduced with DataLad version 0.14.1.

Its generally good practice to specify --input and --output even if your input files are already
retrieved and your output files unlocked – it makes sure that a recomputation can succeed,
even if inputs are not yet retrieved, or if output needs to be unlocked. However, the internal
preparation steps of checking that inputs exist or that outputs are unlocked can take a bit of
time, especially if it involves checking a large number of files.

Starting with datalad version 0.14.1, you can make use of the --assume-ready argument of
datalad run if you want to avoid the expense of unnecessary preparation steps. Depending
on whether your inputs are already retrieved, your outputs already unlocked (or not needed
to be unlocked), or both, specify --assume-ready with the argument inputs, outputs or both
and save yourself a few seconds, without sacrificing the ability to rerun your command under
conditions in which the preparation would be necessary.

Placeholders

Just after writing the note, you had to relax your fingers a bit. “Man, this was so much typing.
Not only did I need to specify the inputs and outputs, I also had to repeat all of these lengthy
paths in the command line call. . . ” you think.

There is a neat little trick to spare you half of this typing effort, though: Placeholders for inputs
and outputs. This is how it works:

Instead of running

76 Chapter 7. DataLad, Run!

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
--output "recordings/interval_logo_small.jpg" \
"convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_interval.jpg␣
→˓recordings/interval_logo_small.jpg"

you could shorten this to

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
--output "recordings/interval_logo_small.jpg" \
"convert -resize 450x450 {inputs} {outputs}"

The placeholder {inputs} will expand to the path given as --input, and the placeholder
{outputs} will expand to the path given as --output. This means instead of writing the full
paths in the command, you can simply reuse the --input and --output specification done be-
fore.

M7.4 What if I have multiple inputs or outputs?

If multiple values are specified, e.g., as in

$ datalad run -m "move a few files around" \
--input "file1" --input "file2" --input "file3" \
--output "directory_a/" \
"mv {inputs} {outputs}"

the values will be joined by a space like this:

$ datalad run -m "move a few files around" \
--input "file1" --input "file2" --input "file3" \
--output "directory_a/" \
"mv file1 file2 file3 directory_a/"

The order of the values will match that order from the command line.
If you use globs for input specification, as in

$ datalad run -m "move a few files around" \
--input "file*" \
--output "directory_a/" \
"mv {inputs} {outputs}"

the globs will expanded in alphabetical order (like bash):

$ datalad run -m "move a few files around" \
--input "file1" --input "file2" --input "file3" \
--output "directory_a/" \
"mv file1 file2 file3 directory_a/"

If the command only needs a subset of the inputs or outputs, individual values can be
accessed with an integer index, e.g., {inputs[0]} for the very first input.

M7.5 . . . wait, what if I need a curly bracket in my datalad run call?

If your command call involves a { or } character, you will need to escape this brace
character by doubling it, i.e., {{ or }}.

7.3. Input and output 77

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Dry-running your run call

datalad run commands can become confusing and long, especially when you make heavy use of
placeholders or wrap a complex bash commands. To better anticipate what you will be running,
or help debug a failed command, you can make use of the --dry-run flag of datalad run. This
option needs a mode specification (--dry-run=basic or dry-run=command), followed by the run
command you want to execute, and it will decipher the commands elements: The mode command
will display the command that is about to be ran. The mode basic will report a few important
details about the execution: Apart from displaying the command that will be ran, you will learn
where the command runs, what its inputs are (helpful if your --input specification includes a
GLOBBING term), and what its outputs are.

7.4 Clean desk

Just now you realize that you need to fit both logos onto the same slide. “Ah, damn, I might
then really need to have them 400 by 400 pixel to fit”, you think. “Good that I know how to not
run into the permission denied errors anymore!”

Therefore, we need to do the datalad run command yet again - we wanted to have the image
in 400x400 px size. “Now this definitely will be the last time I’m running this”, you think.

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
--output "recordings/interval_logo_small.jpg" \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_interval.jpg␣
→˓recordings/interval_logo_small.jpg"
run(impossible): /home/me/dl-101/DataLad-101 (dataset) [clean dataset required to detect␣
→˓changes from command; use `datalad status` to inspect unsaved changes]

Oh for f**** sake. . . run is “impossible”?

Weird. After the initial annoyance about yet another error message faded, and you read on,
DataLad informs that a “clean dataset” is required. Run a datalad status to see what is meant
by this:

$ datalad status
modified: notes.txt (file)

Ah right. We forgot to save the notes we added, and thus there are unsaved modifications
present in DataLad-101. But why is this a problem?

By default, at the end of a datalad run is a datalad save. Remember the section Populate
a dataset (page 37): A general datalad save without a path specification will save all of the
modified or untracked contents to the dataset.

Therefore, in order to not mix any changes in the dataset that are unrelated to the command
plugged into datalad run, by default it will only run on a clean dataset with no changes or
untracked files present.

There are two ways to get around this error message: The more obvious – and recommended –
one is to save the modifications, and run the command in a clean dataset. We will try this way
with the logo_interval.jpg. It would look like this: First, save the changes,

78 Chapter 7. DataLad, Run!

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad save -m "add additional notes on run options"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

and then try again:

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
--output "recordings/interval_logo_small.jpg" \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_interval.jpg␣
→˓recordings/interval_logo_small.jpg"
[INFO] Making sure inputs are available (this may take some time)
unlock(ok): recordings/interval_logo_small.jpg (file)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): recordings/interval_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 2)
save (notneeded: 1, ok: 1)
unlock (ok: 1)

Note how in this execution of datalad run, output unlocking was actually necessary and Data-
Lad provides a summary of this action in its output.

Add a quick addition to your notes about this way of cleaning up prior to a datalad run:

$ cat << EOT >> notes.txt
Important! If the dataset is not "clean" (a datalad status output is
empty), datalad run will not work - you will have to save
modifications present in your dataset.
EOT

A way of executing a datalad run despite an “unclean” dataset, though, is to add the --explicit
flag to datalad run. We will try this flag with the remaining logo_salt.jpg. Note that we have
an “unclean dataset” again because of the additional note in notes.txt.

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_salt.jpg" \
--output "recordings/salt_logo_small.jpg" \
--explicit \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
[INFO] Making sure inputs are available (this may take some time)
unlock(ok): recordings/salt_logo_small.jpg (file)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): recordings/salt_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 2)

(continues on next page)

7.4. Clean desk 79

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

save (ok: 1)
unlock (ok: 1)

With this flag, DataLad considers the specification of inputs and outputs to be “explicit”. It
does not warn if the repository is dirty, but importantly, it only saves modifications to the listed
outputs (which is a problem in the vast amount of cases where one does not exactly know which
outputs are produced).

Put explicit first!

The --explicit flag has to be given anywhere prior to the command that should be run
– the command needs to be the last element of a datalad run call.

A datalad status will show that your previously modified notes.txt is still modified:

$ datalad status
modified: notes.txt (file)

Add an additional note on the --explicit flag, and finally save your changes to notes.txt.

$ cat << EOT >> notes.txt
A suboptimal alternative is the --explicit flag, used to record only
those changes done to the files listed with --output flags.

EOT

$ datalad save -m "add note on clean datasets"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

To conclude this section on datalad run, take a look at the last datalad run commit to see a
RUN RECORD with more content:

$ git log -p -n 2
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:21:52 2021 +0200

[DATALAD RUNCMD] Resize logo for slides

=== Do not change lines below ===
{
"chain": [],
"cmd": "convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_salt.

→˓jpg recordings/salt_logo_small.jpg",
"dsid": "8e04afb0-af85-4070-be29-858d30d85017",
"exit": 0,
"extra_inputs": [],
"inputs": [
"recordings/longnow/.datalad/feed_metadata/logo_salt.jpg"
],
"outputs": [

(continues on next page)

80 Chapter 7. DataLad, Run!

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

"recordings/salt_logo_small.jpg"
],
"pwd": "."

}
^^^ Do not change lines above ^^^

diff --git a/recordings/salt_logo_small.jpg b/recordings/salt_logo_small.jpg
index b6a0a1d..55ada0f 120000
--- a/recordings/salt_logo_small.jpg
+++ b/recordings/salt_logo_small.jpg
@@ -1 +1 @@

7.5 Summary

In the last four sections, we demonstrated how to create a proper datalad run command, and
discovered the concept of locked content.

• datalad run records and saves the changes a command makes in a dataset. That means
that modifications to existing content or new content are associated with a specific com-
mand and saved to the dataset’s history. Essentially, datalad run helps you to keep track
of what you do in your dataset by capturing all PROVENANCE.

• A datalad run command generates a run record in the commit. This RUN RECORD can be
used by datalad to re-execute a command with datalad rerun SHASUM, where SHASUM
is the commit hash of the datalad run command that should be re-executed.

• If a datalad run or datalad rerun does not modify any content, it will not write a record
to history.

• With any datalad run, specify a commit message, and whenever appropriate, specify its
inputs to the executed command (using the -i/--input flag) and/or its output (using the
-o/ --output flag). The full command structure is:

$ datalad run -m "commit message here" --input "path/to/input/" --output "path/to/
→˓output" "command"

• Anything specified as input will be retrieved if necessary with a datalad get prior to
command execution. Anything specified as output will be unlocked prior to modifications.

• It is good practice to specify input and output to ensure that a datalad rerun works,
and to capture the relevant elements of a computation in a machine-readable record. If
you want to spare yourself preparation time in case everything is already retrieved and
unlocked, you can use --assume-ready {input|output|both} to skip a check on whether
inputs are already present or outputs already unlocked (requires DataLad version 0.14.1
or later).

• Getting and unlocking content is not only convenient for yourself, but enormously helpful
for anyone you share your dataset with, but this will be demonstrated in an upcoming
section in detail.

• To execute a datalad run or datalad rerun, a datalad status either needs to report
that the dataset has no uncommitted changes (the dataset state should be “clean”), or the
command needs to be extended with the --explicit option.

7.5. Summary 81

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

save all
modifications
of the dataset

- human-readable
 commit message

 - machine-readable
run-record

unlock
output files

for modification
--outputget input data

--input

1
2

2
1

Reproducible execution:
link input, code, and output with

datalad run

datalad run -m "did XY"

Fig. 7.1: Overview of datalad run.

Now what I can do with that?

You have procedurally experienced how to use datalad run and datalad rerun. Both of these
commands make it easier for you and others to associate changes in a dataset with a script or
command, and are helpful as the exact command for a given task is stored by DataLad, and
does not need to be remembered.

Furthermore, by experiencing many common error messages in the context of datalad run
commands, you have gotten some clues on where to look for problems, should you encounter
those errors in your own work.

Lastly, we’ve started to unveil some principles of GIT-ANNEX that are relevant to understanding
how certain commands work and why certain commands may fail. We have seen that git-
annex locks large files’ content to prevent accidental modifications, and how the --output flag
in datalad run can save us an intermediate datalad unlock to unlock this content. The next
section will elaborate on this a bit more.

82 Chapter 7. DataLad, Run!

CHAPTER

EIGHT

UNDER THE HOOD: GIT-ANNEX

A closer look at how and why things work

8.1 Data safety

Later in the day, after seeing and solving so many DataLad error messages, you fall tired into
your bed. Just as you are about to fall asleep, a thought crosses your mind:

“I now know that tracked content in a dataset is protected by GIT-ANNEX. Whenever tracked
contents are saved, they get locked and should not be modifiable. But. . . what about the notes
that I have been taking since the first day? Should I not need to unlock them before I can modify
them? And also the script! I was able to modify this despite giving it to DataLad to track, with
no permission denied errors whatsoever! How does that work?”

This night, though, your question stays unanswered and you fall into a restless sleep filled with
bad dreams about “permission denied” errors. The next day you’re the first student in your
lecturer’s office hours.

“Oh, you’re really attentive. This is a great question!” our lecturer starts to explain.

Do you remember that we created the DataLad-101 dataset with a specific configuration tem-
plate? It was the -c text2git option we provided in the beginning of Create a dataset (page 34).
It is because of this configuration that we can modify notes.txt without unlocking its content
first.

83

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The second commit message in our datasets history summarizes this (outputs are shortened):

$ git log --reverse --oneline
9098f56 [DATALAD] new dataset
a19b634 Instruct annex to add text files to Git
7ad3b1b add books on Python and Unix to read later
ca8582d add reference book about git
1930699 add beginners guide on bash
cc213c2 Add notes on datalad create
13cc7f7 add note on datalad save
2472210 [DATALAD] Recorded changes
6cd43dd [DATALAD] modified subdataset properties

Instead of giving text files such as your notes or your script to git-annex, the dataset stores it in
GIT. But what does it mean if files are in Git instead of git-annex?

Well, procedurally it means that everything that is stored in git-annex is content-locked, and
everything that is stored in Git is not. You can modify content stored in Git straight away,
without unlocking it first.

files given to Git-annex
are write-protected

files given to Git are
not write-protected

modifications can
 be done right away

modifications need
 prior unlocking

Fig. 8.1: A simplified overview of the tools that manage data in your dataset.

That’s easy enough.

“So, first of all: If we hadn’t provided the -c text2git argument, text files would get content-
locked, too?”. “Yes, indeed. However, there are also ways to later change how file content is
handled based on its type or size. It can be specified in the .gitattributes file, using annex.
largefile options. But there will be a lecture on that82.”

“Okay, well, second: Isn’t it much easier to just not bother with locking and unlocking, and have
everything ‘stored in Git’? Even if datalad run takes care of unlocking content, I do not see the
point of git-annex”, you continue.
82 If you cannot wait to read about .gitattributes and other configuration files, jump ahead to chapter Tuning

datasets to your needs (page 112), starting with section DIY configurations (page 112).

84 Chapter 8. Under the hood: git-annex

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Here it gets tricky. To begin with the most important, and most straight-forward fact: It is
not possible to store large files in Git. This is because Git would very quickly run into severe
performance issues. For this reason, GITHUB, a well-known hosting site for projects using Git,
for example does not allow files larger than a few dozen MB of size.

For now, we have solved the mystery of why text files can be modified without unlocking, and
this is a small improvement in the vast amount of questions that have piled up in our curious
minds. Essentially, git-annex protects your data from accidental modifications and thus keeps
it safe. datalad run commands mitigate any technical complexity of this completely if -o/
--output is specified properly, and datalad unlock commands can be used to unlock content
“by hand” if modifications are performed outside of a datalad run.

But there comes the second, tricky part: There are ways to get rid of locking and unlocking
within git-annex, using so-called ADJUSTED BRANCHes. This functionality is dependent on the
git-annex version one has installed, the git-annex version of the repository, and a use-case
dependent comparison of the pros and cons. On Windows systems, this adjusted mode is even
the only mode of operation. In later sections we will see how to use this feature. The next
lecture, in any way, will guide us deeper into git-annex, and improve our understanding a slight
bit further.

8.2 Data integrity

So far, we mastered quite a number of challenges: Creating and populating a dataset with large
and small files, modifying content and saving the changes to history, installing datasets, even
as subdatasets within datasets, recording the impact of commands on a dataset with the run
and re-run commands, and capturing plenty of PROVENANCE on the way. We further noticed
that when we modified content in notes.txt or list_titles.sh, the modified content was in
a text file. We learned that this precise type of file, in conjunction with the initial configuration
template text2git we gave to datalad create, is meaningful: As the text file is stored in Git
and not git-annex, no content unlocking is necessary. As we saw within the demonstrations of
datalad run, modifying content of non-text files, such as .jpgs, typically requires the additional
step of unlocking file content, either by hand with the datalad unlock command, or within
datalad run using the -o/--output flag.

There is one detail about DataLad datasets that we have not covered yet. Its both a crucial aspect
to understanding certain aspects of a dataset, but it is also a potential source of confusion that
we want to eradicate.

You might have noticed already that an ls -l or tree command in your dataset shows small
arrows and quite cryptic paths following each non-text file. Maybe your shell also displays these
files in a different color than text files when listing them. We’ll take a look together, using the
books/ directory as an example:

W8.1 This will look different to you

First of all, the tree equivalent provided by CONDAs m2-base package doesn’t list individ-
ual files, only directories. And, secondly, even if you list the individual files (e.g., with
ls -l), you would not see the SYMLINKs shown below. Due to insufficient support of
symlinks on Windows, git-annex does not use them. Please read on for a basic under-
standing of how git-annex usually works – a Windows Wit at the end of this section will
then highlight the difference in functionality on Windows.

8.2. Data integrity 85

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

in the root of DataLad-101
$ cd books
$ tree
.

bash_guide.pdf -> ../.git/annex/objects/WF/Gq/MD5E-s1198170--
→˓0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf

byte-of-python.pdf -> ../.git/annex/objects/z1/Q8/MD5E-s4208954--
→˓ab3a8c2f6b76b18b43c5949e0661e266.pdf/MD5E-s4208954--ab3a8c2f6b76b18b43c5949e0661e266.pdf

progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-s12465653--
→˓05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.
→˓pdf

TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

0 directories, 4 files

If you do not know what you are looking at, this looks weird, if not worse: intimidating, wrong,
or broken. First of all: no, it is all fine. But let’s start with the basics of what is displayed here
to understand it.

The small -> symbol connecting one path (the book’s name) to another path (the weird se-
quence of characters ending in .pdf) is what is called a symbolic link (short: SYMLINK) or soft-
link. It is a term for any file that contains a reference to another file or directory as a RELATIVE

PATH or ABSOLUTE PATH. If you use Windows, you are familiar with a related, although more
basic concept: a shortcut.

This means that the files that are in the locations in which you saved content and are named as
you named your files (e.g., TLCL.pdf), do not actually contain your files’ content: they just point
to the place where the actual file content resides.

This sounds weird, and like an unnecessary complication of things. But we will get to why this
is relevant and useful shortly. First, however, where exactly are the contents of the files you
created or saved?

The start of the link path is ../.git. The section Create a dataset (page 34) contained a note that
strongly advised that you to not tamper with (or in the worst case, delete) the .git repository
in the root of any dataset. One reason why you should not do this is because this .git directory
is where all of your file content is actually stored.

But why is that? We have to talk a bit git-annex now in order to understand it88.

When a file is saved into a dataset to be tracked, by default – that is in a dataset created without
any configuration template – DataLad gives this file to git-annex. Exceptions to this behavior
can be defined based on

1. file size

2. and/or path/pattern, and thus for example file extensions, or names, or file types (e.g.,
text files, as with the text2git configuration template).

git-annex, in order to version control the data, takes the file content and moves it under .git/
annex/objects – the so called OBJECT-TREE. It further renames the file into the sequence of
characters you can see in the path, and in its place creates a symlink with the original file name,
88 Note, though, that the information below applies to everything that is not an adjusted branch in a git-annex v7

repository – this information does not make sense yet, but it will be an important reference point later on. Just for
the record: Currently, we do not yet have a v7 repository in DataLad-101, and the explanation below applies to
our current dataset.

86 Chapter 8. Under the hood: git-annex

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

pointing to the new location. This process is often referred to as a file being annexed, and the
object tree is also known as the annex of a dataset.

W8.2 What happens on Windows?

Windows has insufficient support for SYMLINKs and revoking write PERMISSIONS on files.
Therefore, GIT-ANNEX classifies it as a CRIPPLED FILESYSTEM and has to stray from its
default behavior. While git-annex on Unix-based file operating systems stores data in the
annex and creates a symlink in the data’s original place, on Windows it moves data into
the ANNEX and creates a copy of the data in its original place.
Why is that? Data needs to be in the annex for version control and transport logistics –
the annex is able to store all previous versions of the data, and manage the transport to
other storage locations if you want to publish your dataset. But as the Findoutmore in this
section (page 89) will show, the ANNEX is a non-human readable tree structure, and data
thus also needs to exist in its original location. Thus, it exists in both places: its moved
into the annex, and copied back into its original location. Once you edit an annexed file,
the most recent version of the file is available in its original location, and past versions
are stored and readily available in the annex. If you reset your dataset to a previous state
(as is shown in the section Back and forth in time (page 245)), the respective version
of your data is taken from the annex and copied to replace the newer version, and vice
versa.
But doesn’t a copy mean data duplication? Yes, absolutely! And that is a big downside
to DataLad and GIT-ANNEX on Windows. If you have a dataset with annexed file contents
(be that a dataset you created and populated yourself, or one that you cloned and got
file contents with datalad get from), it will take up more space than on a Unix-based
system. How much more? Every file that exists in your file hierarchy exists twice. A
fresh dataset with one version of each file is thus twice as big as it would be on a Linux
computer. Any past version of data does not exist in duplication.
Step-by-step demonstration: Let’s take a concrete example to explain the last point in
more detail. How much space, do you think, is taken up in your dataset by the resized
salt_logo_small.jpg image? As a reminder: It exists in two versions, a 400 by 400 pixel
version (about 250Kb in size), and a 450 by 450 pixel version (about 310Kb in size). The
400 by 400 pixel version is the most recent one. The answer is: about 810Kb (~0.1Mb).
The most recent 400x400px version exists twice (in the annex and as a copy), and the
450x450px copy exists once in the annex. If you would reset your dataset to the state
when we created the 450x450px version, this file would instead exist twice.
Can I at least get unused or irrelevant data out of the dataset? Yes, either with
convenience commands (e.g., git annex unused followed by git annex dropunused),
or by explicitly using drop on files (or there past versions) that you don’t want to keep
anymore. Alternatively, you can transfer data you don’t need but want to preserve to a
different storage location. Later parts of the handbook will demonstrate each of these
alternatives.

For a demonstration that this file path is not complete gibberish, take the target path of any of
the book’s symlinks and open it, for example with evince <path>, or any other PDF reader in
exchange for evince:

evince ../.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/
→˓MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

Even though the path looks cryptic, it works and opens the file. Whenever you use a command

8.2. Data integrity 87

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

like evince TLCL.pdf, internally, your shell will follow the same cryptic symlink like the one
you have just opened.

But why does this symlink-ing happen? Up until now, it still seems like a very unnecessary,
superfluous thing to do, right?

The resulting symlinks that look like your files but only point to the actual content in .git/
annex/objects are small in size. An ls -lah reveals that all of these symlinks have roughly the
same, small size of ~130 Bytes:

$ ls -lah
total 24K
drwxr-xr-x 2 adina adina 4.0K Jul 29 16:20 .
drwxr-xr-x 7 adina adina 4.0K Jul 29 16:21 ..
lrwxrwxrwx 1 adina adina 131 Jan 19 2009 bash_guide.pdf -> ../.git/annex/objects/WF/Gq/
→˓MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--
→˓0ab2c121bcf68d7278af266f6a399c5f.pdf
lrwxrwxrwx 1 adina adina 131 Jun 16 2020 byte-of-python.pdf -> ../.git/annex/objects/z1/
→˓Q8/MD5E-s4208954--ab3a8c2f6b76b18b43c5949e0661e266.pdf/MD5E-s4208954--
→˓ab3a8c2f6b76b18b43c5949e0661e266.pdf
lrwxrwxrwx 1 adina adina 133 Jun 29 2019 progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-
→˓s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--
→˓05cd7ed561d108c9bcf96022bc78a92c.pdf
lrwxrwxrwx 1 adina adina 131 Jan 28 2019 TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

Here you can see the reason why content is symlinked: Small file size means that Git can handle
those symlinks! Therefore, instead of large file content, only the symlinks are committed into
Git, and the Git repository thus stays lean. Simultaneously, still, all files stored in Git as symlinks
can point to arbitrarily large files in the object tree. Within the object tree, git-annex handles
file content tracking, and is busy creating and maintaining appropriate symlinks so that your
data can be version controlled just as any text file.

This comes with two very important advantages:

One, should you have copies of the same data in different places of your dataset, the symlinks
of these files point to the same place (in order to understand why this is the case, you will need
to read the hidden section at the end of the page). Therefore, any amount of copies of a piece of
data is only one single piece of data in your object tree. This, depending on how much identical
file content lies in different parts of your dataset, can save you much disk space and time.

The second advantage is less intuitive but clear for users familiar with Git. Small symlinks can
be written very very fast when switching BRANCHes, as opposed to copying and deleting huge
data files.

G8.1 Speedy branch switches

Switching branches fast, even when they track vasts amounts of data, lets you work with
data with the same routines as in software development.

This leads to a few conclusions:

The first is that you should not be worried to see cryptic looking symlinks in your repository
– this is how it should look. You can read the find-out-more on why these paths look so weird
(page 89) and what all of this has to do with data integrity, if you want to. Its additional
information that can help to establish trust in that your data are safely stored and tracked, and

88 Chapter 8. Under the hood: git-annex

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

understanding more about the object tree and knowing bits of the git-annex basics can make
you more confident in working with your datasets.

The second is that it should now be clear to you why the .git directory should not be deleted
or in any way modified by hand. This place is where your data are stored, and you can trust git-
annex to be better able to work with the paths in the object tree than you or any other human
are.

Lastly, understanding that annexed files in your dataset are symlinked will be helpful to un-
derstand how common file system operations such as moving, renaming, or copying content
translate to dataset modifications in certain situations. Later in this book we will have a section
on how to manage the file system in a DataLad dataset (Miscellaneous file system operations
(page 224)).

M8.1 more about paths, checksums, object trees, and data integrity

So how do these cryptic paths and names in the object tree come into existence? Its not
malicious intent that leads to these paths and file names - its checksums.
When a file is annexed, git-annex generates a key (or CHECKSUM) from the file content.
It uses this key (in part) as a name for the file and as the path in the object tree. Thus,
the key is associated with the content of the file (the value), and therefore, using this key,
file content can be identified – or rather: Based on the keys, it can be identified whether
file content changed, and whether two files have identical contents.
The key is generated using hashes. A hash is a function that turns an input (e.g., a PDF
file) into a string of characters with a fixed length based on its contents.
Importantly, a hash function will generate the same character sequence for the same file
content, and once file content changes, the generated hash changes, too. Basing the
file name on its contents thus becomes a way of ensuring data integrity: File content
can not be changed without git-annex noticing, because file’s hash, and thus its key in
its symlink, will change. Furthermore, if two files have identical hashes, the content in
these files is identical. Consequently, if two files have the same symlink, and thus link
the same file in the object-tree, they are identical in content. This can save disk space if a
dataset contains many identical files: Copies of the same data only need one instance of
that content in the object tree, and all copies will symlink to it. If you want to read more
about the computer science basics about hashes check out the Wikipedia page here83.

take a look at the last part of the target path:
$ ls -lah TLCL.pdf
lrwxrwxrwx 1 adina adina 131 Jan 28 2019 TLCL.pdf -> ../.git/annex/objects/jf/3M/
→˓MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

Let’s take a closer look at the structure of the symlink. The key from the hash function is
the last part of the name of the file the symlink links to (in which the actual data content
is stored).

compare it to the checksum (here of type md5sum) of the PDF file and the␣
→˓subdirectory name
$ md5sum TLCL.pdf
06d1efcb05bb2c55cd039dab3fb28455 TLCL.pdf

The extension (e.g., .pdf) is appended because some operating systems (ehem, Win-
dows) need this information in order to select the right software to open a file. Right
at the beginning, the symlink starts with two directories just after .git/annex/objects/,
consisting of two letters each. These two letters are derived from the md5sum of the

8.2. Data integrity 89

https://en.wikipedia.org/wiki/Hash_function

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

key, and their sole purpose to exist is to avoid issues with too many files in one directory
(which is a situation that certain file systems have problems with). The next subdirectory
in the symlink helps to prevent accidental deletions and changes, as it does not have
write PERMISSIONS, so that users cannot modify any of its underlying contents. This is
the reason that annexed files need to be unlocked prior to modifications, and this infor-
mation will be helpful to understand some file system management operations such as
removing files or datasets (see section Miscellaneous file system operations (page 224)).
The next part of the symlink contains the actual hash. There are different hash functions
available. Depending on which is used, the resulting CHECKSUM has a certain length and
structure, and the first part of the symlink actually states which hash function is used.
By default, DataLad uses MD5E checksums (relatively short and with a file extension),
but should you want to, you can change this default to one of many other types84. The
reason why MD5E is used is because of its short length – thus it is possible to ensure
cross-platform compatibility and share datasets also with users on operating systems that
have restrictions on total path lengths, such as Windows.
The one remaining unidentified bit in the file name is the one after the checksum identi-
fier. This part is the size of the content in bytes. An annexed file in the object tree thus
has a file name following this structure:
checksum-identifier - size -- checksum . extension
You now know a great deal more about git-annex and the object tree. Maybe you are
as amazed as we are about some of the ingenuity used behind the scenes. Even more
mesmerizing things about git-annex can be found in its documentation85.
83 https://en.wikipedia.org/wiki/Hash_function
84 https://git-annex.branchable.com/backends/
85 https://git-annex.branchable.com/git-annex/

Broken symlinks

Whenever a symlink points to a non-existent target, this symlink is called broken, and opening
the symlink would not work as it does not resolve. The section Miscellaneous file system opera-
tions (page 224) will give a thorough demonstration of how symlinks can break, and how one
can fix them again. Even though broken sounds troublesome, most types of broken symlinks you
will encounter can be fixed, or are not problematic. At this point, you actually have already seen
broken symlinks: Back in section Install datasets (page 46) we explored the file hierarchy in an
installed subdataset that contained many annexed mp3 files. Upon the initial datalad clone,
the annexed files were not present locally. Instead, their symlinks (stored in Git) existed and
allowed to explore which file’s contents could be retrieved. These symlinks point to nothing,
though, as the content isn’t yet present locally, and are thus broken. This state, however, is not
problematic at all. Once the content is retrieved via datalad get, the symlink is functional
again.

Nevertheless, it may be important to know that some tools that you would expect to work in
a dataset with not yet retrieved file contents can encounter unintuitive problems. Some file
managers (e.g., OSX’s Finder) may not display broken symlinks. In these cases, it will be im-
possible to browse and explore the file hierarchy of not-yet-retrieved files with the file manager.
You can make sure to always be able to see the file hierarchy in two separate ways: Upgrade
your file manager to display file types in a DataLad datasets (e.g., the git-annex-turtle exten-
sion86 for Finder). Alternatively, use the ls command in a terminal instead of a file manager

86 https://github.com/andrewringler/git-annex-turtle

90 Chapter 8. Under the hood: git-annex

https://git-annex.branchable.com/backends/
https://git-annex.branchable.com/git-annex/
https://github.com/andrewringler/git-annex-turtle
https://github.com/andrewringler/git-annex-turtle

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

GUI. Other tools may be more more specialized, smaller, or domain-specific, and may fail to
correctly work with broken symlinks, or display unhelpful error messages when handling them,
or require additional flags to modify their behavior (such as the BIDS Validator (page 487), used
in the neuroimaging community). When encountering unexpected behavior or failures, try to
keep in mind that a dataset without retrieved content appears to be a pile of broken symlinks
to a range of tools, consult a tools documentation with regard to symlinks, and check whether
data retrieval fixes persisting problems.

Finally, if you are still in the books/ directory, go back into the root of the superdataset.

$ cd ../

Cross-OS filesharing with symlinks (WSL2 only)

Are you using DataLad on the Windows Subsystem for Linux? If so, please take a look into the
Windows Wit below.

W8.3 Accessing symlinked files from your Windows system

If you are using WSL2 you have access to a Linux kernel and POSIX filesystem, including
symlink support. Your DataLad experience has therefore been exactly as it has been for
macOS or Linux users. But one thing that bears the need for additional information is
sharing files in dataset between your Linux and Windows system.
Its fantastic that files created under Linux can be shared to Windows and used
by Windows tools. Usually, you should be able to open an explorer and type
\\wsl$\<distro>\<path> in the address bar to navigate to files under Linux, or type
explorer.exe into the WSL2 terminal. Some core limitations of Windows can’t be over-
come, though: Windows usually isn’t capable of handling symlinks. So while WSL2 can
expose your dataset filled with symlinked files to Windows, your Windows tools can fail
to open them. How can this be fixed?
Whenever you need to work with files from your datasets under Windows, you should
unlock with datalad unlock. This operation copies the file from the annex back to its
original location, and thus removes the symlink (and also returns write PERMISSIONS to
the file). Alternatively, use git-annex adjust –unlock87 to switch to a new dataset BRANCH

in which all files are unlocked. The branch is called adjusted/<branchname>(unlocked)
(e.g., if the original branch name was main, the new, adjusted branch will be called
adjusted/main(unlocked)). You can switch back to your original branch using git
checkout <branchname>.
87 https://git-annex.branchable.com/git-annex-adjust/

8.2. Data integrity 91

https://git-annex.branchable.com/git-annex-adjust/

CHAPTER

NINE

COLLABORATION

9.1 Looking without touching

Only now, several weeks into the DataLad-101 course does your room mate realize that he has
enrolled in the course as well, but has not yet attended at all. “Oh man, can you help me catch
up?” he asks you one day. “Sharing just your notes would be really cool for a start already!”

“Sure thing”, you say, and decide that it’s probably best if he gets all of the DataLad-101 course
dataset. Sharing datasets was something you wanted to look into soon, anyway.

This is one exciting aspect of DataLad datasets that has yet been missing from this course: How
does one share a dataset? In this section, we will cover the simplest way of sharing a dataset:
on a local or shared file system, via an installation with a path as a source.

More on public data sharing

Interested in sharing datasets publicly? Read this chapter to get a feel for all relevant basic
concepts of sharing datasets. Afterwards, head over to chapter Third party infrastructure
(page 177) to find out how to share a dataset on third-party infrastructure.

In this scenario multiple people can access the very same files at the same time, often on the
same machine (e.g., a shared workstation, or a server that people can “SSH” into). You might
think: “What do I need DataLad for, if everyone can already access everything?” However,
universal, unrestricted access can easily lead to chaos. DataLad can help facilitate collaboration
without requiring ultimate trust and reliability of all participants. Essentially, with a shared
dataset, collaborators can look and use your dataset without ever touching it.

92

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

To demonstrate how to share a DataLad dataset on a common file system, we will pretend that
your personal computer can be accessed by other users. Let’s say that your room mate has
access, and you’re making sure that there is a DataLad-101 dataset in a different place on the
file system for him to access and work with.

This is indeed a common real-world use case: Two users on a shared file system sharing a
dataset with each other. But as we can not easily simulate a second user in this handbook, for
now, you will have to share your dataset with yourself. This endeavor serves several purposes:
For one, you will experience a very easy way of sharing a dataset. Secondly, it will show you how
a dataset can be obtained from a path (instead of a URL as shown in the section Install datasets
(page 46)). Thirdly, DataLad-101 is a dataset that can showcase many different properties
of a dataset already, but it will be an additional learning experience to see how the different
parts of the dataset – text files, larger files, datalad subdataset, datalad run commands – will
appear upon installation when shared. And lastly, you will likely “share a dataset with yourself”
whenever you will be using a particular dataset of your own creation as input for one or more
projects.

“Awesome!” exclaims your room mate as you take out your Laptop to share the dataset. “You’re
really saving my ass here. I’ll make up for it when we prepare for the final”, he promises.

To install DataLad-101 into a different part of your file system, navigate out of DataLad-101,
and – for simplicity – create a new directory, mock_user, right next to it:

$ cd ../
$ mkdir mock_user

For simplicity, pretend that this is a second user’s – your room mate’s – home directory. Further-
more, let’s for now disregard anything about PERMISSIONS. In a real-world example you likely
would not be able to read and write to a different user’s directories, but we will talk about
permissions later.

After creation, navigate into mock_user and install the dataset DataLad-101. To do this, use
datalad clone, and provide a path to your original dataset. Here is how it looks like:

$ cd mock_user
$ datalad clone ../DataLad-101 --description "DataLad-101 in mock_user"
[INFO] Cloning dataset to Dataset(/home/me/dl-101/mock_user/DataLad-101)
[INFO] Attempting to clone from ../DataLad-101 to /home/me/dl-101/mock_user/DataLad-101
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/mock_user/DataLad-101)
[INFO] scanning for unlocked files (this may take some time)
install(ok): /home/me/dl-101/mock_user/DataLad-101 (dataset)

This will install your dataset DataLad-101 into your room mate’s home directory. Note that we
have given this new dataset a description about its location as well. Note further that we have
not provided the optional destination path to datalad clone, and hence it installed the dataset
under its original name in the current directory.

Together with your room mate, you go ahead and see what this dataset looks like. Before
running the command, try to predict what you will see.

$ cd DataLad-101
$ tree
.

books
bash_guide.pdf -> ../.git/annex/objects/WF/Gq/MD5E-s1198170--

→˓0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
(continues on next page)

9.1. Looking without touching 93

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

byte-of-python.pdf -> ../.git/annex/objects/z1/Q8/MD5E-s4208954--
→˓ab3a8c2f6b76b18b43c5949e0661e266.pdf/MD5E-s4208954--ab3a8c2f6b76b18b43c5949e0661e266.pdf

progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-s12465653--
→˓05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.
→˓pdf

TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

code
list_titles.sh

notes.txt
recordings

interval_logo_small.jpg -> ../.git/annex/objects/jx/KK/MD5E-s100593--
→˓c4b4290cb5d616154e80cddee76cb756.jpg/MD5E-s100593--c4b4290cb5d616154e80cddee76cb756.jpg

longnow
podcasts.tsv
salt_logo_small.jpg -> ../.git/annex/objects/xJ/4G/MD5E-s260607--

→˓4e695af0f3e8e836fcfc55f815940059.jpg/MD5E-s260607--4e695af0f3e8e836fcfc55f815940059.jpg

4 directories, 9 files

There are a number of interesting things, and your room mate is the first to notice them:

“Hey, can you explain some things to me?”, he asks. “This directory here, “longnow”, why is it
empty?” True, the subdataset has a directory name but apart from this, the longnow directory
appears empty.

“Also, why do the PDFs in books/ and the .jpg files appear so weird? They have this cryptic
path right next to them, and look, if I try to open one of them, it fails! Did something go wrong
when we installed the dataset?” he worries. Indeed, the PDFs and pictures appear just as they
did in the original dataset on first sight: They are symlinks pointing to some location in the
object tree. To reassure your room mate that everything is fine you quickly explain to him the
concept of a symlink and the OBJECT-TREE of GIT-ANNEX.

“But why does the PDF not open when I try to open it?” he repeats. True, these files cannot
be opened. This mimics our experience when installing the longnow subdataset: Right after
installation, the .mp3 files also could not be opened, because their file content was not yet re-
trieved. You begin to explain to your room mate how DataLad retrieves only minimal metadata
about which files actually exist in a dataset upon a datalad clone. “It’s really handy”, you tell
him. “This way you can decide which book you want to read, and then retrieve what you need.
Everything that is annexed is retrieved on demand. Note though that the text files contents
are present, and the files can be opened – this is because these files are stored in GIT. So you
already have my notes, and you can decide for yourself whether you want to get the books.”

To demonstrate this, you decide to examine the PDFs further. “Try to get one of the books”, you
instruct your room mate:

$ datalad get books/progit.pdf
get(ok): books/progit.pdf (file) [from origin...]

“Opening this file will work, because the content was retrieved from the original dataset.”, you
explain, proud that this worked just as you thought it would. Your room mate is excited by this
magical command. You however begin to wonder: how does DataLad know where to look for
that original content?

This information comes from git-annex. Before getting the next PDF, let’s query git-annex where

94 Chapter 9. Collaboration

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

its content is stored:

$ git annex whereis books/TLCL.pdf
whereis books/TLCL.pdf (1 copy)

142a8659-5566-466d-af37-5958d071a995 -- me@muninn:~/dl-101/DataLad-101 [origin]
ok

Oh, another SHASUM! This time however not in a symlink. . . “That’s hard to read – what is
it?” your room mate asks. You can recognize a path to the dataset on your computer, prefixed
with the user and hostname of your computer. “This”, you exclaim, excited about your own
realization, “is my dataset’s location I’m sharing it from!”

M9.1 What is this location, and what if I provided a description?

Back in the very first section of the Basics, Create a dataset (page 34), a hidden section
mentioned the --description option of datalad create. With this option, you can
provide a description about the location of your dataset.
The git annex whereis command, finally, is where such a description can become handy:
If you had created the dataset with

$ datalad create --description "course on DataLad-101 on my private Laptop" -c␣
→˓text2git DataLad-101

the command would show course on DataLad-101 on my private Laptop after the
SHASUM – and thus a more human-readable description of where file content is stored.
This becomes especially useful when the number of repository copies increases. If you
have only one other dataset it may be easy to remember what and where it is. But
once you have one back-up of your dataset on a USB-Stick, one dataset shared with
Dropbox, and a third one on your institutions GITLAB instance you will be grateful for
the descriptions you provided these locations with.
The current report of the location of the dataset is in the format user@host:path. As one
computer this book is being build on is called “muninn” and its user “me”, it could look
like this: me@muninn:~/dl-101/DataLad-101.
If the physical location of a dataset is not relevant, ambiguous, or volatile, or if it has an
ANNEX that could move within the foreseeable lifetime of a dataset, a custom description
with the relevant information on the dataset is superior. If this is not the case, decide
for yourself whether you want to use the --description option for future datasets or
not depending on what you find more readable – a self-made location description, or an
automatic user@host:path information.

The message further informs you that there is only “(1 copy)” of this file content. This makes
sense: There is only your own, original DataLad-101 dataset in which this book is saved.

To retrieve file content of an annexed file such as one of these PDFs, git-annex will try to obtain
it from the locations it knows to contain this content. It uses the checksums to identify these
locations. Every copy of a dataset will get a unique ID with such a checksum. Note however that
just because git-annex knows a certain location where content was once it does not guarantee
that retrieval will work. If one location is a USB-Stick that is in your bag pack instead of your
USB port, a second location is a hard drive that you deleted all of its previous contents (including
dataset content) from, and another location is a web server, but you are not connected to the
internet, git-annex will not succeed in retrieving contents from these locations. As long as there
is at least one location that contains the file and is accessible, though, git-annex will get the
content. Therefore, for the books in your dataset, retrieving contents works because you and
your room mate share the same file system. If you’d share the dataset with anyone without

9.1. Looking without touching 95

dropbox.com

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

access to your file system, datalad get would not work, because it can not access your files.

But there is one book that does not suffer from this restriction: The bash_guide.pdf. This book
was not manually downloaded and saved to the dataset with wget (thus keeping DataLad in the
dark about where it came from), but it was obtained with the datalad download-url command.
This registered the books original source in the dataset, and here is why that is useful:

$ git annex whereis books/bash_guide.pdf
whereis books/bash_guide.pdf (2 copies)

00000000-0000-0000-0000-000000000001 -- web
142a8659-5566-466d-af37-5958d071a995 -- me@muninn:~/dl-101/DataLad-101 [origin]

web: http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
ok

Unlike the TLCL.pdf book, this book has two sources, and one of them is web. The second to
last line specifies the precise URL you downloaded the file from. Thus, for this book, your room
mate is always able to obtain it (as long as the URL remains valid), even if you would delete
your DataLad-101 dataset. Quite useful, this provenance, right?

Let’s now turn to the fact that the subdataset longnow contains neither file content nor file
metadata information to explore the contents of the dataset: there are no subdirectories or any
files under recordings/longnow/. This is behavior that you have not observed until now.

To fix this and obtain file availability metadata, you have to run a somewhat unexpected com-
mand:

$ datalad get -n recordings/longnow
[INFO] Cloning dataset to Dataset(/home/me/dl-101/mock_user/DataLad-101/recordings/
→˓longnow)
[INFO] Attempting to clone from /home/me/dl-101/DataLad-101/recordings/longnow to /home/
→˓me/dl-101/mock_user/DataLad-101/recordings/longnow
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/mock_user/DataLad-101/
→˓recordings/longnow)
[INFO] scanning for unlocked files (this may take some time)
install(ok): /home/me/dl-101/mock_user/DataLad-101/recordings/longnow (dataset)␣
→˓[Installed subdataset in order to get /home/me/dl-101/mock_user/DataLad-101/recordings/
→˓longnow]

The section below will elaborate on datalad get and the -n/--no-data option, but for now,
let’s first see what has changed after running the above command (excerpt):

$ tree
.

books
bash_guide.pdf -> ../.git/annex/objects/WF/Gq/MD5E-s1198170--

→˓0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
byte-of-python.pdf -> ../.git/annex/objects/z1/Q8/MD5E-s4208954--

→˓ab3a8c2f6b76b18b43c5949e0661e266.pdf/MD5E-s4208954--ab3a8c2f6b76b18b43c5949e0661e266.pdf
progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-s12465653--

→˓05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.
→˓pdf

TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

code
list_titles.sh

notes.txt

(continues on next page)

96 Chapter 9. Collaboration

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

recordings
interval_logo_small.jpg -> ../.git/annex/objects/jx/KK/MD5E-s100593--

→˓c4b4290cb5d616154e80cddee76cb756.jpg/MD5E-s100593--c4b4290cb5d616154e80cddee76cb756.jpg
longnow

Long_Now__Conversations_at_The_Interval
2017_06_09__How_Digital_Memory_Is_Shaping_Our_Future__Abby_Smith_Rumsey.

→˓mp3 -> ../.git/annex/objects/8j/kQ/MD5E-s66305442--c723d53d207e6d82dd64c3909a6a93b0.mp3/
→˓MD5E-s66305442--c723d53d207e6d82dd64c3909a6a93b0.mp3

2017_06_09__Pace_Layers_Thinking__Stewart_Brand__Paul_Saffo.mp3 -> ../.
→˓git/annex/objects/Qk/9M/MD5E-s112801659--00a42a1a617485fb2c03cbf8482c905c.mp3/MD5E-
→˓s112801659--00a42a1a617485fb2c03cbf8482c905c.mp3

2017_06_09__Proof__The_Science_of_Booze__Adam_Rogers.mp3 -> ../.git/annex/
→˓objects/FP/96/MD5E-s60091960--6e48eceb5c54d458164c2d0f47b540bc.mp3/MD5E-s60091960--
→˓6e48eceb5c54d458164c2d0f47b540bc.mp3

2017_06_09__Seveneves_at_The_Interval__Neal_Stephenson.mp3 -> ../.git/
→˓annex/objects/Wf/5Q/MD5E-s66431897--aff90c838a1c4a363bb9d83a46fa989b.mp3/MD5E-s66431897-
→˓-aff90c838a1c4a363bb9d83a46fa989b.mp3

2017_06_09__Talking_with_Robots_about_Architecture__Jeffrey_McGrew.mp3 ->␣
→˓../.git/annex/objects/Fj/9V/MD5E-s61491081--c4e88ea062c0afdbea73d295922c5759.mp3/MD5E-
→˓s61491081--c4e88ea062c0afdbea73d295922c5759.mp3

2017_06_09__The_Red_Planet_for_Real__Andy_Weir.mp3 -> ../.git/annex/
→˓objects/xq/Q3/MD5E-s136924472--0d1072105caa56475df9037670d35a06.mp3/MD5E-s136924472--
→˓0d1072105caa56475df9037670d35a06.mp3

Interesting! The file metadata information is now present, and we can explore the file hierarchy.
The file content, however, is not present yet.

What has happened here?

When DataLad installs a dataset, it will by default only obtain the superdataset, and not any
subdatasets. The superdataset contains the information that a subdataset exists though – the
subdataset is registered in the superdataset. This is why the subdataset name exists as a di-
rectory. A subsequent datalad get -n path/to/longnow will install the registered subdataset
again, just as we did in the example above.

But what about the -n option for datalad get? Previously, we used datalad get to get file
content. However, get can operate on more than just the level of files or directories. Instead, it
can also operate on the level of datasets. Regardless of whether it is a single file (such as books/
TLCL.pdf) or a registered subdataset (such as recordings/longnow), get will operate on it to 1)
install it – if it is a not yet installed subdataset – and 2) retrieve the contents of any files. That
makes it very easy to get your file content, regardless of how your dataset may be structured –
it is always the same command, and DataLad blurs the boundaries between superdatasets and
subdatasets.

In the above example, we called datalad get with the option -n/--no-data. This option pre-
vents that get obtains the data of individual files or directories, thus limiting its scope to the
level of datasets as only a datalad clone is performed. Without this option, the command
would have retrieved all of the subdatasets contents right away. But with -n/--no-data, it only
installed the subdataset to retrieve the meta data about file availability.

To explicitly install all potential subdatasets recursively, that is, all of the subdatasets inside it as
well, one can give the -r/--recursive option to get:

datalad get -n -r <subds>

This would install the subds subdataset and all potential further subdatasets inside of it, and

9.1. Looking without touching 97

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

the meta data about file hierarchies would have been available right away for every subdataset
inside of subds. If you had several subdatasets and would not provide a path to a single dataset,
but, say, the current directory (. as in datalad get -n -r .), it would clone all registered
subdatasets recursively.

So why is a recursive get not the default behavior? In Dataset nesting (page 53) we learned that
datasets can be nested arbitrarily deep. Upon getting the meta data of one dataset you might
not want to also install a few dozen levels of nested subdatasets right away.

However, there is a middle way89: The --recursion-limit option let’s you specify how many
levels of subdatasets should be installed together with the first subdataset:

datalad get -n -r --recursion-limit 1 <subds>

M9.2 datalad clone versus datalad install

You may remember from section Install datasets (page 46) that DataLad has two com-
mands to obtain datasets, datalad clone and datalad install. The command structure
of install and datalad clone are almost identical:

$ datalad install [-d/--dataset PATH] [-D/--description] --source PATH/URL [DEST-
→˓PATH ...]
$ datalad clone [-d/--dataset PATH] [-D/--description] SOURCE-PATH/URL [DEST-PATH]

Both commands are also often interchangeable: To create a copy of your DataLad-101
dataset for your roommate, or to obtain the longnow subdataset in section Install datasets
(page 46) you could have used datalad install as well. From a user’s perspective, the
only difference is whether you’d need -s/--source in the command call:

$ datalad install --source ../DataLad-101
versus
$ datalad clone ../DataLad-101

On a technical layer, datalad clone is a subset (or rather: the underlying function)
of the datalad install command. Whenever you use datalad install, it will call
datalad clone underneath the hood. datalad install, however, adds to datalad clone
in that it has slightly more complex functionality. Thus, while command structure is more
intuitive, the capacities of clone are also slightly more limited than those of install
in comparison. Unlike datalad clone, datalad install provides a -r/--recursive
operation, i.e., it can obtain (clone) a dataset and potential subdatasets right at the
time of superdataset installation. You can pick for yourself which command you are
more comfortable with. In the handbook, we use clone for its more intuitive behavior,
but you will often note that we use the terms “installed dataset” and “cloned dataset”
interchangeably.

To summarize what you learned in this section, write a note on how to install a dataset using a
path as a source on a common file system.

Write this note in “your own” (the original) DataLad-101 dataset, though!

89 Another alternative to a recursion limit to datalad get -n -r is a dataset configuration that specifies subdatasets
that should not be cloned recursively, unless explicitly given to the command with a path. With this configuration,
a superdataset’s maintainer can safeguard users and prevent potentially large amounts of subdatasets to be cloned.
You can learn more about this configuration in the section More on DIY configurations (page 117).

98 Chapter 9. Collaboration

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

navigate back into the original dataset
$ cd ../../DataLad-101
write the note
$ cat << EOT >> notes.txt
A source to install a dataset from can also be a path, for example as
in "datalad clone ../DataLad-101".

Just as in creating datasets, you can add a description on the
location of the new dataset clone with the -D/--description option.

Note that subdatasets will not be installed by default, but are only
registered in the superdataset -- you will have to do a
"datalad get -n PATH/TO/SUBDATASET" to install the subdataset for file
availability meta data. The -n/--no-data options prevents that file
contents are also downloaded.

Note that a recursive "datalad get" would install all further
registered subdatasets underneath a subdataset, so a safer way to
proceed is to set a decent --recursion-limit:
"datalad get -n -r --recursion-limit 2 <subds>"

EOT

Save this note.

$ datalad save -m "add note about cloning from paths and recursive datalad get"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

G9.1 Get a clone

A dataset that is installed from an existing source, e.g., a path or URL, is the DataLad
equivalent of a clone in Git.

9.2 Where’s Waldo?

So far, you and your room mate have created a copy of the DataLad-101 dataset on the same
file system but a different place by installing it from a path.

You have observed that the -r/--recursive option needs to be given to datalad get [-n/
--no-data] in order to install further potential subdatasets in one go. Only then is the sub-
datasets file content availability metadata present to explore the file hierarchy available within
the subdataset. Alternatively, a datalad get -n <subds> takes care of installing exactly the
specified registered subdataset.

And you have mesmerized your room mate by showing him how GIT-ANNEX retrieved large file
contents from the original dataset.

Let’s now see the git annex whereis command in more detail, and find out how git-annex
knows where file content can be obtained from. Within the original DataLad-101 dataset, you

9.2. Where’s Waldo? 99

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

retrieved some of the .mp3 files via datalad get, but not others. How will this influence the
output of git annex whereis, you wonder?

Together with your room mate, you decide to find out. You navigate back into the installed
dataset, and run git annex whereis on a file that you once retrieved file content for, and on a
file that you did not yet retrieve file content for. Here is the output for the retrieved file:

navigate back into the clone of DataLad-101
$ cd ../mock_user/DataLad-101
navigate into the subdirectory
$ cd recordings/longnow
file content exists in original DataLad-101 for this file
$ git annex whereis Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__
→˓The_Long_Now.mp3
whereis Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_Now.
→˓mp3 (3 copies)

00000000-0000-0000-0000-000000000001 -- web
da3bf937-5bd2-43ea-a07b-bcbe71f3b875 -- mih@medusa:/tmp/seminars-on-longterm-

→˓thinking
eb47bf12-2366-495d-80a6-2861eb665f06 -- me@muninn:~/dl-101/DataLad-101/recordings/

→˓longnow [origin]

web: http://podcast.longnow.org/salt/redirect/salt-020031114-eno-podcast.mp3
ok

And here is the output for a file that you did not yet retrieve content for in your original
DataLad-101 dataset.

but not for this:
$ git annex whereis Long_Now__Seminars_About_Long_term_Thinking/2005_01_15__James_Carse__
→˓Religious_War_In_Light_of_the_Infinite_Game.mp3
whereis Long_Now__Seminars_About_Long_term_Thinking/2005_01_15__James_Carse__Religious_
→˓War_In_Light_of_the_Infinite_Game.mp3 (2 copies)

00000000-0000-0000-0000-000000000001 -- web
da3bf937-5bd2-43ea-a07b-bcbe71f3b875 -- mih@medusa:/tmp/seminars-on-longterm-

→˓thinking

web: http://podcast.longnow.org/salt/redirect/salt-020050114-carse-podcast.mp3
ok

As you can see, the file content previously downloaded with a datalad get has a third source,
your original dataset on your computer. The file we did not yet retrieve in the original dataset
only has only two sources.

Let’s see how this affects a datalad get:

get the first file
$ datalad get Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_
→˓Now.mp3
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_Now.
→˓mp3 (file) [from origin...]

get the second file
$ datalad get Long_Now__Seminars_About_Long_term_Thinking/2005_01_15__James_Carse__
→˓Religious_War_In_Light_of_the_Infinite_Game.mp3
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2005_01_15__James_Carse__Religious_
→˓War_In_Light_of_the_Infinite_Game.mp3 (file) [from web...]

100 Chapter 9. Collaboration

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The most important thing to note is: It worked in both cases, regardless of whether the original
DataLad-101 dataset contained the file content or not.

We can see that git-annex used two different sources to retrieve the content from, though, if
we look at the very end of the get summary. The first file was retrieved “from origin...”.
Origin is Git terminology for “from where the dataset was copied from” – origin therefore is
the original DataLad-101 dataset.

The second file was retrieved “from web...”, and thus from a different source. This source is
called web because it actually is a URL through which this particular podcast-episode is made
available in the first place. You might also have noticed that the download from web took longer
than the retrieval from the directory on the same file system. But we will get into the details of
this type of content source once we cover the importfeed and add-url functions90.

Let’s for now add a note on the git annex whereis command. Again, do this in the original
DataLad-101 directory, and do not forget to save it.

navigate back:
$ cd ../../../../DataLad-101

write the note
$ cat << EOT >> notes.txt
The command "git annex whereis PATH" lists the repositories that have
the file content of an annexed file. When using "datalad get" to
retrieve file content, those repositories will be queried.

EOT

$ datalad status
modified: notes.txt (file)

$ datalad save -m "add note on git annex whereis"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

9.3 Retrace and reenact

“Thanks a lot for sharing your dataset with me! This is super helpful. I’m sure I’ll catch up in
no time!”, your room mate says confidently. “How far did you get with the DataLad commands
yet?” he asks at last.

“Mhh, I think the last big one was datalad run. Actually, let me quickly show you what this
command does. There is something that I’ve been wanting to try anyway.” you say.

The dataset you shared contained a number of datalad run commands. For example, you
created the simple podcasts.tsv file that listed all titles and speaker names of the longnow
podcasts.
90 Maybe you wonder what the location mih@medusa is. It is a copy of the data on an account belonging to user mih

on the host name medusa. Because we do not have the host names’ address, nor log-in credentials for this user, we
can not retrieve content from this location. However, somebody else (for example the user mih) could.

9.3. Retrace and reenact 101

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Given that you learned to create “proper” datalad run commands, complete with --input and
--output specification, anyone should be able to datalad rerun these commits easily. This is
what you want to try now.

You begin to think about which datalad run commit would be the most useful one to take a
look at. The creation of podcasts.tsv was a bit dull – at this point in time, you didn’t yet know
about --input and --output arguments, and the resulting output is present anyway because
text files like this .tsv file are stored in Git. However, one of the attempts to resize a picture
could be useful. The input, the podcast logos, is not yet retrieved, nor is the resulting, resized
image. “Let’s go for this!”, you say, and drag your confused room mate to the computer screen.

First of all, find the commit shasum of the command you want to run by taking a look into the
history of the dataset (in the shared dataset):

navigate into the shared copy
$ cd ../mock_user/DataLad-101

lets view the history
$ git log --oneline -n 10
41ea4e6 add note on clean datasets
4753f3f [DATALAD RUNCMD] Resize logo for slides
4951771 [DATALAD RUNCMD] Resize logo for slides
926a797 add additional notes on run options
4cf3515 [DATALAD RUNCMD] convert -resize 450x450 recordings/longn...
19a9a7d resized picture by hand
91aeee9 [DATALAD RUNCMD] convert -resize 400x400 recordings/longn...
da12c3f add note on basic datalad run and datalad rerun
355446e add note datalad and git diff
d5edb18 [DATALAD RUNCMD] create a list of podcast titles

Ah, there it is, the second most recent commit. Just as already done in section DataLad, Re-Run!
(page 64), take this shasum and plug it into a datalad rerun command:

$ datalad rerun 4753f3f58f6cb9b2a70f71ad56fd0173c453853f
[INFO] run commit 4753f3f; (Resize logo for s...)
[INFO] Making sure inputs are available (this may take some time)
get(ok): recordings/longnow/.datalad/feed_metadata/logo_salt.jpg (file) [from origin...]
[WARNING] no content present; cannot unlock [unlock(/home/me/dl-101/mock_user/DataLad-101/
→˓recordings/salt_logo_small.jpg)]
remove(ok): recordings/salt_logo_small.jpg
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): recordings/salt_logo_small.jpg (file)
action summary:
add (ok: 1)
get (notneeded: 1, ok: 1)
remove (ok: 1)
save (notneeded: 2)

“This was so easy!” you exclaim. DataLad retrieved the missing file content from the subdataset
and it tried to unlock the output prior to the command execution. Note that because you did
not retrieve the output, recordings/salt_logo_small.jpg, yet, the missing content could not
be unlocked. DataLad warns you about this, but proceeds successfully.

Your room mate now not only knows how exactly the resized file came into existence, but he
can also reproduce your exact steps to create it. “This is as reproducible as it can be!” you think
in awe.

102 Chapter 9. Collaboration

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

9.4 Stay up to date

All of what you have seen about sharing dataset was really cool, and for the most part also
surprisingly intuitive. datalad run commands or file retrieval worked exactly as you imagined
it to work, and you begin to think that slowly but steadily you’re getting a feel about how
DataLad really works.

But to be honest, so far, sharing the dataset with DataLad was also remarkably unexciting
given that you already knew most of the dataset magic that your room mate currently is still
mesmerized about. To be honest, you’re not yet certain whether sharing data with DataLad
really improves your life up until this point. After all, you could have just copied your directory
into your mock_user directory and this would have resulted in about the same output, right?

What we will be looking into now is how shared DataLad datasets can be updated.

Remember that you added some notes on datalad clone, datalad get, and git annex whereis
into the original DataLad-101?

This is a change that is not reflected in your “shared” installation in ../mock_user/DataLad-101:

Inside the installed copy, view the last 15 lines of notes.txt
$ tail notes.txt
should be specified with an -o/--output flag. Upon a run or rerun of
the command, the contents of these files will get unlocked so that
they can be modified.

Important! If the dataset is not "clean" (a datalad status output is
empty), datalad run will not work - you will have to save
modifications present in your dataset.
A suboptimal alternative is the --explicit flag, used to record only
those changes done to the files listed with --output flags.

But the original intention of sharing the dataset with your room mate was to give him access
to your notes. How does he get the notes that you have added in the last two sections, for
example?

This installed copy of DataLad-101 knows its origin, i.e., the place it was installed from. Using
this information, it can query the original dataset whether any changes happened since the last
time it checked, and if so, retrieve and integrate them.

This is done with the datalad update --merge command (datalad-update manual).

$ datalad update --merge
[INFO] Fetching updates for Dataset(/home/me/dl-101/mock_user/DataLad-101)
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
merge(ok): . (dataset) [Merged origin/master]
update(ok): . (dataset)
action summary:
merge (ok: 1)
update (ok: 1)

Importantly, run this command either within the specific (sub)dataset you are interested in, or
provide a path to the root of the dataset you are interested in with the -d/--dataset flag. If

9.4. Stay up to date 103

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

you would run the command within the longnow subdataset, you would query this subdatasets’
origin for updates, not the original DataLad-101 dataset.

Let’s check the contents in notes.txt to see whether the previously missing changes are now
present:

view the last 15 lines of notes.txt
$ tail notes.txt

Note that a recursive "datalad get" would install all further
registered subdatasets underneath a subdataset, so a safer way to
proceed is to set a decent --recursion-limit:
"datalad get -n -r --recursion-limit 2 <subds>"

The command "git annex whereis PATH" lists the repositories that have
the file content of an annexed file. When using "datalad get" to
retrieve file content, those repositories will be queried.

Wohoo, the contents are here!

Therefore, sharing DataLad datasets by installing them enables you to update the datasets con-
tent should the original datasets’ content change – in only a single command. How cool is
that?!

Conclude this section by adding a note about updating a dataset to your own DataLad-101
dataset:

navigate back:
$ cd ../../DataLad-101

write the note
$ cat << EOT >> notes.txt
To update a shared dataset, run the command "datalad update --merge".
This command will query its origin for changes, and integrate the
changes into the dataset.

EOT

save the changes

$ datalad save -m "add note about datalad update"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

PS: You might wonder whether there is also a sole datalad update command. Yes, there is – if
you are a Git-user and know about branches and merging you can read the Note for Git-users
below. However, a thorough explanation and demonstration will be in the next section.

G9.2 Update internals

datalad update is the DataLad equivalent of a git fetch, datalad update --merge
is the DataLad equivalent of a git pull. Upon a simple datalad update, the remote
information is available on a branch separate from the master branch – in most cases this

104 Chapter 9. Collaboration

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

will be remotes/origin/master. You can git checkout this branch or run git diff to
explore the changes and identify potential merge conflicts.

9.5 Networking

To get a hang on the basics of sharing a dataset, you shared your DataLad-101 dataset with your
room mate on a common, local file system. Your lucky room mate now has your notes and can
thus try to catch up to still pass the course. Moreover, though, he can also integrate all other
notes or changes you make to your dataset, and stay up to date. This is because a DataLad
dataset makes updating shared data a matter of a single datalad update --merge command.

But why does this need to be a one-way line? “I want to provide helpful information for you
as well!”, says your room mate. “How could you get any insightful notes that I make in my
dataset, or maybe the results of our upcoming mid-term project? Its a bit unfair that I can get
your work, but you can not get mine.”

Consider, for example, that your room mate might have googled about DataLad a bit. On the
datalad homepage91 he might have found very useful additional information, such as the ascii-
cast on dataset nesting92. Because he found this very helpful in understanding dataset nesting
concepts, he decided to download the shell script that was used to generate this example93

from GitHub, and saved it in the code/ directory.

He does it using the datalad command datalad download-url that you experienced in section
Create a dataset (page 34) already: This command will download a file just as wget, but it can
also take a commit message and will save the download right to the history of the dataset that
you specify, while recording its origin as provenance information.

Navigate into your dataset copy in mock_user/DataLad-101, and run the following command

navigate into the installed copy
$ cd ../mock_user/DataLad-101

download the shell script and save it in your code/ directory
$ datalad download-url \
-d . \
-m "Include nesting demo from datalad website" \
-O code/nested_repos.sh \
https://raw.githubusercontent.com/datalad/datalad.org/

→˓7e8e39b1f08d0a54ab521586f27ee918b4441d69/content/asciicast/seamless_nested_repos.sh
[INFO] Downloading 'https://raw.githubusercontent.com/datalad/datalad.org/
→˓7e8e39b1f08d0a54ab521586f27ee918b4441d69/content/asciicast/seamless_nested_repos.sh'␣
→˓into '/home/me/dl-101/mock_user/DataLad-101/code/nested_repos.sh'
download_url(ok): /home/me/dl-101/mock_user/DataLad-101/code/nested_repos.sh (file)
add(ok): code/nested_repos.sh (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

91 https://www.datalad.org/
92 https://www.datalad.org/for/git-users
93 https://raw.githubusercontent.com/datalad/datalad.org/7e8e39b1f08d0a54ab521586f27ee918b4441d69/con

tent/asciicast/seamless_nested_repos.sh

9.5. Networking 105

https://www.datalad.org/
https://www.datalad.org/for/git-users
https://raw.githubusercontent.com/datalad/datalad.org/7e8e39b1f08d0a54ab521586f27ee918b4441d69/content/asciicast/seamless_nested_repos.sh

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Run a quick datalad status:

$ datalad status
nothing to save, working tree clean

Nice, the datalad download-url command saved this download right into the history, and
datalad status does not report unsaved modifications! We’ll show an excerpt of the last commit
here:

$ git log -n 1 -p
commit e75e2dff6d91d9273a57d7e6e139df3229617576
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:22:16 2021 +0200

Include nesting demo from datalad website

diff --git a/code/nested_repos.sh b/code/nested_repos.sh
new file mode 100644
index 0000000..f84c817
--- /dev/null
+++ b/code/nested_repos.sh
@@ -0,0 +1,59 @@

Suddenly, your room mate has a file change that you do not have. His dataset evolved.

So how do we link back from the copy of the dataset to its origin, such that your room mate’s
changes can be included in your dataset? How do we let the original dataset “know” about this
copy your room mate has? Do we need to install the installed dataset of our room mate as a
copy again?

No, luckily, it’s simpler and less convoluted. What we have to do is to register a datalad SIBLING:
A reference to our room mate’s dataset in our own, original dataset.

G9.3 Remote siblings

Git repositories can configure clones of a dataset as remotes in order to fetch, pull, or push
from and to them. A datalad sibling is the equivalent of a git clone that is configured
as a remote.

Let’s see how this is done.

First of all, navigate back into the original dataset. In the original dataset, “add” a “sibling”
by using the datalad siblings command (datalad-siblings manual). The command takes
the base command, datalad siblings, an action, in this case add, a path to the root of the
dataset -d ., a name for the sibling, -s/--name roommate, and a URL or path to the sibling,
--url ../mock_user/DataLad-101. This registers your room mate’s DataLad-101 as a “sibling”
(we will call it “roommate”) to your own DataLad-101 dataset.

$ cd ../../DataLad-101
add a sibling
$ datalad siblings add -d . \
--name roommate --url ../mock_user/DataLad-101

.: roommate(+) [../mock_user/DataLad-101 (git)]

There are a few confusing parts about this command: For one, do not be surprised about the
--url argument – it’s called “URL” but it can be a path as well. Also, do not forget to give a

106 Chapter 9. Collaboration

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

name to your dataset’s sibling. Without the -s/ --name argument the command will fail. The
reason behind this is that the default name of a sibling if no name is given will be the host name
of the specified URL, but as you provide a path and not a URL, there is no host name to take as
a default.

As you can see in the command output, the addition of a SIBLING succeeded: roommate(+)[.
./mock_user/DataLad-101] means that your room mate’s dataset is now known to your own
dataset as “roommate”

$ datalad siblings
.: here(+) [git]
.: roommate(+) [../mock_user/DataLad-101 (git)]

This command will list all known siblings of the dataset. You can see it in the resulting list with
the name “roommate” you have given to it.

M9.3 What if I mistyped the name or want to remove the sibling?

You can remove a sibling using datalad siblings remove -s roommate

The fact that the DataLad-101 dataset now has a sibling means that we can also datalad update
this repository. Awesome!

Your room mate previously ran a datalad update --merge in the section Stay up to date
(page 103). This got him changes he knew you made into a dataset that he so far did not
change. This meant that nothing unexpected would happen with the datalad update --merge.

But consider the current case: Your room mate made changes to his dataset, but you do not
necessarily know which. You also made changes to your dataset in the meantime, and added a
note on datalad update. How would you know that his changes and your changes are not in
conflict with each other?

This scenario is where a plain datalad update becomes useful. If you run a plain datalad
update, DataLad will query the sibling for changes, and store those changes in a safe place in
your own dataset, but it will not yet integrate them into your dataset. This gives you a chance to
see whether you actually want to have the changes your room mate made.

Let’s see how it’s done. First, run a plain datalad update without the --merge option.

$ datalad update -s roommate
[INFO] Fetching updates for Dataset(/home/me/dl-101/DataLad-101)
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
update(ok): . (dataset)

Note that we supplied the sibling’s name with the -s/--name option. This is good practice, and
allows you to be precise in where you want to get updates from. It would have worked without
the specification (just as a bare datalad update --merge worked for your room mate), because
there is only one other known location, though.

This plain datalad update informs you that it “fetched” updates from the dataset. The changes
however, are not yet visible – the script that he added is not yet in your code/ directory:

$ ls code/
list_titles.sh

9.5. Networking 107

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

So where is the file? It is in a different branch of your dataset.

If you do not use GIT, the concept of a BRANCH can be a big source of confusion. There will
be sections later in this book that will elaborate a bit more what branches are, and how to
work with them, but for now envision a branch just like a bunch of drawers on your desk. The
paperwork that you have in front of you right on your desk is your dataset as you currently see
it. These drawers instead hold documents that you are in principle working on, just not now –
maybe different versions of paperwork you currently have in front of you, or maybe other files
than the ones currently in front of you on your desk.

Imagine that a datalad update created a small drawer, placed all of the changed or added files
from the sibling inside, and put it on your desk. You can now take a look into that drawer to
see whether you want to have the changes right in front of you.

The drawer is a branch, and it is usually called remotes/origin/master. To look inside of it you
can git checkout BRANCHNAME, or you can do a diff between the branch (your drawer) and the
dataset as it is currently in front of you (your desk). We will do the latter, and leave the former
for a different lecture:

W9.1 Please use datalad diff –from master –to remotes/roommate/master

Please use the following command instead:

datalad diff --from master --to remotes/roommate/master

This syntax specifies the MASTER BRANCH as a starting point for the comparison instead
of the current adjusted/master(unlocked) branch.

$ datalad diff --to remotes/roommate/master
added: code/nested_repos.sh (file)

modified: notes.txt (file)

This shows us that there is an additional file, and it also shows us that there is a difference
in notes.txt! Let’s ask git diff to show us what the differences in detail (note that it is a
shortened excerpt, cut in the middle to reduce its length):

W9.2 Please use git diff master..remotes/roommate/master

Please use the following command instead:

git diff master..remotes/roommate/master

This is GITs syntax for specifying a comparison between two BRANCHes.

$ git diff remotes/roommate/master
diff --git a/code/nested_repos.sh b/code/nested_repos.sh
deleted file mode 100644
index f84c817..0000000
--- a/code/nested_repos.sh
+++ /dev/null
@@ -1,59 +0,0 @@
-#!/bin/bash
-# This script was converted using cast2script from:
-# docs/casts/seamless_nested_repos.sh
-set -e -u
-export GIT_PAGER=cat

(continues on next page)

108 Chapter 9. Collaboration

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

-
-# DataLad provides seamless management of nested Git repositories...
-
-# Let's create a dataset
-datalad create demo
-cd demo
diff --git a/notes.txt b/notes.txt
index 655be7d..3bf3281 100644
--- a/notes.txt
+++ b/notes.txt
@@ -59,3 +59,7 @@ The command "git annex whereis PATH" lists the repositories that have
the file content of an annexed file. When using "datalad get" to
retrieve file content, those repositories will be queried.

+To update a shared dataset, run the command "datalad update --merge".
+This command will query its origin for changes, and integrate the
+changes into the dataset.
+

Let’s digress into what is shown here. We are comparing the current state of your dataset against
the current state of your room mate’s dataset. Everything marked with a - is a change that your
room mate has, but not you: This is the script that he downloaded!

Everything that is marked with a + is a change that you have, but not your room mate: It is the
additional note on datalad update you made in your own dataset in the previous section.

Cool! So now that you know what the changes are that your room mate made, you can safely
datalad update --merge them to integrate them into your dataset. In technical terms you will
“merge the branch remotes/roommate/master into master”. But the details of this will be stated
in a standalone section later.

Note that the fact that your room mate does not have the note on datalad update does not
influence your note. It will not get deleted by the merge. You do not set your dataset to the
state of your room mate’s dataset, but you incorporate all changes he made – which is only the
addition of the script.

$ datalad update --merge -s roommate
[INFO] Fetching updates for Dataset(/home/me/dl-101/DataLad-101)
merge(ok): . (dataset) [Merged roommate/master]
update(ok): . (dataset)
action summary:
merge (ok: 1)
update (ok: 1)

The exciting question is now whether your room mate’s change is now also part of your own
dataset. Let’s list the contents of the code/ directory and also peek into the history:

$ ls code/
list_titles.sh
nested_repos.sh

$ git log --oneline
67a7a5e Merge remote-tracking branch 'roommate/master'
e75e2df Include nesting demo from datalad website
4069dac add note about datalad update

(continues on next page)

9.5. Networking 109

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

401df53 add note on git annex whereis
dfe8e39 add note about cloning from paths and recursive datalad get

Wohoo! Here it is: The script now also exists in your own dataset. You can see the commit that
your room mate made when he saved the script, and you can also see a commit that records
how you merged your room mate’s dataset changes into your own dataset. The commit message
of this latter commit for now might contain many words yet unknown to you if you do not use
Git, but a later section will get into the details of what the meaning of “MERGE”, “BRANCH”,
“refs” or “MASTER” is.

For now, you’re happy to have the changes your room mate made available. This is how it
should be! You helped him, and he helps you. Awesome! There actually is a wonderful word
for it: Collaboration. Thus, without noticing, you have successfully collaborated for the first
time using DataLad datasets.

Create a note about this, and save it.

$ cat << EOT >> notes.txt
To update from a dataset with a shared history, you need to add this
dataset as a sibling to your dataset. "Adding a sibling" means
providing DataLad with info about the location of a dataset, and a
name for it.
Afterwards, a "datalad update --merge -s name" will integrate the
changes made to the sibling into the dataset. A safe step in between
is to do a "datalad update -s name" and checkout the changes with
"git/datalad diff" to remotes/origin/master

EOT
$ datalad save -m "Add note on adding siblings"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

9.6 Summary

Together with your room mate you have just discovered how to share, update, and collaborate
on a DataLad dataset on a shared file system. Thus, you have glimpsed into the principles and
advantages of sharing a dataset with a simple example.

• To obtain a dataset, one can also use datalad clone with a path. Potential subdatasets
will not be installed right away. As they are registered in the superdataset, you can do
datalad get -n/--no-data, or specify the -r/--recursive (datalad get -n -r <subds>)
with a decent -R/--recursion-limit choice to install them afterwards.

• The configuration of the original dataset determines which types of files will have their
content available right after the installation of the dataset, and which types of files need
to be retrieved via datalad get: Any file content stored in GIT will be available right
away, while all file content that is annexed only has small metadata about its availability
attached to it. The original DataLad-101 dataset used the text2git configuration template
to store text files such as notes.txt and code/list_titles.sh in Git – these files’ content
is therefore available right after installation.

110 Chapter 9. Collaboration

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• Annexed content can be retrieved via datalad get from the file content sources.

• git annex whereis PATH will list all locations known to contain file content for a particular
file. This location is where GIT-ANNEX will attempt to retrieve file content from, and it is
described with the --description provided during a datalad create. It is a very helpful
command to find out where file content resides, and how many locations with copies exist.

• A shared copy of a dataset includes the datasets history. If well made, datalad run
commands can then easily be rerun.

• Because an installed dataset knows its origin – the place it was originally installed from –
it can be kept up-to-date with the datalad update command. This command will query
the origin of the dataset for updates, and a datalad update --merge will integrate these
changes into the dataset copy.

• Thus, using DataLad, data can be easily shared and kept up to date with only two com-
mands: datalad clone and datalad update.

• By configuring a dataset as a SIBLING, collaboration becomes easy.

• To avoid integrating conflicting modifications of a sibling dataset into your own dataset, a
datalad update -s SIBLINGNAME will “fetch” modifications and store them on a different
BRANCH of your dataset. The commands datalad diff and git diff can subsequently
help to find out what changes have been made in the sibling.

Now what I can do with that?

Most importantly, you have experienced the first way of sharing and updating a dataset. The ex-
ample here may strike you as too simplistic, but in later parts of the book you will see examples
in which datasets are shared on the same file system in surprisingly useful ways.

Simultaneously, you have observed dataset properties you already knew (for example how an-
nexed files need to be retrieved via datalad get), but you have also seen novel aspects of
a dataset – for example that subdatasets are not automatically installed by default, how git
annex whereis can help you find out where file content might be stored, how useful commands
that capture provenance about the origin or creation of files (such as datalad run or datalad
download-url) are, or how a shared dataset can be updated to reflect changes that were made
to the original dataset.

Also, you have successfully demonstrated a large number of DataLad dataset principles to your
room mate: How content stored in Git is present right away and how annexed content first
needs to be retrieved, how easy a datalad rerun is if the original datalad run command was
well specified, how a datasets history is shared and not only its data.

Lastly, with the configuration of a sibling, you have experienced one way to collaborate in a
dataset, and with datalad update --merge and datalad update, you also glimpsed into more
advances aspects of Git, namely the concept of a branch.

Therefore, these last few sections have hopefully been a good review of what you already knew,
but also a big knowledge gain, and cause joyful anticipation of collaboration in a real-world
setting of one of your own use cases.

9.6. Summary 111

CHAPTER

TEN

TUNING DATASETS TO YOUR NEEDS

10.1 DIY configurations

Back in section Data safety (page 83), you already learned that there are dataset configurations,
and that these configurations can be modified, for example with the -c text2git option. This
option applies a configuration template to store text files in GIT instead of GIT-ANNEX, and
thereby modifies the DataLad dataset’s default configuration to store every file in git-annex.

The lecture today focuses entirely on the topic of configurations, and aims to equip everyone
with the basics to configure their general and dataset specific setup to their needs. This is not
only a handy way to tune a dataset to one’s wishes, but also helpful to understand potential
differences in command execution and file handling between two users, computers, or datasets.

“First of all, when we talk about configurations, we have to differentiate between different
scopes of configuration, and different tools the configuration belongs or applies to”, our lecturer
starts. “In DataLad datasets, different tools can have a configuration: GIT, GIT-ANNEX, and
DataLad itself. Because these tools are all combined by DataLad to help you manage your data,
it is important to understand how the configuration of one software is used by or influences a
second tool, or the overall dataset performance.”

“Oh crap, one of these theoretical lectures again” mourns a student from the row behind you.
Personally, you’d also be much more excited about any hands-on lecture filled with commands.
But the recent lecture about GIT-ANNEX and the OBJECT-TREE was surprisingly captivating, so
you’re actually looking forward to today. “Shht! I want to hear this!”, you shush him with a
wink.

112

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

“We will start by looking into the very first configuration you did, already before the course
started: The global Git configuration.” the lecturer says.

At one point in time, you likely followed instructions such as in Installation and configuration
(page 10) and configured your Git identity with the commands:

git config --global --add user.name "Elena Piscopia"
git config --global --add user.email elena@example.net

“What the above commands do is very simple: They search for a specific configuration file, and
set the variables specified in the command – in this case user name and user email address – to
the values provided with the command.” she explains.

“This general procedure, specifying a value for a configuration variable in a configuration file, is
how you can configure the different tools to your needs. The configuration, therefore, is really
easy. Even if you are only used to ticking boxes in the settings tab of a software tool so far,
it’s intuitive to understand how a configuration file in principle works and also how to use it.
The only piece of information you will need are the necessary files, or the command that writes
to them, and the available options for configuration, that’s it. And what’s really cool is that all
tools we’ll be looking at – Git, git-annex, and DataLad – can be configured using the git config
command95. Therefore, once you understand the syntax of this command, you already know
half of what’s relevant. The other half is understanding what you’re doing. Now then, let’s learn
how to configure settings, but also understand what we’re doing with these configurations.”

“This seems easy enough”, you think. Let’s see what types of configurations there are.

Git config files

The user name and email configuration is a user-specific configuration (called global configura-
tion by Git), and therefore applies to your user account. Wherever on your computer you run
a Git, git-annex, or DataLad command, this global configuration will associate the name and
email address you supplied in the git config commands above with this action. For example,
whenever you datalad save, the information in this file is used for the history entry about
commit author and email.

Apart from global Git configurations, there are also system-wide96and repository configurations.
Each of these configurations resides in its own file. The global configuration is stored in a file
called .gitconfig in your home directory. Among your name and email address, this file can
95 As an alternative to a git config command, you could also run configuration templates or procedures (see

Configurations to go (page 126)) that apply predefined configurations or in some cases even add the information
to the configuration file by hand and save it using an editor of your choice.

96 The third scope of a Git configuration are the system wide configurations. These are stored (if they exist) in /etc/
gitconfig and contain settings that would apply to every user on the computer you are using. These configurations
are not relevant for DataLad-101, and we will thus skip them. You can read more about Git’s configurations and
different files here97.

97 https://git-scm.com/docs/git-config

10.1. DIY configurations 113

https://git-scm.com/docs/git-config

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

store general per-user configurations, such as a default editor98, or highlighting options.

The repository-specific configurations apply to each individual repository. Their scope is more
limited than the global configuration (namely to a single repository), but it can overrule global
configurations: The more specific the scope of a configuration file is, the more important it is,
and the variables in the more specific configuration will take precedence over variables in less
specific configuration files. One could for example have VIM configured to be the default editor
on a global scope, but could overrule this by setting the editor to nano in a given repository. For
this reason, the repository-specific configuration does not reside in a file in your home directory,
but in .git/config within every Git repository (and thus DataLad dataset).

Thus, there are three different scopes of Git configuration, and each is defined in a config file
in a different location. The configurations will determine how Git behaves. In principle, all of
these files can configure the same variables differently, but more specific scopes take precedence
over broader scopes. Conveniently, not only can DataLad and git-annex be configured with the
same command as Git, but in many cases they will also use exactly the same files as Git for their
own configurations.

Let’s find out how the repository-specific configuration file in the DataLad-101 superdataset
looks like:

$ cat .git/config
[core]

repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true

[annex]
uuid = 142a8659-5566-466d-af37-5958d071a995
version = 8
backends = MD5E

[filter "annex"]
smudge = git-annex smudge -- %f
clean = git-annex smudge --clean -- %f

[submodule "recordings/longnow"]
active = true
url = https://github.com/datalad-datasets/longnow-podcasts.git

[remote "roommate"]
url = ../mock_user/DataLad-101
fetch = +refs/heads/*:refs/remotes/roommate/*
annex-uuid = dfa64995-4862-40bf-b5c7-518db36f3f4d
annex-ignore = false

98 If your default editor is VIM and you do not like this, now can be the time to change it! Chose either of two
options:

1) Open up the file with an editor for your choice (e.g., nano99), and either paste the following configuration
or edit it if it already exists:

[core]
editor = nano

2) Run the following command, but exchange nano with an editor of your choice:

$ git config --global --add core.editor "nano"

99 https://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/

114 Chapter 10. Tuning datasets to your needs

https://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

This file consists of so called “sections” with the section names in square brackets (e.g., core).
Occasionally, a section can have subsections: This is indicated by subsection names in quotation
marks after the section name. For example, roommate is a subsection of the section remote.
Within each section, variable = value pairs specify configurations for the given (sub)section.

The first section is called core – as the name suggests, this configures core Git functionality.
There are many more94 configurations than the ones in this config file, but they are related to
Git, and less related or important to the configuration of a DataLad dataset. We will use this
section to showcase the anatomy of the git config command. If for example you would want
to specifically configure NANO to be the default editor in this dataset, you can do it like this:

$ git config --local --add core.editor "nano"

The command consists of the base command git config, a specification of the scope of the
configuration with the --local flag, a name specification consisting of section and key with the
notation section.variable (here: core.editor), and finally the value specification "nano".

Let’s see what has changed:

$ cat .git/config
[core]

repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
editor = nano

[annex]
uuid = 142a8659-5566-466d-af37-5958d071a995
version = 8
backends = MD5E

[filter "annex"]
smudge = git-annex smudge -- %f
clean = git-annex smudge --clean -- %f

[submodule "recordings/longnow"]
active = true
url = https://github.com/datalad-datasets/longnow-podcasts.git

[remote "roommate"]
url = ../mock_user/DataLad-101
fetch = +refs/heads/*:refs/remotes/roommate/*
annex-uuid = dfa64995-4862-40bf-b5c7-518db36f3f4d
annex-ignore = false

With this additional line in your repositories Git configuration, nano will be used as a default
editor regardless of the configuration in your global or system-wide configuration. Note that the
flag --local applies the configuration to your repository’s .git/config file, whereas --global
would apply it as a user specific configuration, and --system as a system-wide configuration. If
you would want to change this existing line in your .git/config file, you would replace --add
with --replace-all such as in:

git config --local --replace-all core.editor "vim"

to configure VIM to be your default editor. Note that while being a good toy example, it is not a
common thing to configure repository-specific editors.

This example demonstrated the structure of a git config command. By specifying the name

94 https://git-scm.com/docs/git-config#Documentation/git-config.txt-corefileMode

10.1. DIY configurations 115

https://git-scm.com/docs/git-config#Documentation/git-config.txt-corefileMode

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

option with section.variable (or section.subsection.variable if there is a subsection), and
a value, one can configure Git, git-annex, and DataLad. Most of these configurations will be
written to a config file of Git, depending on the scope (local, global, system-wide) specified in
the command.

M10.1 If things go wrong during Git config

If something goes wrong during the git config command, for example you end up
having two keys of the same name because you added a key instead of replacing an
existing one, you can use the --unset option to remove the line. Alternatively, you can
also open the config file in an editor and remove or change sections by hand.

The only information you need, therefore, is the name of a section and variable to configure, and
the value you want to specify. But in many cases it is also useful to find out which configurations
are already set in which way and where. For this, the git config --list --show-origin is
useful. It will display all configurations and their location:

$ git config --list --show-origin
file:/home/bob/.gitconfig user.name=Bob McBobface
file:/home/bob/.gitconfig user.email=bob@mcbobface.com
file:/home/bob/.gitconfig core.editor=vim
file:/home/bob/.gitconfig annex.security.allowed-url-schemes=http https file
file:.git/config core.repositoryformatversion=0
file:.git/config core.filemode=true
file:.git/config core.bare=false
file:.git/config core.logallrefupdates=true
file:.git/config annex.uuid=1f83595e-bcba-4226-aa2c-6f0153eb3c54
file:.git/config annex.version=5
file:.git/config annex.backends=MD5E
file:.git/config submodule.recordings/longnow.url=https://github.com/datalad-datasets/
→˓longnow-podcasts.git
file:.git/config submodule.recordings/longnow.active=true
file:.git/config remote.roommate.url=../mock_user/onemoredir/DataLad-101
file:.git/config remote.roommate.fetch=+refs/heads/*:refs/remotes/roommate/*
file:.git/config remote.roommate.annex-uuid=a5ae24de-1533-4b09-98b9-cd9ba6bf303c
file:.git/config remote.roommate.annex-ignore=false
file:.git/config submodule.longnow.url=https://github.com/datalad-datasets/longnow-
→˓podcasts.git
file:.git/config submodule.longnow.active=true

This example shows some configurations in the global .gitconfig file, and the configurations
within DataLad-101/.git/config. The command is very handy to display all configurations at
once to identify configuration problems, find the right configuration file to make a change to,
or simply remind oneself of the existing configurations, and it is a useful helper to keep in the
back of your head.

At this point you may feel like many of these configurations or the configuration file inside
of DataLad-101 do not appear to be intuitively understandable enough to confidently apply
changes to them, or identify necessary changes. And indeed, most of the sections and variables
or values in there are irrelevant for understanding the book, your dataset, or DataLad, and
can just be left as they are. The previous section merely served to de-mystify the git config
command and the configuration files. Nevertheless, it might be helpful to get an overview
about the meaning of the remaining sections in that file, and the that disects this config file
further (page 131) can give you a glimpse of this.

116 Chapter 10. Tuning datasets to your needs

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

.git/config versus other (configuration) files

One crucial aspect distinguishes the .git/config file from many other files in your dataset:
Even though it is part of your dataset, it won’t be shared together with the dataset. The reason
for this is that this file is not version controlled, as it lies within the .git directory. Repository-
specific configurations within your .git/config file are thus not written to history. Any local
configuration in .git/config applies to the dataset, but it does not stick to the dataset. One
can have the misconception that because the configurations were made in the dataset, these
configurations will also be shared together with the dataset. .git/config, however, behaves just
as your global or system-wide configurations. These configurations are in effect on a system, or
for a user, or for a dataset, but are not shared. A datalad clone command of someone’s dataset
will not get you their editor configuration, should they have included one in their config file.
Instead, upon a datalad clone, a new config file will be created.

This means, however, that configurations that should “stick” to a dataset101 need to be defined
in different files – files that are version controlled. The next section will talk about them.

10.2 More on DIY configurations

As the last section already suggest, within a Git repository, .git/config is not the only configu-
ration file. There are also .gitmodules and .gitattributes, and in DataLad datasets there also
is a .datalad/config file.

All of these files store configurations, but have an important difference: They are version con-
trolled, and upon sharing a dataset these configurations will be shared as well. An example
for a shared configuration is the one that the text2git configuration template applied: In the
shared copy of your dataset, text files are also saved with Git, and not git-annex (see section
Networking (page 105)). The configuration responsible for this behavior is in a .gitattributes
file, and we’ll start this section by looking into it.

.gitattributes

This file lies right in the root of your superdataset:

$ cat .gitattributes

* annex.backend=MD5E
**/.git* annex.largefiles=nothing
* annex.largefiles=((mimeencoding=binary)and(largerthan=0))

This looks neither spectacular nor pretty. Also, it does not follow the section-option-value
organization of the .git/config file anymore. Instead, there are three lines, and all of these
seem to have something to do with the configuration of git-annex. There even is one key word
that you recognize: MD5E. If you have read the hidden section in Data integrity (page 85)
you will recognize it as a reference to the type of key used by git-annex to identify and store
file content in the object-tree. The first row, * annex.backend=MD5E, therefore translates to
101 Please note that not all configurations can be written to files other than .git/config. Some of the files introduced

in the next section will not be queried by Git, and in principle, it is a good thing that one can not share arbitrary
configurations together with a dataset, as this could be a potential security threat. In those cases where you need
dataset clones to inherit certain non-sticky configurations, it is advised to write a custom procedure and distribute
it together with the dataset. The next two sections contain concrete usecases and tutorials.

10.2. More on DIY configurations 117

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

“Everything in this directory should be hashed with a MD5E hash function”. But what is the
rest? We’ll start with the last row:

* annex.largefiles=((mimeencoding=binary)and(largerthan=0))

Uhhh, cryptic. The lecturer explains:

“git-annex will annex, that is, store in the object-tree, anything it considers to be a “large file”.
By default, anything in your dataset would be a “large file”, that means anything would be
annexed. However, in section Data integrity (page 85) I already mentioned that exceptions to
this behavior can be defined based on

1. file size

2. and/or path/pattern, and thus for example file extensions, or names, or file types (e.g.,
text files, as with the text2git configuration template).

“In .gitattributes, you can define what a large file and what is not by simply telling git-annex
by writing such rules.”

What you can see in this .gitattributes file is a rule based on file types: With
(mimeencoding=binary))106, the text2git configuration template configured git-annex to re-
gard all files of type “binary” as a large file. Thanks to this little line, your text files are not
annexed, but stored directly in Git.

The patterns * and ** are so-called “wildcards” used in GLOBBING. * matches any file or directory
in the current directory, and ** matches all files and directories in the current directory and
subdirectories. In technical terms, ** matches recursively. The third row therefore translates to
“Do not annex anything that is a text file in this directory” for git-annex.

However, rules can be even simpler. The second row simply takes a complete directory (.git)
and instructs git-annex to regard nothing in it as a “large file”. The second row, **/.git* annex.
largefiles=nothing therefore means that no .git repository in this directory or a subdirectory
should be considered a “large file”. This way, the .git repositories are protected from being
annexed. If you had a single file (myfile.pdf) you would not want annexed, specifying a rule
such as:

myfile.pdf annex.largefiles=nothing

will keep it stored in Git. To see an example of this, navigate into the longnow subdataset, and
view this dataset’s .gitattributes file:

$ cat recordings/longnow/.gitattributes
* annex.backend=MD5E
**/.git* annex.largefiles=nothing
README.md annex.largefiles=nothing

The relevant part is README.md annex.largefiles=nothing. This instructs git-annex to specifi-
cally not annex README.md.
106 When opening any file on a UNIX system, the file does not need to have a file extension (such as .txt, .pdf,

.jpg) for the operating system to know how to open or use this file (in contrast to Windows, which does not know
how to open a file without an extension). To do this, Unix systems rely on a file’s MIME type – an information
about a file’s content. A .txt file for example has MIME type text/plain as does a bash script (.sh), a Python
script has MIME type text/x-python, a .jpg file is image/jpg, and a .pdf file has MIME type application/pdf.
You can find out the MIME type of a file by running:

$ file --mime-type path/to/file

118 Chapter 10. Tuning datasets to your needs

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Lastly, if you wanted to configure a rule based on size, you could add a row such as:

** annex.largefiles(largerthan=20kb)

to store only files exceeding 20KB in size in git-annex107.

As you may have noticed, unlike .git/config files, there can be multiple .gitattributes files
within a dataset. So far, you have seen one in the root of the superdataset, and in the root of
the longnow subdataset. In principle, you can add one to every directory-level of your dataset.
For example, there is another .gitattributes file within the .datalad directory:

$ cat .datalad/.gitattributes

config annex.largefiles=nothing
metadata/aggregate* annex.largefiles=nothing
metadata/objects/** annex.largefiles=(anything)

As with Git configuration files, more specific or lower-level configurations take precedence over
more general or higher-level configurations. Specifications in a subdirectory can therefore over-
rule specifications made in the .gitattributes file of the parent directory.

In summary, the .gitattributes files will give you the possibility to configure what should be
annexed and what should not be annexed up to individual file level. This can be very handy, and
allows you to tune your dataset to your custom needs. For example, files you will often edit by
hand could be stored in Git if they are not too large to ease modifying them108. Once you know
the basics of this type of configuration syntax, writing your own rules is easy. For more tips on
how configure git-annex’s content management in .gitattributes, take a look at this102 page
of the git-annex documentation. Later however you will see preconfigured DataLad procedures
such as text2git that can apply useful configurations for you, just as text2git added the last
line in the root .gitattributes file.

.gitmodules

On last configuration file that Git creates is the .gitmodules file. There is one right in the root
of your dataset:

$ cat .gitmodules
[submodule "recordings/longnow"]

path = recordings/longnow
url = https://github.com/datalad-datasets/longnow-podcasts.git
datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e
datalad-url = https://github.com/datalad-datasets/longnow-podcasts.git

107 Specifying annex.largefiles in your .gitattributes file will make the configuration “portable” – shared copies of
your dataset will retain these configurations. You could however also set largefiles rules in your .git/config file.
Rules specified in there take precedence over rules in .gitattributes. You can set them using the git config
command:

$ git config annex.largefiles 'largerthan=100kb and not (include=*.c or include=*.h)'

The above command annexes files larger than 100KB, and will never annex files with a .c or .h extension.
108 Should you ever need to, this file is also where one would change the git-annex backend in order to store new

files with a new backend. Switching the backend of all files (new as well as existing ones) requires the git annex
migrate command (see the documentation109 for more information on this command).

109 https://git-annex.branchable.com/git-annex-migrate/
102 https://git-annex.branchable.com/tips/largefiles/

10.2. More on DIY configurations 119

https://git-annex.branchable.com/tips/largefiles/
https://git-annex.branchable.com/git-annex-migrate/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Based on these contents, you might have already guessed what this file stores. .gitmodules is a
configuration file that stores the mapping between your own dataset and any subdatasets you
have installed in it. There will be an entry for each submodule (subdataset) in your dataset.
The name submodule is Git terminology, and describes a Git repository inside of another Git
repository, i.e., the super- and subdataset principles. Upon sharing your dataset, the information
about subdatasets and where to retrieve them from is stored and shared with this file.

Section Looking without touching (page 92) already mentioned one additional configuration
option in a footnote: The datalad-recursiveinstall key. This key is defined on a per sub-
dataset basis, and if set to “skip”, the given subdataset will not be recursively installed unless
it is explicitly specified as a path to datalad get [-n/--no-data] -r. If you are a maintainer
of a superdataset with monstrous amounts of subdatasets, you can set this option and share
it together with the dataset to prevent an accidental, large recursive installation in particu-
larly deeply nested subdatasets. Below is a minimally functional example on how to apply the
configuration and how it works:

Let’s create a dataset hierarchy to work with (note that we concatenate multiple commands into
a single line using bash’s “and” && operator):

create a superdataset with two subdatasets
$ datalad create superds && cd superds && datalad create -d . subds1 && datalad create -d␣
→˓. subds2
[INFO] Creating a new annex repo at /tmp/superds
create(ok): /tmp/superds (dataset)
[INFO] Creating a new annex repo at /tmp/superds/subds1
add(ok): subds1 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subds1 (dataset)
action summary:
add (ok: 2)
create (ok: 1)
save (ok: 1)

[INFO] Creating a new annex repo at /tmp/superds/subds2
add(ok): subds2 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subds2 (dataset)
action summary:
add (ok: 2)
create (ok: 1)
save (ok: 1)

Next, we create subdatasets in the subdatasets:

create two subdatasets in subds1
$ cd subds1 && datalad create -d . subsubds1 && datalad create -d . subsubds2 && cd ../
[INFO] Creating a new annex repo at /tmp/superds/subds1/subsubds1
add(ok): subsubds1 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subsubds1 (dataset)
action summary:
add (ok: 2)
create (ok: 1)
save (ok: 1)

(continues on next page)

120 Chapter 10. Tuning datasets to your needs

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[INFO] Creating a new annex repo at /tmp/superds/subds1/subsubds2
add(ok): subsubds2 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subsubds2 (dataset)
action summary:
add (ok: 2)
create (ok: 1)
save (ok: 1)

create two subdatasets in subds2
$ cd subds2 && datalad create -d . subsubds1 && datalad create -d . subsubds2
[INFO] Creating a new annex repo at /tmp/superds/subds2/subsubds1
add(ok): subsubds1 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subsubds1 (dataset)
action summary:
add (ok: 2)
create (ok: 1)
save (ok: 1)

[INFO] Creating a new annex repo at /tmp/superds/subds2/subsubds2
add(ok): subsubds2 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subsubds2 (dataset)
action summary:
add (ok: 2)
create (ok: 1)
save (ok: 1)

Here is the directory structure:

$ cd ../ && tree
.

subds1
subsubds1
subsubds2

subds2
subsubds1
subsubds2

save in the superdataset
datalad save -m "add a few sub and subsub datasets"
add(ok): subds1 (file)
add(ok): subds2 (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
save (ok: 1)

Now, we can apply the datalad-recursiveinstall configuration to skip recursive installations
for subds1

10.2. More on DIY configurations 121

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ git config -f .gitmodules --add submodule.subds1.datalad-recursiveinstall skip

save this configuration
$ datalad save -m "prevent recursion into subds1, unless explicitly given as path"
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

If the dataset is cloned, and someone runs a recursive datalad get, the subdatasets of subds1
will not be installed, the subdatasets of subds2, however, will be.

clone the dataset somewhere else
$ cd ../ && datalad clone superds clone_of_superds
[INFO] Cloning superds into '/tmp/clone_of_superds'
install(ok): /tmp/clone_of_superds (dataset)

recursively get all contents (without data)
$ cd clone_of_superds && datalad get -n -r .
[INFO] Installing <Dataset path=/tmp/clone_of_superds> underneath /tmp/clone_of_
→˓superds recursively
[INFO] Cloning /tmp/superds/subds2 into '/tmp/clone_of_superds/subds2'
get(ok): /tmp/clone_of_superds/subds2 (dataset)
[INFO] Cloning /tmp/superds/subds2/subsubds1 into '/tmp/clone_of_superds/subds2/
→˓subsubds1'
get(ok): /tmp/clone_of_superds/subds2/subsubds1 (dataset)
[INFO] Cloning /tmp/superds/subds2/subsubds2 into '/tmp/clone_of_superds/subds2/
→˓subsubds2'
get(ok): /tmp/clone_of_superds/subds2/subsubds2 (dataset)
action summary:
get (ok: 3)

only subsubds of subds2 are installed, not of subds1:
$ tree
.

subds1
subds2

subsubds1
subsubds2

4 directories, 0 files

Nevertheless, if subds1 is provided with an explicit path, its subdataset subsubds will be cloned,
essentially overriding the configuration:

$ datalad get -n -r subds1 && tree
[INFO] Cloning /tmp/superds/subds1 into '/tmp/clone_of_superds/subds1'
install(ok): /tmp/clone_of_superds/subds1 (dataset) [Installed subdataset in order to get␣
→˓/tmp/clone_of_superds/subds1]
[INFO] Installing <Dataset path=/tmp/clone_of_superds> underneath /tmp/clone_of_
→˓superds/subds1 recursively
.

subds1
subsubds1
subsubds2

(continues on next page)

122 Chapter 10. Tuning datasets to your needs

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

subds2
subsubds1
subsubds2

6 directories, 0 files

.datalad/config

DataLad adds a repository-specific configuration file as well. It can be found in the .datalad
directory, and just like .gitattributes and .gitmodules it is version controlled and is thus
shared together with the dataset. One can configure many options103, but currently, our .
datalad/config file only stores a DATASET ID. This ID serves to identify a dataset as a unit,
across its entire history and flavors. In a geeky way, this is your dataset’s social security number:
It will only exist one time on this planet.

$ cat .datalad/config
[datalad "dataset"]

id = 8e04afb0-af85-4070-be29-858d30d85017

Note, though, that local configurations within a Git configuration file will take precedence over
configurations that can be distributed with a dataset. Otherwise, dataset updates with datalad
update (or, for Git-users, git pull) could suddenly and unintentionally alter local DataLad
behavior that was specifically configured. Also, GIT and GIT-ANNEX will not query this file for
configurations, so please store only sticky options that are specific to DataLad (i.e., under the
datalad.* namespace) in it.

Writing to configuration files other than .git/config

“Didn’t you say that knowing the git config command is already half of what I need to know?”
you ask. “Now there are three other configuration files, and I do not know with which command
I can write into these files.”

“Excellent question”, you hear in return, “but in reality, you do know: it’s also the git config
command. The only part of it you need to adjust is the -f, --file parameter. By default,
the command writes to a Git config file. But it can write to a different file if you specify it
appropriately. For example

git config --file=.gitmodules --replace-all submodule."name".url "new URL"

will update your submodule’s URL. Keep in mind though that you would need to commit this
change, as .gitmodules is version controlled”.

Let’s try this:

$ git config --file=.gitmodules --replace-all submodule."recordings/longnow".url
→˓"git@github.com:datalad-datasets/longnow-podcasts.git"

This command will replace the submodule’s https URL with an SSH URL. The latter is often
used if someone has an SSH key pair and added the public key to their GitHub account (you
103 http://docs.datalad.org/en/latest/generated/datalad.config.html

10.2. More on DIY configurations 123

http://docs.datalad.org/en/latest/generated/datalad.config.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

can read more about this here104). We will revert this change shortly, but use it to show the
difference between a git config on a .git/config file and on a version controlled file:

$ datalad status
modified: .gitmodules (file)

$ git diff
diff --git a/.gitmodules b/.gitmodules
index 9bc9ee9..11273e1 100644
--- a/.gitmodules
+++ b/.gitmodules
@@ -1,5 +1,5 @@
[submodule "recordings/longnow"]

path = recordings/longnow
- url = https://github.com/datalad-datasets/longnow-podcasts.git
+ url = git@github.com:datalad-datasets/longnow-podcasts.git

datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e
datalad-url = https://github.com/datalad-datasets/longnow-podcasts.git

As these two commands show, the .gitmodules file is modified. The https URL has been deleted
(note the -, and a SSH URL has been added. To keep these changes, we would need to datalad
save them. However, as we want to stay with https URLs, we will just checkout this change –
using a Git tool to undo an unstaged modification.

$ git checkout .gitmodules
$ datalad status
Updated 1 path from the index
nothing to save, working tree clean

Note, though, that the .gitattributes file can not be modified with a git config command.
This is due to its different format that does not comply to the section.variable.value structure
of all other configuration files. This file, therefore, has to be edited by hand, with an editor of
your choice.

Environment variables

An ENVIRONMENT VARIABLE is a variable set up in your shell that affects the way the shell or
certain software works – for example the environment variables HOME, PWD, or PATH. Configura-
tion options that determine the behavior of Git, git-annex, and DataLad that could be defined in
a configuration file can also be set (or overridden) by the associated environment variables of
these configuration options. Many configuration items have associated environment variables.
If this environment variable is set, it takes precedence over options set in configuration files,
thus providing both an alternative way to define configurations as well as an override mech-
anism. For example, the user.name configuration of Git can be overridden by its associated
environment variable, GIT_AUTHOR_NAME. Likewise, one can define the environment variable in-
stead of setting the user.name configuration in a configuration file.

Git, git-annex, and DataLad have more environment variables than anyone would want to re-
member. Here105 is a good overview on Git’s most useful available environment variables for
a start. All of DataLad’s configuration options can be translated to their associated environ-
ment variables. Any environment variable with a name that starts with DATALAD_ will be avail-
able as the corresponding datalad. configuration variable, replacing any __ (two underscores)
104 https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories
105 https://git-scm.com/book/en/v2/Git-Internals-Environment-Variables

124 Chapter 10. Tuning datasets to your needs

https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories
https://git-scm.com/book/en/v2/Git-Internals-Environment-Variables

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

with a hyphen, then any _ (single underscore) with a dot, and finally converting all letters
to lower case. The datalad.log.level configuration option thus is the environment variable
DATALAD_LOG_LEVEL.

M10.3 Some more general information on environment variables

Names of environment variables are often all-uppercase. While the $ is not part of the
name of the environment variable, it is necessary to refer to the environment variable:
To reference the value of the environment variable HOME for example you would need to
use echo $HOME and not echo HOME. However, environment variables are set without a
leading $. There are several ways to set an environment variable (note that there are no
spaces before and after the = !), leading to different levels of availability of the variable:

• THEANSWER=42 <command> makes the variable THEANSWER available for the process
in <command>. For example, DATALAD_LOG_LEVEL=debug datalad get <file> will
execute the datalad get command (and only this one) with the log level set to
“debug”.

• export THEANSWER=42 makes the variable THEANSWER available for other processes
in the same session, but it will not be available to other shells.

• echo 'export THEANSWER=42' >> ~/.bashrc will write the variable definition in the
.bashrc file and thus available to all future shells of the user (i.e., this will make
the variable permanent for the user)

To list all of the configured environment variables, type env into your terminal.

Summary

This has been an intense lecture, you have to admit. One definite take-away from it has been
that you now know a second reason why the hidden .git and .datalad directory contents and
also the contents of .gitmodules and .gitattributes should not be carelessly tampered with –
they contain all of the repositories configurations.

But you now also know how to modify these configurations with enough care and background
knowledge such that nothing should go wrong once you want to work with and change them.
You can use the git config command for Git configuration files on different scopes, and even
the .gitmodules or datalad/config files. Of course you do not yet know all of the avail-
able configuration options. However, you already know some core Git configurations such as
name, email, and editor. Even more important, you know how to configure git-annex’s content
management based on largefile rules, and you understand the majority of variables within
.gitmodules or the sections in .git/config. Slowly, you realize with pride, you’re more and
more becoming a DataLad power-user.

Write a note about configurations in datasets into notes.txt.

$ cat << EOT >> notes.txt
Configurations for datasets exist on different levels (systemwide,
global, and local), and in different types of files (not version
controlled (git)config files, or version controlled .datalad/config,
.gitattributes, or gitmodules files), or environment variables.
With the exception of .gitattributes, all configuration files share a
common structure, and can be modified with the git config command, but
also with an editor by hand.

Depending on whether a configuration file is version controlled or

(continues on next page)

10.2. More on DIY configurations 125

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

not, the configurations will be shared together with the dataset.
More specific configurations and not-shared configurations will always
take precedence over more global or hared configurations, and
environment variables take precedence over configurations in files.

The git config --list --show-origin command is a useful tool to give
an overview over existing configurations. Particularly important may
be the .gitattributes file, in which one can set rules for git-annex
about which files should be version-controlled with Git instead of
being annexed.

EOT

$ datalad save -m "add note on configurations and git config"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

10.3 Configurations to go

The past two sections should have given you a comprehensive overview on the different config-
uration options the tools Git, git-annex, and DataLad provide. They not only showed you a way
to configure everything you may need to configure, but also gave explanations about what the
configuration options actually mean.

But figuring out which configurations are useful and how to apply them are also not the eas-
iest tasks. Therefore, some clever people decided to assist with these tasks, and created pre-
configured procedures that process datasets in a particular way. These procedures can be shipped
within DataLad or its extensions, lie on a system, or can be shared together with datasets.

One of such procedures is the text2git configuration. In order to learn about procedures in
general, let’s demystify what the text2git procedure exactly is: It is nothing more than a simple
script that

• writes the relevant configuration (annex_largefiles =
'((mimeencoding=binary)and(largerthan=0))', i.e., “Do not put anything that is a
text file in the annex”) to the .gitattributes file of a dataset, and

• saves this modification with the commit message “Instruct annex to add text files to Git”.

This particular procedure lives in a script called cfg_text2git in the sourcecode of DataLad.
The amount of code in this script is not large, and the relevant lines of code are highlighted:

import sys
import os.path as op

from datalad.distribution.dataset import require_dataset

ds = require_dataset(
sys.argv[1],
check_installed=True,

(continues on next page)

126 Chapter 10. Tuning datasets to your needs

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

purpose='configuration')

the relevant configuration:
annex_largefiles = '((mimeencoding=binary)and(largerthan=0))'
attrs = ds.repo.get_gitattributes('*')
if not attrs.get('*', {}).get(

'annex.largefiles', None) == annex_largefiles:
ds.repo.set_gitattributes([

('*', {'annex.largefiles': annex_largefiles})])

git_attributes_file = op.join(ds.path, '.gitattributes')
ds.save(

git_attributes_file,
message="Instruct annex to add text files to Git",

)

Just like cfg_text2git, all DataLad procedures are executables (such as a script, or compiled
code). In principle, they can be written in any language, and perform any task inside of a
dataset. The text2git configuration for example applies a configuration for how git-annex
treats different file types. Other procedures do not only modify .gitattributes, but can also
populate a dataset with particular content, or automate routine tasks such as synchronizing
dataset content with certain siblings. What makes them a particularly versatile and flexible tool
is that anyone can write their own procedures. If a workflow is a standard in a team and needs
to be applied often, turning it into a script can save time and effort. To learn how to do this, read
the with a tutorial on writing own procedures (page 132). By pointing DataLad to the location
the procedures reside in they can be applied, and by including them in a dataset they can even
be shared. And even if the script is simple, it is very handy to have preconfigured procedures
that can be run in a single command line call. In the case of text2git, all text files in a dataset
will be stored in Git – this is a useful configuration that is applicable to a wide range of datasets.
It is a shortcut that spares naive users the necessity to learn about the .gitattributes file when
setting up a dataset.

To find out available procedures, the command datalad run-procedure --discover
(datalad-run-procedure manual) is helpful. This command will make DataLad search the
default location for procedures in a dataset, the source code of DataLad or installed DataLad
extensions, and the default locations for procedures on the system for available procedures:

$ datalad run-procedure --discover
cfg_bids (/home/adina/env/handbook2/lib/python3.9/site-packages/datalad_neuroimaging/
→˓resources/procedures/cfg_bids.py) [python_script]
cfg_hirni (/home/adina/env/handbook2/lib/python3.9/site-packages/datalad_hirni/resources/
→˓procedures/cfg_hirni.py) [python_script]
cfg_metadatatypes (/home/adina/repos/datalad/datalad/resources/procedures/cfg_
→˓metadatatypes.py) [python_script]
cfg_text2git (/home/adina/repos/datalad/datalad/resources/procedures/cfg_text2git.py)␣
→˓[python_script]
cfg_yoda (/home/adina/repos/datalad/datalad/resources/procedures/cfg_yoda.py) [python_
→˓script]

The output shows that in this particular dataset, on the particular system the book is written on,
there are at least three procedures available: cfg_metadatatypes, cfg_text2git, and cfg_yoda.
It also lists where they are stored – in this case, they are all part of the source code of DataLad110.
110 In theory, because procedures can exist on different levels, and because anyone can create (and thus name) their

own procedures, there can be name conflicts. The order of precedence in such cases is: user-level, system-level,

10.3. Configurations to go 127

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• cfg_yoda configures a dataset according to the yoda principles – the section YODA: Best
practices for data analyses in a dataset (page 136) talks about this in detail.

• cfg_text2git configures text files to be stored in Git.

• cfg_metadatatypes lets users configure additional metadata types – more about this in a
later section on DataLad’s metadata handling.

Applying procedures

datalad run-procedure not only discovers but also executes procedures. If given the name of a
procedure, this command will apply the procedure to the current dataset, or the dataset that is
specified with the -d/--dataset flag:

datalad run-procedure [-d <PATH>] cfg_text2git

The typical workflow is to create a dataset and apply a procedure afterwards. However, some
procedures shipped with DataLad or its extensions with a cfg_ prefix can also be applied right at
the creation of a dataset with the -c/--cfg-proc <name> option in a datalad create command.
This is a peculiarity of these procedures because, by convention, all of these procedures are
written to not require arguments. The command structure looks like this:

datalad create -c text2git DataLad-101

Note that the cfg_ prefix of the procedures is omitted in these calls to keep it extra simple
and short. The available procedures in this example (cfg_yoda, cfg_text2git) could thus be
applied within a datalad create as

• datalad create -c yoda <DSname>

• datalad create -c text2git <DSname>

M10.4 Applying multiple procedures

If you want to apply several configurations at once, feel free to do so, for example like
this:

$ datalad create -c yoda -c text2git

M10.5 Applying procedures in subdatasets

Procedures can be applied in datasets on any level in the dataset hierarchy, i.e., also in
subdatasets. Note, though, that a subdataset will show up as being modified in datalad
status in the superdataset after applying a procedure. This is expected, and it would also
be the case with any other modification (saved or not) in the subdataset, as the version
of the subdataset that is tracked in the superdataset simply changed. A datalad save
in the superdataset will make sure that the version of the subdataset gets updated in
the superdataset. The section More on Dataset nesting (page 164) will elaborate on this
general principle later in the handbook.

dataset, DataLad extension, DataLad, i.e., local procedures take precedence over those coming from “outside” via
datasets or DataLad extensions. If procedures in a higher-level dataset and a subdataset have the same name, the
procedure closer to the dataset run-procedure is operating on takes precedence.

128 Chapter 10. Tuning datasets to your needs

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

As a general note, it can be useful to apply procedures early in the life of a dataset. Procedures
such as cfg_yoda (explained in detail in section YODA: Best practices for data analyses in a
dataset (page 136)), create files, change .gitattributes, or apply other configurations. If many
other (possibly complex) configurations are already in place, or if files of the same name as the
ones created by a procedure are already in existence, this can lead to unexpected problems or
failures, especially for naive users. Applying cfg_text2git to a default dataset in which one has
saved many text files already (as per default added to the annex) will not place the existing,
saved files into Git – only those text files created after the configuration was applied.

Summing up, DataLad’s run-procedure command is a handy tool with useful existing proce-
dures but much flexibility for your own DIY procedure scripts. With the information of the last
three sections you should be able to write and understand necessary configurations, but you
can also rely on existing, preconfigured templates in the form of procedures, and even write
and distribute your own.

Therefore, envision procedures as helper-tools that can minimize technical complexities in a
dataset – users can concentrate on the actual task while the dataset is set-up, structured, pro-
cessed, or configured automatically with the help of a procedure. Especially in the case of
trainees and new users, applying procedures instead of doing relevant routines “by hand” can
help to ease working with the dataset, as the use case Student supervision in a research project
(page 407) showcases. Other than by users, procedures can also be triggered to automati-
cally run after any command execution if a command results matches a specific requirement.
If you are interested in finding out more about this, read on in section DataLad’s result hooks
(page 287).

Finally, make a note about running procedures inside of notes.txt:

$ cat << EOT >> notes.txt
It can be useful to use pre-configured procedures that can apply
configurations, create files or file hierarchies, or perform arbitrary
tasks in datasets. They can be shipped with DataLad, its extensions,
or datasets, and you can even write your own procedures and distribute
them.
The "datalad run-procedure" command is used to apply such a procedure
to a dataset. Procedures shipped with DataLad or its extensions
starting with a "cfg" prefix can also be applied at the creation of a
dataset with "datalad create -c <PROC-NAME> <PATH>" (omitting the
"cfg" prefix).

EOT

$ datalad save -m "add note on DataLad's procedures"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

10.4 Summary

This has been a substantial amount of information regarding various configuration types, meth-
ods, and files. After this lecture, you have greatly broadened your horizon about configurations
of datasets:

10.4. Summary 129

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• Configurations exist at different scopes and for different tools. Each of such configuration
scopes exists in an individual file, on a system-wide, global (user-specific) or local (repos-
itory specific) level. In addition to Git’s local scope in .git/config, DataLad introduces
its own configurations within .datalad/config that apply to a specific dataset, but are
committed and therefore distributed. More specialized scopes take precedence over more
global scopes.

• Almost all configurations can be set with the git config. Its structure looks like this:

git config --local/--global/--system --add/remove-all/--list section.[subsection.
→˓]variable "value"

• The .git/config configuration file is not version controlled, other configuration files (.
gitmodules, .gitattributes, .datalad/config) however are, and can be shared together
with the dataset. Non-shared configurations will take precedence over shared configura-
tions in a dataset clone.

• Other tools than Git can be configured with the git config command as well. If the
configuration needs to be written to a file other than a .git(/)config file, supply a path
to this file with the -f/--file flag in a git config command.

• The .gitattributes file is the only configuration file the git config can not write to,
because it has a different layout. However, run-procedures or the user can write simple
rules into it that determine which files are annexed and which are stored in Git.

• DataLad’s run-procedures offer an easy and fast alternative to DIY configurations, struc-
turing, or processing of the dataset, and offer means to share or ship configurations to-
gether with a dataset. They can be applied already at creation of a dataset with datalad
create -c <procedure>, or executed later with a datalad run-procedure command.

Now what can I do with it?

Configurations are not a closed book for you anymore. What will probably be especially helpful
is your new knowledge about .gitattributes and DataLad’s run-procedure command that
allow you to configure the behavior of git-annex in your dataset.

130 Chapter 10. Tuning datasets to your needs

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M10.2 Disecting a Git config file further

Let’s walk through the Git config file of DataLad-101: The second section of .git/config
is a git-annex configuration. As mentioned above, git-annex will use the GIT CONFIG

FILE for some of its configurations. For example, it lists the repository as a “version 8
repository”, and gives the dataset its own git-annex UUID. While the “annex-uuid”100

looks like yet another cryptic random string of characters, you have seen a UUID like this
before: A git annex whereis displays information about where the annexed content in
a dataset is with these UUIDs. This section also specifies the supported backends in this
dataset. If you have read the hidden section in the section Data integrity (page 85) you
will recognize the name “MD5E”. This is the hash function used to generate the annexed
files keys and thus paths in the object tree. All backends specified in this file (it can be a
list) can be used to hash your files.
You may recognize the third part of the configuration, the subsection "recordings/
longnow" in the section submodule. Clearly, this is a reference to the longnow podcasts
we cloned as a subdataset. The name submodule is Git terminology, and describes a Git
repository inside of another Git repository – just like the super- and subdataset princi-
ples you discovered in the section Dataset nesting (page 53). When you clone a DataLad
dataset as a subdataset, it gets registered in this file. For each subdataset, an individual
submodule entry will store the information about the subdataset’s --source or origin (the
“url”). Thus, every subdataset (and sub-subdataset, and so forth) in your dataset will be
listed in this file. If you want, go back to section Install datasets (page 46) to see that
the “url” is the same URL we cloned the longnow dataset from, and go back to section
Looking without touching (page 92) to remind yourself of how cloning a dataset with
subdatasets looked and felt like.
Another interesting part is the last section, “remote”. Here we can find the SIBLING

“roommate” we defined in Networking (page 105). The term REMOTE is Git-terminology
and is used to describe other repositories or DataLad datasets that the repository knows
about and tracks. This file, therefore, is where DataLad registered the sibling with datalad
siblings add, and thanks to it you can collaborate with your room mate. Note the path
given as a value to the url variable. If at any point either your superdataset or the remote
moves on your file system, the association between the two datasets breaks – this can be
fixed by adjusting this path, and a demonstration of this is in section Miscellaneous file
system operations (page 224). fetch contains a specification which parts of the repository
are updated – in this case everything (all of the branches). Lastly, the annex-ignore =
false configuration allows git-annex to query the remote when it tries to retrieve data
from annexed content.
100 A UUID is a universally unique identifier – a 128-bit number that unambiguously identifies information.

10.4. Summary 131

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M10.6 Write your own procedures

Procedures can come with DataLad or its extensions, but anyone can write their own
ones in addition, and deploy them on individual machines, or ship them within DataLad
datasets. This allows to automate routine configurations or tasks in a dataset, or share
configurations that would otherwise not “stick” to the dataset. Some general rules for
creating a custom procedure are outlined below:

• A procedure can be any executable. Executables must have the appropriate permis-
sions and, in the case of a script, must contain an appropriate SHEBANG.

– If a procedure is not executable, but its filename ends with .sh, it is automat-
ically executed via BASH.

• Procedures can implement any argument handling, but must be capable of taking
at least one positional argument (the absolute path to the dataset they shall operate
on).

• Custom procedures rely heavily on configurations in .datalad/config (or the as-
sociated environment variables). Within .datalad/config, each procedure should
get an individual entry that contains at least a short “help” description on what the
procedure does. Below is a minimal .datalad/config entry for a custom proce-
dure:

[datalad "procedures.<NAME>"]
help = This is a string to describe what the procedure does

• By default, on GNU/Linux systems, DataLad will search for system-wide procedures
(i.e., procedures on the system level) in /etc/xdg/datalad/procedures, for user
procedures (i.e., procedures on the global level) in ~/.config/datalad/procedures,
and for dataset procedures (i.e., the local level111) in .datalad/procedures relative
to a dataset root. Note that .datalad/procedures does not exist by default, and
the procedures directory needs to be created first.

– Alternatively to the default locations, DataLad can be pointed to the location
of a procedure with a configuration in .datalad/config (or with the help
of the associated ENVIRONMENT VARIABLEs). The appropriate configuration
keys for .datalad/config are either datalad.locations.system-procedures
(for changing the system default), datalad.locations.user-procedures (for
changing the global default), or datalad.locations.dataset-procedures (for
changing the local default). An example .datalad/config entry for the local
scope is shown below.

[datalad "locations"]
dataset-procedures = relative/path/from/dataset-root

• By default, DataLad will call a procedure with a standard template defined by a
format string:

interpreter {script} {ds} {arguments}

where arguments can be any additional command line arguments a script (pro-
cedure) takes or requires. This default format string can be customized within
.datalad/config in datalad.procedures.<NAME>.call-format. An example .
datalad/config entry with a changed call format string is shown below.

[datalad "procedures.<NAME>"]
help = This is a string to describe what the procedure does
call-format = python {script} {ds} {somearg1} {somearg2}

132 Chapter 10. Tuning datasets to your needs

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• By convention, procedures should leave a dataset in a clean state.
Therefore, in order to create a custom procedure, an executable script in the appropriate
location is fine. Placing a script myprocedure into .datalad/procedures will allow run-
ning datalad run-procedure myprocedure in your dataset, and because it is part of the
dataset it will also allow distributing the procedure. Below is a toy-example for a custom
procedure:

$ datalad create somedataset; cd somedataset
[INFO] Creating a new annex repo at /home/me/procs/somedataset
[INFO] scanning for unlocked files (this may take some time)
create(ok): /home/me/procs/somedataset (dataset)

$ mkdir .datalad/procedures
$ cat << EOT > .datalad/procedures/example.py
"""A simple procedure to create a file 'example' and store
it in Git, and a file 'example2' and annex it. The contents
of 'example' must be defined with a positional argument."""

import sys
import os.path as op
from datalad.distribution.dataset import require_dataset
from datalad.utils import create_tree

ds = require_dataset(
sys.argv[1],
check_installed=True,
purpose='showcase an example procedure')

this is the content for file "example"
content = """\
This file was created by a custom procedure! Neat, huh?
"""

create a directory structure template. Write
tmpl = {

'somedir': {
'example': content,

},
'example2': sys.argv[2] if sys.argv[2] else "got no input"

}

actually create the structure in the dataset
create_tree(ds.path, tmpl)

rule to store 'example' Git
ds.repo.set_gitattributes([('example', {'annex.largefiles': 'nothing'})])

save the dataset modifications
ds.save(message="Apply custom procedure")

EOT

10.4. Summary 133

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad save -m "add custom procedure"
add(ok): .datalad/procedures/example.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

At this point, the dataset contains the custom procedure example. This is how it can be
executed and what it does:

$ datalad run-procedure example "this text will be in the file 'example2'"
[INFO] Running procedure example
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====

#the directory structure has been created
$ tree
.

example2 -> .git/annex/objects/G6/zw/MD5E-s40--2ed1bce0db9f376c277a1ba6418f3ddd/
→˓MD5E-s40--2ed1bce0db9f376c277a1ba6418f3ddd

somedir
example

1 directory, 2 files

#lets check out the contents in the files
$ cat example2 && echo '' && cat somedir/example
this text will be in the file 'example2'
This file was created by a custom procedure! Neat, huh?

$ git config -f .datalad/config datalad.procedures.example.help "A toy example"
$ datalad save -m "add help description"
add(ok): .datalad/config (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

To find out more about a given procedure, you can ask for help:

$ datalad run-procedure --help-proc example
example (.datalad/procedures/example.py)
A toy example

111 Note that we simplify the level of procedures that exist within a dataset by calling them local. Even though
they apply to a dataset just as local Git configurations, unlike Git’s local configurations in .git/config, the
procedures and procedure configurations in .datalad/config are committed and can be shared together
with a dataset. The procedure level local therefore does not exactly corresponds to the local scope in the
sense that Git uses it.

134 Chapter 10. Tuning datasets to your needs

CHAPTER

ELEVEN

MAKE THE MOST OUT OF DATASETS

11.1 A Data Analysis Project with DataLad

Time flies and the semester rapidly approaches the midterms. In DataLad-101, students are not
given an exam – instead, they are asked to complete and submit a data analysis project with
DataLad.

The lecturer hands out the requirements: The project. . .

• needs to be a data analysis project

• is to be prepared in the form of a DataLad dataset

• should incorporate DataLad whenever possible (data retrieval, publication, script execu-
tion, general version control) and

• needs to comply to the YODA principles

Luckily, the midterms are only in a couple of weeks, and a lot of the requirements of the project
will be taught in the upcoming sessions. Therefore, there’s little you can do to prepare for the
midterm than to be extra attentive on the next lectures on the YODA principles and DataLad’s
Python API.

135

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

11.2 YODA: Best practices for data analyses in a dataset

The last requirement for the midterm projects reads “needs to comply to the YODA principles”.
“What are the YODA principles?” you ask, as you have never heard of this before. “The topic
of today’s lecture: Organizational principles of data analyses in DataLad datasets. This lec-
ture will show you the basic principles behind creating, sharing, and publishing reproducible,
understandable, and open data analysis projects with DataLad.”, you hear in return.

The starting point. . .

Data analyses projects are very common, both in science and industry. But it can be very difficult
to produce a reproducible, let alone comprehensible data analysis project. Many data analysis
projects do not start out with a stringent organization, or fail to keep the structural organization
of a directory intact as the project develops. Often, this can be due to a lack of version-control.
In these cases, a project will quickly end up with many almost-identical scripts suffixed with
“_version_xyz”112, or a chaotic results structure split between various directories with names
such as results/, results_August19/, results_revision/ and now_with_nicer_plots/. Some-
thing like this is a very common shape a data science project may take after a while:

code/
code_final/

final_2/
main_script_fixed.py
takethisscriptformostthingsnow.py

utils_new.py
main_script.py
utils_new.py
utils_2.py
main_analysis_newparameters.py

main_script_DONTUSE.py
data/

data_updated/
dataset1/

datafile_a
dataset1/

datafile_a
outputs/

figures/
figures_new.py
figures_final_forreal.py

important_results/
random_results_file.tsv
results_for_paper/
results_for_paper_revised/
results_new_data/

random_results_file.tsv
random_results_file_v2.tsv

[...]

All data analysis endeavors in directories like this can work, for a while, if there is a person
who knows the project well, and works on it all the time. But it inevitably will get messy
112 http://phdcomics.com/comics/archive.php?comicid=1531

136 Chapter 11. Make the most out of datasets

http://phdcomics.com/comics/archive.php?comicid=1531
http://phdcomics.com/comics/archive.php?comicid=1531

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

once anyone tries to collaborate on a project like this, or simply goes on a two-week va-
cation and forgets whether the function in main_analysis_newparameters.py or the one in
takethisscriptformostthingsnow.py was the one that created a particular figure.

But even if a project has an intuitive structure, and is version controlled, in many cases an
analysis script will stop working, or maybe worse, will produce different results, because the
software and tools used to conduct the analysis in the first place got an update. This update
may have come with software changes that made functions stop working, or work differently
than before. In the same vein, recomputing an analysis project on a different machine than the
one the analysis was developed on can fail if the necessary software in the required versions
is not installed or available on this new machine. The analysis might depend on software that
runs on a Linux machine, but the project was shared with a Windows user. The environment
during analysis development used Python 2, but the new system has only Python 3 installed.
Or one of the dependent libraries needs to be in version X, but is installed as version Y.

The YODA principles are a clear set of organizational standards for datasets used for data anal-
ysis projects that aim to overcome issues like the ones outlined above. The name stands for
“YODAs Organigram on Data Analysis”120. The principles outlined in YODA set simple rules
for directory names and structures, best-practices for version-controlling dataset elements and
analyses, facilitate usage of tools to improve the reproducibility and accountability of data anal-
ysis projects, and make collaboration easier. They are summarized in three basic principles, that
translate to both dataset structures and best practices regarding the analysis:

• P1: One thing, one dataset (page 137)

• P2: Record where you got it from, and where it is now (page 140)

• P3: Record what you did to it, and with what (page 141)

As you will see, complying to these principles is easy if you use DataLad. Let’s go through them
one by one:

P1: One thing, one dataset

Whenever a particular collection of files could be useful in more than one context, make them
a standalone, modular component. In the broadest sense, this means to structure your study
elements (data, code, computational environments, results, . . .) in dedicated directories. For
example:

• Store input data for an analysis in a dedicated inputs/ directory. Keep different formats
or processing-stages of your input data as individual, modular components: Do not mix
raw data, data that is already structured following community guidelines of the given
field, or preprocessed data, but create one data component for each of them. And if
your analysis relies on two or more data collections, these collections should each be an
individual component, not combined into one.

• Store scripts or code used for the analysis of data in a dedicated code/ directory, outside
of the data component of the dataset.

120 “Why does the acronym contain itself?” you ask confused. “That’s because it’s a recursive acronym121, where the
first letter stands recursively for the whole acronym.” you get in response. “This is a reference to the recursiveness
within a DataLad dataset – all principles apply recursively to all the subdatasets a dataset has.” “And what does
all of this have to do with Yoda?” you ask mildly amused. “Oh, well. That’s just because the DataLad team is full
of geeks.”

121 https://en.wikipedia.org/wiki/Recursive_acronym

11.2. YODA: Best practices for data analyses in a dataset 137

https://en.wikipedia.org/wiki/Recursive_acronym

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• Collect results of an analysis in a dedicated outputs/ directory, and leave the input data
of an analysis untouched by your computations.

• Include a place for complete execution environments, for example singularity images113

or docker containers114,122, in the form of an envs/ directory, if relevant for your analysis.

• And if you conduct multiple different analyses, create a dedicated project for each analy-
sis, instead of conflating them.

This, for example, would be a directory structure from the root of a superdataset of a very
comprehensive data analysis project complying to the YODA principles:

ci/ # continuous integration configuration
.travis.yml

code/ # your code
tests/ # unit tests to test your code

test_myscript.py
myscript.py

docs # documentation about the project
build/
source/

envs # computational environments
Singularity

inputs/ # dedicated inputs/, will not be changed by an analysis
data/

dataset1/ # one stand-alone data component
datafile_a

dataset2/
datafile_a

outputs/ # outputs away from the input data
important_results/

figures/
CHANGELOG.md # notes for fellow humans about your project
HOWTO.md
README.md

You can get a few non-DataLad related advice for structuring your directories in the on best
practices for analysis organization (page 139).

There are many advantages to this modular way of organizing contents. Having input data as
independent components that are not altered (only consumed) by an analysis does not conflate
the data for an analysis with the results or the code, thus assisting understanding the project for
anyone unfamiliar with it. But more than just structure, this organization aids modular reuse or
publication of the individual components, for example data. In a YODA-compliant dataset, any
processing stage of a data component can be reused in a new project or published and shared.
The same is true for a whole analysis dataset. At one point you might also write a scientific
paper about your analysis in a paper project, and the whole analysis project can easily become
a modular component in a paper project, to make sharing paper, code, data, and results easy.
The usecase Writing a reproducible paper (page 399) contains a step-by-step instruction on how
113 https://singularity.lbl.gov/
114 https://www.docker.com/get-started
122 If you want to learn more about Docker and Singularity, or general information about containerized computa-

tional environments for reproducible data science, check out this section123 in the wonderful book The Turing
Way124, a comprehensive guide to reproducible data science, or read about it in section Computational repro-
ducibility with software containers (page 166).

123 https://the-turing-way.netlify.app/reproducible-research/renv/renv-containers.html
124 https://the-turing-way.netlify.app/welcome

138 Chapter 11. Make the most out of datasets

https://singularity.lbl.gov/
https://www.docker.com/get-started
https://the-turing-way.netlify.app/reproducible-research/renv/renv-containers.html
https://the-turing-way.netlify.app/welcome
https://the-turing-way.netlify.app/welcome

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M11.1 More best practices for organizing contents in directories

The exemplary YODA directory structure is very comprehensive, and displays many best-
practices for reproducible data science. For example,

1. Within code/, it is best practice to add tests for the code. These tests can be run to
check whether the code still works.

2. It is even better to further use automated computing, for example continuous in-
tegration (CI) systems115, to test the functionality of your functions and scripts
automatically. If relevant, the setup for continuous integration frameworks (such
as Travis116) lives outside of code/, in a dedicated ci/ directory.

3. Include documents for fellow humans: Notes in a README.md or a HOWTO.md,
or even proper documentation (for example using in a dedicated docs/ directory.
Within these documents, include all relevant metadata for your analysis. If you are
conducting a scientific study, this might be authorship, funding, change log, etc.

If writing tests for analysis scripts or using continuous integration is a new idea for you,
but you want to learn more, check out this chapter on testing117.
115 https://en.wikipedia.org/wiki/Continuous_integration
116 https://travis-ci.org
117 https://the-turing-way.netlify.app/reproducible-research/testing

to build and share such a reproducible paper, if you want to learn more.

Fig. 11.1: Data are modular components that can be re-used easily.

The directory tree above and Figure 3 highlight different aspects of this principle. The direc-
tory tree illustrates the structure of the individual pieces on the file system from the point of
view of a single top-level dataset with a particular purpose. It for example could be an anal-
ysis dataset created by a statistician for a scientific project, and it could be shared between
collaborators or with others during development of the project. In this superdataset, code is
created that operates on input data to compute outputs, and the code and outputs are cap-
tured, version-controlled, and linked to the input data. Each input data in turn is a (potentially
nested) subdataset, but this is not visible in the directory hierarchy. Figure 3 in comparison
emphasizes a process view on a project and the nested structure of input subdataset: You can
see how the preprocessed data that serves as an input for the analysis datasets evolves from raw
data to standardized data organization to its preprocessed state. Within the data/ directory of

11.2. YODA: Best practices for data analyses in a dataset 139

https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://travis-ci.org
https://the-turing-way.netlify.app/reproducible-research/testing

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

the file system hierarchy displayed above one would find data datasets with their previous ver-
sion as a subdataset, and this is repeated recursively until one reaches the raw data as it was
originally collected at one point. A finished analysis project in turn can be used as a component
(subdataset) in a paper project, such that the paper is a fully reproducible research object that
shares code, analysis results, and data, as well as the history of all of these components.

Principle 1, therefore, encourages to structure data analysis projects in a clear and modular
fashion that makes use of nested DataLad datasets, yielding comprehensible structures and re-
usable components. Having each component version-controlled – regardless of size – will aid
keeping directories clean and organized, instead of piling up different versions of code, data, or
results.

P2: Record where you got it from, and where it is now

It is good to have data, but it is even better if you and anyone you collaborate or share the
project or its components with can find out where the data came from, or how it is dependent
on or linked to other data. Therefore, this principle aims to attach this information, the data’s
PROVENANCE, to the components of your data analysis project.

Luckily, this is a no-brainer with DataLad, because the core data structure of DataLad, the
dataset, and many of the DataLad commands already covered up to now fulfill this principle.

If data components of a project are DataLad datasets, they can be included in an analysis super-
dataset as subdatasets. Thanks to datalad clone, information on the source of these subdatasets
is stored in the history of the analysis superdataset, and they can even be updated from those
sources if the original data dataset gets extended or changed. If you are including a file, for ex-
ample code from GitHub, the datalad download-url command (introduced in section Populate
a dataset (page 37)) will record the source of it safely in the dataset’s history. And if you add
anything to your dataset, from simple incremental coding progress in your analysis scripts up to
files that a colleague sent you via email, a plain datalad save with a helpful commit message
goes a very long way to fulfill this principle on its own already.

One core aspect of this principle is linking between re-usable data resource units (i.e., DataLad
subdatasets containing pure data). You will be happy to hear that this is achieved by simply
installing datasets as subdatasets. This part of this principle will therefore be absolutely obvious
to you because you already know how to install and nest datasets within datasets. “I might just
overcome my impostor syndrome if I experience such advanced reproducible analysis concepts
as being obvious”, you think with a grin.

1
2

2
1

Fig. 11.2: Schematic illustration of two standalone data datasets installed as subdatasets into
an analysis project.

But more than linking datasets in a superdataset, linkage also needs to be established between

140 Chapter 11. Make the most out of datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

components of your dataset. Scripts inside of your code/ directory should point to data not as
ABSOLUTE PATHs that would only work on your system, but instead as RELATIVE PATHs that will
work in any shared copy of your dataset. The next section demonstrates a YODA data analysis
project and will show concrete examples of this.

Lastly, this principle also includes moving, sharing, and publishing your datasets or its compo-
nents. It is usually costly to collect data, and economically unfeasible125 to keep it locked in
a drawer (or similarly out of reach behind complexities of data retrieval or difficulties in un-
derstanding the data structure). But conducting several projects on the same dataset yourself,
sharing it with collaborators, or publishing it is easy if the project is a DataLad dataset that
can be installed and retrieved on demand, and is kept clean from everything that is not part
of the data according to principle 1. Conducting transparent open science is easier if you can
link code, data, and results within a dataset, and share everything together. In conjunction
with principle 1, this means that you can distribute your analysis projects (or parts of it) in a
comprehensible form.

metadata access

data access
Virtual
data portal

PUBLISH

PUBLISH

Pristine raw data

ARCHIVE

Standardized data structure

suitable for data publication
PUBLISH

Preprocessed data

starting point for analyses
PUBLISH

Paper
B

Raw
data

Normalized

Analysis
A

Paper
A

Analysis
B

Preprocessed

Public
cloud

storage

Local shared
 access storage

Institutional
storage

Fig. 11.3: In a dataset that complies to the YODA principles, modular components (data, anal-
ysis results, papers) can be shared or published easily.

Principle 2, therefore, facilitates transparent linkage of datasets and their components to other
components, their original sources, or shared copies. With the DataLad tools you learned to
master up to this point, you have all the necessary skills to comply to it already.

P3: Record what you did to it, and with what

This last principle is about capturing how exactly the content of every file came to be that was not
obtained from elsewhere. For example, this relates to results generated from inputs by scripts
or commands. The section Keeping track (page 59) already outlined the problem of associating
125 Substitute unfeasible with wasteful, impractical, or simply stupid if preferred.

11.2. YODA: Best practices for data analyses in a dataset 141

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

a result with an input and a script. It can be difficult to link a figure from your data analysis
project with an input data file or a script, even if you created this figure yourself. The datalad
run command however mitigates these difficulties, and captures the provenance of any output
generated with a datalad run call in the history of the dataset. Thus, by using datalad run in
analysis projects, your dataset knows which result was generated when, by which author, from
which inputs, and by means of which command.

With another DataLad command one can even go one step further: The command datalad
containers-run (it will be introduced in section Computational reproducibility with software
containers (page 166)) performs a command execution within a configured containerized en-
vironment. Thus, not only inputs, outputs, command, time, and author, but also the software
environment are captured as provenance of a dataset component such as a results file, and,
importantly, can be shared together with the dataset in the form of a software container.

Tip: Make use of datalad run’s --dry-run option to craft your run-command (see Dry-running
your run call (page 78))!

With this last principle, your dataset collects and stores provenance of all the contents you
created in the wake of your analysis project. This established trust in your results, and enables
others to understand where files derive from.

The YODA procedure

There is one tool that can make starting a yoda-compliant data analysis easier: DataLad’s yoda
procedure. Just as the text2git procedure from section Create a dataset (page 34), the yoda
procedure can be included in a datalad create command and will apply useful configurations
to your dataset:

$ datalad create -c yoda "my_analysis"

[INFO] Creating a new annex repo at /home/me/repos/testing/my_analysis
create(ok): /home/me/repos/testing/my_analysis (dataset)
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====

Let’s take a look at what configurations and changes come with this procedure:

$ tree -a

.
.gitattributes
CHANGELOG.md
code

.gitattributes
README.md

README.md

Let’s take a closer look into the .gitattributes files:

$ less .gitattributes

**/.git* annex.largefiles=nothing
CHANGELOG.md annex.largefiles=nothing
README.md annex.largefiles=nothing

(continues on next page)

142 Chapter 11. Make the most out of datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

$ less code/.gitattributes

* annex.largefiles=nothing

Summarizing these two glimpses into the dataset, this configuration has

1. included a code directory in your dataset

2. included three files for human consumption (README.md, CHANGELOG.md)

3. configured everything in the code/ directory to be tracked by Git, not git-annex126

4. and configured README.md and CHANGELOG.md in the root of the dataset to be tracked by
Git.

Your next data analysis project can thus get a head start with useful configurations and the start
of a comprehensible directory structure by applying the yoda procedure.

Sources

This section is based on this comprehensive poster118 and these publicly available slides119

about the YODA principles.

11.3 YODA-compliant data analysis projects

Now that you know about the YODA principles, it is time to start working on DataLad-101’s
midterm project. Because the midterm project guidelines require a YODA-compliant data anal-
ysis project, you will not only have theoretical knowledge about the YODA principles, but also
gain practical experience.

In principle, you can prepare YODA-compliant data analyses in any programming language of
your choice. But because you are already familiar with the Python127 programming language,
you decide to script your analysis in Python. Delighted, you find out that there is even a Python
API for DataLad’s functionality that you can read about in a Findoutmore on DataLad in Python
(page 158).

Use DataLad in languages other than Python

While there is a dedicated API for Python, DataLad’s functions can of course also be used
with other programming languages, such as Matlab, via standard system calls.
Even if you do not know or like Python, you can just copy-paste the code and follow
along – the high-level YODA principles demonstrated in this section generalize across
programming languages.

126 To re-read how .gitattributes work, go back to section DIY configurations (page 112), and to remind yourself
about how this worked for the text2git configuration, go back to section Data safety (page 83).

118 https://f1000research.com/posters/7-1965
119 https://github.com/myyoda/talk-principles
127 https://www.python.org/

11.3. YODA-compliant data analysis projects 143

https://f1000research.com/posters/7-1965
https://github.com/myyoda/talk-principles
https://www.python.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

For your midterm project submission, you decide to create a data analysis on the iris flower data
set131. It is a multivariate dataset on 50 samples of each of three species of Iris flowers (Setosa,
Versicolor, or Virginica), with four variables: the length and width of the sepals and petals of
the flowers in centimeters. It is often used in introductory data science courses for statistical
classification techniques in machine learning, and widely available – a perfect dataset for your
midterm project!

Turn data analysis into dynamically generated documents

Beyond the contents of this section, we have transformed the example analysis also
into a template to write a reproducible paper, following the use case Writing a repro-
ducible paper (page 399). If you’re interested in checking that out, please head over to
github.com/datalad-handbook/repro-paper-sketch/132.
132 https://github.com/datalad-handbook/repro-paper-sketch/

Raw data as a modular, independent entity

The first YODA principle stressed the importance of modularity in a data analysis project: Every
component that could be used in more than one context should be an independent component.

The first aspect this applies to is the input data of your dataset: There can be thousands of ways
to analyze it, and it is therefore immensely helpful to have a pristine raw iris dataset that does
not get modified, but serves as input for these analysis. As such, the iris data should become a
standalone DataLad dataset. For the purpose of this analysis, the DataLad handbook provides
an iris_data dataset at https://github.com/datalad-handbook/iris_data.

You can either use this provided input dataset, or find out how to create an independent dataset
from scratch in a dedicated Findoutmore (page 160).

“Nice, with this input dataset I have sufficient provenance capture for my input dataset, and
I can install it as a modular component”, you think as you mentally tick off YODA principle
number 1 and 2. “But before I can install it, I need an analysis superdataset first.”

Building an analysis dataset

There is an independent raw dataset as input data, but there is no place for your analysis to
live, yet. Therefore, you start your midterm project by creating an analysis dataset. As this
project is part of DataLad-101, you do it as a subdataset of DataLad-101. Remember to specify
the --dataset option of datalad create to link it as a subdataset!

You naturally want your dataset to follow the YODA principles, and, as a start, you use the
cfg_yoda procedure to help you structure the dataset145:

131 https://en.wikipedia.org/wiki/Iris_flower_data_set
145 Note that you could have applied the YODA procedure not only right at creation of the dataset with -c yoda, but

also after creation with the datalad run-procedure command:

$ cd midterm_project
$ datalad run-procedure cfg_yoda

Both ways of applying the YODA procedure will lead to the same outcome.

144 Chapter 11. Make the most out of datasets

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://github.com/datalad-handbook/repro-paper-sketch/
https://github.com/datalad-handbook/iris_data

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

inside of DataLad-101
$ datalad create -c yoda --dataset . midterm_project
[INFO] Creating a new annex repo at /home/me/dl-101/DataLad-101/midterm_project
[INFO] scanning for unlocked files (this may take some time)
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): midterm_project (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): midterm_project (dataset)
action summary:
add (ok: 2)
create (ok: 1)
save (ok: 1)

The datalad subdatasets command can report on which subdatasets exist for DataLad-101.
This helps you verify that the command succeeded and the dataset was indeed linked as a
subdataset to DataLad-101:

$ datalad subdatasets
subdataset(ok): midterm_project (dataset)
subdataset(ok): recordings/longnow (dataset)
action summary:
subdataset (ok: 2)

Not only the longnow subdataset, but also the newly created midterm_project subdataset are
displayed – wonderful!

But back to the midterm project now. So far, you have created a pre-structured analysis dataset.
As a next step, you take care of installing and linking the raw dataset for your analysis ade-
quately to your midterm_project dataset by installing it as a subdataset. Make sure to install it
as a subdataset of midterm_project, and not DataLad-101!

$ cd midterm_project
we are in midterm_project, thus -d . points to the root of it.
$ datalad clone -d . \
https://github.com/datalad-handbook/iris_data.git \
input/

[INFO] Cloning dataset to Dataset(/home/me/dl-101/DataLad-101/midterm_project/input)
[INFO] Attempting to clone from https://github.com/datalad-handbook/iris_data.git to /
→˓home/me/dl-101/DataLad-101/midterm_project/input
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/DataLad-101/midterm_project/
→˓input)
[INFO] scanning for unlocked files (this may take some time)
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): input (dataset)
add(ok): input (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:

(continues on next page)

11.3. YODA-compliant data analysis projects 145

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

add (ok: 2)
install (ok: 1)
save (ok: 1)

Note that we did not keep its original name, iris_data, but rather provided a path with a new
name, input, because this much more intuitively comprehensible.

After the input dataset is installed, the directory structure of DataLad-101 looks like this:

$ cd ../
$ tree -d
$ cd midterm_project
.

books
code
midterm_project

code
input

recordings
longnow

Long_Now__Conversations_at_The_Interval
Long_Now__Seminars_About_Long_term_Thinking

9 directories

Importantly, all of the subdatasets are linked to the higher-level datasets, and despite being
inside of DataLad-101, your midterm_project is an independent dataset, as is its input/ sub-
dataset:

 super-ds

sub-ds

sub-ds

DataLad-101/
books/
code/

recordings/

notes.txt

longnow/
Long_Now__Conv[...]/
Long_Now__Seminars[...]/

midterm_project/
code/
input/

sub-ds

YODA-compliant analysis scripts

Now that you have an input/ directory with data, and a code/ directory (created by the
YODA procedure) for your scripts, it is time to work on the script for your analysis. Within
midterm_project, the code/ directory is where you want to place your scripts. Finally you can
try out the Python API of DataLad!

But first, you plan your research question. You decide to do a classification analysis with a
k-nearest neighbors algorithm146. The iris dataset works well for such questions. Based on the

146 If you want to know more about this algorithm, this blogpost147 gives an accessible overview. However, the choice
of analysis method for the handbook is rather arbitrary, and understanding the k-nearest neighbor algorithm is by
no means required for this section.

147 https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d017

146 Chapter 11. Make the most out of datasets

https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

features of the flowers (sepal and petal width and length) you will try to predict what type of
flower (Setosa, Versicolor, or Virginica) a particular flower in the dataset is. You settle on two
objectives for your analysis:

1. Explore and plot the relationship between variables in the dataset and save the resulting
graphic as a first result.

2. Perform a k-nearest neighbor classification on a subset of the dataset to predict class
membership (flower type) of samples in a left-out test set. Your final result should be a
statistical summary of this prediction.

To compute the analysis you create the following Python script inside of code/:

$ cat << EOT > code/script.py

import pandas as pd
import seaborn as sns
import datalad.api as dl
from sklearn import model_selection
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report

data = "input/iris.csv"

make sure that the data are obtained (get will also install linked sub-ds!):
dl.get(data)

prepare the data as a pandas dataframe
df = pd.read_csv(data)
attributes = ["sepal_length", "sepal_width", "petal_length","petal_width", "class"]
df.columns = attributes

create a pairplot to plot pairwise relationships in the dataset
plot = sns.pairplot(df, hue='class', palette='muted')
plot.savefig('pairwise_relationships.png')

perform a K-nearest-neighbours classification with scikit-learn
Step 1: split data in test and training dataset (20:80)
array = df.values
X = array[:,0:4]
Y = array[:,4]
test_size = 0.20
seed = 7
X_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y,

test_size=test_size,
random_state=seed)

Step 2: Fit the model and make predictions on the test dataset
knn = KNeighborsClassifier()
knn.fit(X_train, Y_train)
predictions = knn.predict(X_test)

Step 3: Save the classification report
report = classification_report(Y_test, predictions, output_dict=True)
df_report = pd.DataFrame(report).transpose().to_csv('prediction_report.csv')

EOT

61

11.3. YODA-compliant data analysis projects 147

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

This script will

• import DataLad’s functionality and expose it as dl.<COMMAND>

• make sure to install the linked subdataset and retrieve the data with datalad get (l. 12)
prior to reading it in, and

• save the resulting figure (l. 21) and .csv file (l. 40) into the root of midterm_project/.
Note how this helps to fulfil YODA principle 1 on modularity: Results are stored outside
of the pristine input subdataset.

• Note further how all paths (to input data and output files) are relative, such that the
midterm_project analysis is completely self-contained within the dataset, contributing to
fulfill the second YODA principle.

Let’s run a quick datalad status. . .

$ datalad status
untracked: code/script.py (file)

. . . and save the script to the subdataset’s history. As the script completes your analysis setup,
we tag the state of the dataset to refer to it easily at a later point with the --version-tag option
of datalad save.

$ datalad save -m "add script for kNN classification and plotting" \
--version-tag ready4analysis \
code/script.py

add(ok): code/script.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

M11.4 What is a tag?

TAGs are markers that you can attach to commits in your dataset history. They can have
any name, and can help you and others to identify certain commits or dataset states in
the history of a dataset. Let’s take a look at how the tag you just created looks like in your
history with git show. Note how we can use a tag just as easily as a commit SHASUM:

$ git show ready4analysis
commit dd364728c767a7ef3be5b1df229901a27f1cec6d
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:22:38 2021 +0200

add script for kNN classification and plotting

diff --git a/code/script.py b/code/script.py
new file mode 100644
index 0000000..26058d3
--- /dev/null
+++ b/code/script.py
@@ -0,0 +1,41 @@

This tag thus identifies the version state of the dataset in which this script was added.
Later we can use this tag to identify the point in time at which the analysis setup was
ready – much more intuitive than a 40-character shasum! This is handy in the context of

148 Chapter 11. Make the most out of datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

a datalad rerun for example:

$ datalad rerun --since ready4analysis

would rerun any run command in the history performed between tagging and the current
dataset state.

Finally, with your directory structure being modular and intuitive, the input data installed, the
script ready, and the dataset status clean, you can wrap the execution of the script (which is a
simple python3 code/script.py) in a datalad run command. Note that simply executing the
script would work as well – thanks to DataLad’s Python API. But using datalad run will capture
full provenance, and will make re-execution with datalad rerun easy.

Additional software requirements: pandas, seaborn, sklearn

Note that you need to have the following Python packages installed to run the analysis148:
• pandas135

• seaborn136

• sklearn137

The packages can be installed via pip. Check the footnote148 for code snippets to copy
and paste. However, if you do not want to install any Python packages, do not ex-
ecute the remaining code examples in this section – an upcoming section on datalad
containers-run will allow you to perform the analysis without changing your Python
software-setup.
148 It is recommended (but optional) to create a virtual environment149 and install the required Python

packages inside of it:

create and enter a new virtual environment (optional)
$ virtualenv --python=python3 ~/env/handbook
$. ~/env/handbook/bin/activate

install the Python packages from PyPi via pip
pip install seaborn pandas sklearn

135 https://pandas.pydata.org/
136 https://seaborn.pydata.org/
137 https://scikit-learn.org/

W11.1 You may need to use “python”, not “python3”

If executing the code below returns an exit code of 9009, there may be no python3 –
instead, it is called solely python. Please run the following instead (adjusted for line
breaks, you should be able to copy-paste this as a whole):

datalad run -m "analyze iris data with classification analysis" ^
--input "input/iris.csv" ^
--output "prediction_report.csv" ^
--output "pairwise_relationships.png" ^
"python code/script.py"

$ datalad run -m "analyze iris data with classification analysis" \
--input "input/iris.csv" \
--output "prediction_report.csv" \

(continues on next page)

11.3. YODA-compliant data analysis projects 149

https://pandas.pydata.org/
https://seaborn.pydata.org/
https://scikit-learn.org/
https://docs.python.org/3/tutorial/venv.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

--output "pairwise_relationships.png" \
"python3 code/script.py"

[INFO] Making sure inputs are available (this may take some time)
get(ok): input/iris.csv (file) [from web...]
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): pairwise_relationships.png (file)
add(ok): prediction_report.csv (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
get (notneeded: 2, ok: 1)
save (notneeded: 1, ok: 1)

As the successful command summary indicates, your analysis seems to work! Two files were
created and saved to the dataset: pairwise_relationships.png and prediction_report.csv.
If you want, take a look and interpret your analysis. But what excites you even more than a
successful data science project on first try is that you achieved complete provenance capture:

• Every single file in this dataset is associated with an author and a time stamp for each
modification thanks to datalad save.

• The raw dataset knows where the data came from thanks to datalad clone and datalad
download-url.

• The subdataset is linked to the superdataset thanks to datalad clone -d.

• The datalad run command took care of linking the outputs of your analysis with the script
and the input data it was generated from, fulfilling the third YODA principle.

Let’s take a look at the history of the midterm_project analysis dataset:

$ git log --oneline
f76acca [DATALAD RUNCMD] analyze iris data with classification analysis
dd36472 add script for kNN classification and plotting
01447d9 [DATALAD] modified subdataset properties
2465103 [DATALAD] Recorded changes
261ea45 Apply YODA dataset setup
50e40b2 [DATALAD] new dataset

“Wow, this is so clean an intuitive!” you congratulate yourself. “And I think this was and will
be the fastest I have ever completed a midterm project!” But what is still missing is a human
readable description of your dataset. The YODA procedure kindly placed a README.md file into
the root of your dataset that you can use for this150.

Template for introduction to DataLad

If you plan to share your own datasets with people that are unfamiliar with DataLad, it
may be helpful to give a short explanation of what a DataLad dataset is and what it can
do. For this, you can use a ready-made text block that the handbook provides. To find
this textblock, go to How can I help others get started with a shared dataset? (page 482).

150 Note that all README.md files the YODA procedure created are version controlled by Git, not git-annex, thanks to
the configurations that YODA supplied. This makes it easy to change the README.md file. The previous section de-
tailed how the YODA procedure configured your dataset. If you want to re-read the full chapter on configurations
and run-procedures, start with section DIY configurations (page 112).

150 Chapter 11. Make the most out of datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

with the >| redirection we are replacing existing contents in the file
$ cat << EOT >| README.md

Midterm YODA Data Analysis Project

Dataset structure

- All inputs (i.e. building blocks from other sources) are located in input/.
- All custom code is located in code/.
- All results (i.e., generated files) are located in the root of the dataset:
- "prediction_report.csv" contains the main classification metrics.
- "output/pairwise_relationships.png" is a plot of the relations between features.

EOT

$ datalad status
modified: README.md (file)

$ datalad save -m "Provide project description" README.md
add(ok): README.md (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Note that one feature of the YODA procedure was that it configured certain files (for example
everything inside of code/, and the README.md file in the root of the dataset) to be saved in Git
instead of git-annex. This was the reason why the README.md in the root of the dataset was
easily modifiable150.

M11.5 Saving contents with Git regardless of configuration with –to-git

The yoda procedure in midterm_project applied a different configuration within .
gitattributes than the text2git procedure did in DataLad-101. Within DataLad-101,
any text file is automatically stored in GIT. This is not true in midterm_project: Only
the existing README.md files and anything within code/ are stored – everything else will
be annexed. That means that if you create any other file, even text files, inside of
midterm_project (but not in code/), it will be managed by GIT-ANNEX and content-locked
after a datalad save – an inconvenience if it would be a file that is small enough to be
handled by Git.
Luckily, there is a handy shortcut to saving files in Git that does not require you to edit
configurations in .gitattributes: The --to-git option for datalad save.

$ datalad save -m "add sometextfile.txt" --to-git sometextfile.txt

After adding this short description to your README.md, your dataset now also contains sufficient
human-readable information to ensure that others can understand everything you did easily.
The only thing left to do is to hand in your assignment. According to the syllabus, this should
be done via GITHUB.

11.3. YODA-compliant data analysis projects 151

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M11.6 What is GitHub?

GitHub is a web based hosting service for Git repositories. Among many different other
useful perks it adds features that allow collaboration on Git repositories. GitLab138 is a
similar service with highly similar features, but its source code is free and open, whereas
GitHub is a subsidiary of Microsoft.
Web-hosting services like GitHub and GITLAB integrate wonderfully with DataLad. They
are especially useful for making your dataset publicly available, if you have figured out
storage for your large files otherwise (as large content can not be hosted for free by
GitHub). You can make DataLad publish large file content to one location and after-
wards automatically push an update to GitHub, such that users can install directly from
GitHub/GitLab and seemingly also obtain large file content from GitHub. GitHub can also
resolve subdataset links to other GitHub repositories, which lets you navigate through
nested datasets in the web-interface.

The above screenshot shows the linkage between the analysis project you will create and
its subdataset. Clicking on the subdataset (highlighted) will take you to the iris dataset
the handbook provides, shown below.

138 https://about.gitlab.com/

152 Chapter 11. Make the most out of datasets

https://about.gitlab.com/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Publishing the dataset to GitHub

Demo needs a GitHub account or alternative

The upcoming part requires a GitHub account. If you do not have one you can either
• Create one now – it is fast, free, and you can get rid of it afterwards, if you want to.
• Or exchange the command create-sibling-github with create-sibling-gitlab

if you have a GitLab account instead of a GitHub account (checkout the documen-
tation139 for differences in invocation beforehand, though).

• Decide to not follow along.
139 http://docs.datalad.org/en/stable/generated/man/datalad-create-sibling-gitlab.html

For this, you need to

• create a repository for this dataset on GitHub,

• configure this GitHub repository to be a SIBLING of the midterm_project dataset,

• and publish your dataset to GitHub.

Luckily, DataLad can make all of this very easy with the datalad create-sibling-github
(datalad-create-sibling-github manual) command (or, for GitLab140, datalad
create-sibling-gitlab, datalad-create-sibling-gitlab manual).

The two commands have different arguments and options. Here, we look at datalad
create-sibling-github. The command takes a repository name and GitHub authentication cre-
dentials (either in the command line call with options github-login <NAME> and github-passwd
<PASSWORD>, with an oauth token141 stored in the Git configuration, or interactively).

GitHub deprecated User Password authentication

GitHub decided to deprecate user-password authentication142 and will only support au-
thentication via personal access token from November 13th 2020 onwards. Upcoming
changes in DataLad’s API will reflect this change starting with DataLad version 0.13.6
by removing the github-passwd argument. Starting with DataLad 0.16.0, a new set of
commands for interactions with a variety of hosting services will be introduced (for more
information, see section Publishing datasets to Git repository hosting (page 184)).
To ensure successful authentication, please create a personal access token at
github.com/settings/tokens143,151, and either

• supply the token with the argument --github-login <TOKEN> from the command
line,

• or supply the token from the command line when queried for a password
142 https://developer.github.com/changes/2020-02-14-deprecating-password-auth/
143 https://github.com/settings/tokens
151 Instead of using GitHub’s WebUI you could also obtain a token using the command line GitHub interface

(https://github.com/sociomantic-tsunami/git-hub) by running git hub setup (if no 2FA is used). If you
decide to use the command line interface, here is help on how to use it: Clone the GitHub repository152 to
your local computer. Decide whether you want to build a Debian package to install, or install the single-
file Python script distributed in the repository. Make sure that all requirements153 for your preferred
version are installed , and run either make deb followed by sudo dpkg -i deb/git-hub*all.deb, or make

140 https://about.gitlab.com/
141 https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating

-a-personal-access-token

11.3. YODA-compliant data analysis projects 153

http://docs.datalad.org/en/stable/generated/man/datalad-create-sibling-gitlab.html
http://docs.datalad.org/en/stable/generated/man/datalad-create-sibling-gitlab.html
https://about.gitlab.com/
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://developer.github.com/changes/2020-02-14-deprecating-password-auth/
https://github.com/settings/tokens
https://github.com/sociomantic-tsunami/git-hub
https://github.com/sociomantic-tsunami/git-hub
https://github.com/sociomantic-tsunami/git-hub

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

install.

Based on the credentials and the repository name, it will create a new, empty repository on
GitHub, and configure this repository as a sibling of the dataset:

W11.2 Your shell will not display credentials

Don’t be confused if you are prompted for your GitHub credentials, but can’t seem to type
– the terminal protects your private information by not displaying what you type. Simply
type in what is requested, and press enter.

$ datalad create-sibling-github -d . midtermproject
.: github(-) [https://github.com/adswa/midtermproject.git (git)]
'https://github.com/adswa/midtermproject.git' configured as sibling 'github' for <Dataset␣
→˓path=/home/me/dl-101/DataLad-101/midterm_project>

Verify that this worked by listing the siblings of the dataset:

$ datalad siblings
[WARNING] Failed to determine if github carries annex.
.: here(+) [git]
.: github(-) [https://github.com/adswa/midtermproject.git (git)]

G11.1 Create-sibling-github internals

Creating a sibling on GitHub will create a new empty repository under the account that
you provide and set up a remote to this repository. Upon a datalad push to this sibling,
your datasets history will be pushed there.

On GitHub, you will see a new, empty repository with the name midtermproject. However, the
repository does not yet contain any of your dataset’s history or files. This requires publishing
the current state of the dataset to this SIBLING with the datalad push (datalad-push manual)
command.

Learn how to push “on the job”

Publishing is one of the remaining big concepts that this handbook tries to convey. How-
ever, publishing is a complex concept that encompasses a large proportion of the previous
handbook content as a prerequisite. In order to be not too overwhelmingly detailed, the
upcoming sections will approach push from a “learning-by-doing” perspective: You will
see a first push to GitHub below, and the Findoutmore on the published dataset (page 161)
at the end of this section will already give a practical glimpse into the difference between
annexed contents and contents stored in Git when pushed to GitHub. The chapter Third
party infrastructure (page 177) will extend on this, but the section Overview: The data-
lad push command (page 219) will finally combine and link all the previous contents to
give a comprehensive and detailed wrap up of the concept of publishing datasets. In this
section, you will also find a detailed overview on how push works and which options
are available. If you are impatient or need an overview on publishing, feel free to skip
ahead. If you have time to follow along, reading the next sections will get you towards
a complete picture of publishing a bit more small-stepped and gently. For now, we will
start with learning by doing, and the fundamental basics of datalad push: The command
will make the last saved state of your dataset available (i.e., publish it) to the SIBLING

154 Chapter 11. Make the most out of datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

you provide with the --to option.

$ datalad push --to github
[INFO] Determine push target
[INFO] Push refspecs
[INFO] Transfer data
copy(ok): pairwise_relationships.png (file) [to github...]
copy(ok): prediction_report.csv (file) [to github...]
[INFO] Update availability information
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
publish(ok): . (dataset) [refs/heads/git-annex->github:refs/heads/git-annex 87cf726..
→˓17179ba]
publish(ok): . (dataset) [refs/heads/master->github:refs/heads/master [new branch]]
[INFO] Finished push of Dataset(/home/me/dl-101/DataLad-101/midterm_project)

Thus, you have now published your dataset’s history to a public place for others to see and
clone. Below we will explore how this may look and feel for others.

Cave! Your default branch may be git-annex

If your published dataset looks weird, with cryptic directories names instead of file
names, GitHub may have made the GIT-ANNEX BRANCH your repositories’ default branch.
Learn how to fix this in the corresponding FAQ (page 487).

There is one important detail first, though: By default, your tags will not be published. Thus, the
tag ready4analysis is not pushed to GitHub, and currently this version identifier is unavailable
to anyone else but you. The reason for this is that tags are viral – they can be removed locally,
and old published tags can cause confusion or unwanted changes. In order to publish a tag, an
additional git push with the --tags option is required:

$ git push github --tags

G11.2 Pushing tags

Note that this is a git push, not datalad push. Tags could be pushed upon a datalad
push, though, if one configures (what kind of) tags to be pushed. This would need to be
done on a per-sibling basis in .git/config in the remote.*.push configuration. If you
had a SIBLING “github”, the following configuration would push all tags that start with a
v upon a datalad push --to github:

$ git config --local remote.github.push 'refs/tags/v*'

This configuration would result in the following entry in .git/config:

[remote "github"]
url = git@github.com/adswa/midtermproject.git
fetch = +refs/heads/*:refs/remotes/github/*
annex-ignore = true
push = refs/tags/v*

Yay! Consider your midterm project submitted! Others can now install your dataset and check

11.3. YODA-compliant data analysis projects 155

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

out your data science project – and even better: they can reproduce your data science project
easily from scratch (take a look into the Findoutmore (page 161) to see how)!

G11.3 Push internals

The datalad push uses git push, and git annex copy under the hood. Publication
targets need to either be configured remote Git repositories, or git-annex special remotes
(if they support data upload).

11.4 Summary

The YODA principles are a small set of guidelines that can make a huge difference towards
reproducibility, comprehensibility, and transparency in a data analysis project. By applying
them in your own midterm analysis project, you have experienced their immediate benefits.

You also noticed that these standards are not complex – quite the opposite, they are very intu-
itive. They structure essential components of a data analysis project – data, code, potentially
computational environments, and lastly also the results – in a modular and practical way, and
use basic principles and commands of DataLad you are already familiar with.

There are many advantages to this organization of contents.

• Having input data as independent dataset(s) that are not influenced (only consumed)
by an analysis allows for a modular reuse of pure data datasets, and does not conflate
the data of an analysis with the results or the code. You have experienced this with the
iris_data subdataset.

• Keeping code within an independent, version-controlled directory, but as a part of the
analysis dataset, makes sharing code easy and transparent, and helps to keep directories
neat and organized. Moreover, with the data as subdatasets, data and code can be auto-
matically shared together. By complying to this principle, you were able to submit both
code and data in a single superdataset.

• Keeping an analysis dataset fully self-contained with relative instead of absolute paths in
scripts is critical to ensure that an analysis reproduces easily on a different computer.

• DataLad’s Python API makes all of DataLad’s functionality available in Python, either as
standalone functions that are exposed via datalad.api, or as methods of the Dataset
class. This provides an alternative to the command line, but it also opens up the possibility
of performing DataLad commands directly inside of scripts.

• Including the computational environment into an analysis dataset encapsulates software
and software versions, and thus prevents re-computation failures (or sudden differences in
the results) once software is updated, and software conflicts arising on different machines
than the one the analysis was originally conducted on. You have not yet experienced how
to do this first-hand, but you will in a later section.

• Having all of these components as part of a DataLad dataset allows version controlling
all pieces within the analysis regardless of their size, and generates provenance for every-
thing, especially if you make use of the tools that DataLad provides. This way, anyone
can understand and even reproduce your analysis without much knowledge about your
project.

156 Chapter 11. Make the most out of datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• The yoda procedure is a good starting point to build your next data analysis project up
on.

Now what can I do with it?

Using tools that DataLad provides you are able to make the most out of your data analysis
project. The YODA principles are a guide to accompany you on your path to reproducibility and
provenance-tracking.

What should have become clear in this section is that you are already equipped with enough
DataLad tools and knowledge that complying to these standards felt completely natural and
effortless in your midterm analysis project.

11.4. Summary 157

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M11.2 DataLad’s Python API

“Whatever you can do with DataLad from the command line, you can also
do it with DataLad’s Python API”, begins the lecturer. “In addition to the
command line interface you are already very familiar with, DataLad’s func-
tionality can also be used within interactive Python sessions or Python scripts.
This feature can help to automate dataset operations, provides an alternative
to the command line, and it is immensely useful when creating reproducible
data analyses.”
All of DataLad’s user-oriented commands are exposed via datalad.api. Thus,
any command can be imported as a stand-alone command like this:

>>> from datalad.api import <COMMAND>

Alternatively, to import all commands, one can use

>>> import datalad.api as dl

and subsequently access commands as dl.get(), dl.clone(), and so forth.
The developer documentation128 of DataLad lists an overview of all com-
mands, but naming is congruent to the command line interface. The only
functionality that is not available at the command line is datalad.api.
Dataset, DataLad’s core Python data type. Just like any other command,
it can be imported like this:

>>> from datalad.api import Dataset

or like this:

>>> import datalad.api as dl
>>> dl.Dataset()

A Dataset is a class129 that represents a DataLad dataset. In addition to
the stand-alone commands, all of DataLad’s functionality is also available via
methods130 of this class. Thus, these are two equally valid ways to create a
new dataset with DataLad in Python:

>>> from datalad.api import create, Dataset
create as a stand-alone command
>>> create(path='scratch/test')
[INFO] Creating a new annex repo at /home/me/scratch/test
Out[3]: <Dataset path=/home/me/scratch/test>

create as a dataset method
>>> ds = Dataset(path='scratch/test')
>>> ds.create()
[INFO] Creating a new annex repo at /home/me/scratch/test
Out[3]: <Dataset path=/home/me/scratch/test>

As shown above, the only required parameter for a Dataset is the path to its
location, and this location may or may not exist yet.
Stand-alone functions have a dataset= argument, corresponding to the -d/
--dataset option in their command-line equivalent. You can specify the
dataset= argument with a path (string) to your dataset (such as dataset='.
' for the current directory, or dataset='path/to/ds' to another location).
Alternatively, you can pass a Dataset instance to it:

158 Chapter 11. Make the most out of datasets

http://docs.datalad.org/en/latest/modref.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html#method-objects

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

>>> from datalad.api import save, Dataset
use save with dataset specified as a path
>>> save(dataset='path/to/dataset/')
use save with dataset specified as a dataset instance
>>> ds = Dataset('path/to/dataset')
>>> save(dataset=ds, message="saving all modifications")
use save as a dataset method (no dataset argument)
>>> ds.save(message="saving all modifications")

Use cases for DataLad’s Python API
“Why should one use the Python API? Can we not do everything necessary via
the command line already? Does Python add anything to this?” asks some-
body.
It is completely up to on you and dependent on your preferred workflow
whether you decide to use the command line or the Python API of DataLad
for the majority of tasks. Both are valid ways to accomplish the same results.
One advantage of using the Python API is the Dataset though: Given that
the command line datalad command has a startup time (even when doing
nothing) of ~200ms, this means that there is the potential for substantial
speed-up when doing many calls to the API, and using a persistent Dataset
object instance.

128 http://docs.datalad.org/en/latest/modref.html
129 https://docs.python.org/3/tutorial/classes.html
130 https://docs.python.org/3/tutorial/classes.html#method-objects

11.4. Summary 159

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M11.3 Creating an independent input dataset

If you acquire your own data for a data analysis, it will not magically exist as a DataLad
dataset that you can simply install from somewhere – you’ll have to turn it into a dataset
yourself. Any directory with data that exists on your computer can be turned into a
dataset with datalad create --force and a subsequent datalad save -m "add data" .
to first create a dataset inside of an existing, non-empty directory, and subsequently save
all of its contents into the history of the newly created dataset. And that’s it already –
it does not take anything more to create a stand-alone input dataset from existing data
(apart from restraining yourself from modifying it afterwards).
To create the iris_data dataset at https://github.com/datalad-handbook/iris_data we
first created a DataLad dataset. . .

make sure to move outside of DataLad-101!
$ cd ../
$ datalad create iris_data
[INFO] Creating a new annex repo at /home/me/dl-101/iris_data
[INFO] scanning for unlocked files (this may take some time)
create(ok): /home/me/dl-101/iris_data (dataset)

and subsequently got the data from a publicly available GitHub Gist133, a code snip-
pet or other short standalone information (more on Gists here134), with a datalad
download-url command:

$ cd iris_data
$ datalad download-url https://gist.githubusercontent.com/netj/8836201/
→˓raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv
[INFO] Downloading 'https://gist.githubusercontent.com/netj/8836201/raw/
→˓6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv' into '/home/me/dl-
→˓101/iris_data/'
download_url(ok): /home/me/dl-101/iris_data/iris.csv (file)
add(ok): iris.csv (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

Finally, we published (more on this later in this section) the dataset to GITHUB.
With this setup, the iris dataset (a single comma-separated (.csv) file) is downloaded,
and, importantly, the dataset recorded where it was obtained from thanks to datalad
download-url, thus complying to the second YODA principle. This way, upon installation
of the dataset, DataLad knows where to obtain the file content from. You can datalad
clone the iris dataset and find out with a git annex whereis iris.csv command.
133 https://gist.github.com/netj/8836201
134 https://docs.github.com/en/github/writing-on-github/editing-and-sharing-content-with-gists/creatin

g-gists#about-gists

160 Chapter 11. Make the most out of datasets

https://github.com/datalad-handbook/iris_data
https://gist.github.com/netj/8836201
https://docs.github.com/en/github/writing-on-github/editing-and-sharing-content-with-gists/creating-gists#about-gists

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M11.7 On the looks and feels of this published dataset

Now that you have created and published such a YODA-compliant dataset, you are under-
standably excited how this dataset must look and feel for others. Therefore, you decide
to install this dataset into a new location on your computer, just to get a feel for it.
Replace the url in the clone command below with the path to your own
midtermproject GitHub repository, or clone the “public” midterm_project reposi-
tory that is available via the Handbook’s GitHub organization at github.com/datalad-
handbook/midterm_project144:

$ cd ../../
$ datalad clone "https://github.com/adswa/midtermproject.git"
[INFO] Cloning dataset to Dataset(/home/me/dl-101/midtermproject)
[INFO] Attempting to clone from https://github.com/adswa/midtermproject.git to /
→˓home/me/dl-101/midtermproject
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/midtermproject)
[INFO] scanning for unlocked files (this may take some time)
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): /home/me/dl-101/midtermproject (dataset)

Let’s start with the subdataset, and see whether we can retrieve the input iris.csv file.
This should not be a problem, since its origin is recorded:

$ cd midtermproject
$ datalad get input/iris.csv
[INFO] Cloning dataset to Dataset(/home/me/dl-101/midtermproject/input)
[INFO] Attempting to clone from https://github.com/adswa/midtermproject.git/input␣
→˓to /home/me/dl-101/midtermproject/input
[INFO] Attempting to clone from https://github.com/adswa/midtermproject.git/input/.
→˓git to /home/me/dl-101/midtermproject/input
[INFO] Attempting to clone from https://github.com/datalad-handbook/iris_data.git␣
→˓to /home/me/dl-101/midtermproject/input
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/midtermproject/input)
[INFO] scanning for unlocked files (this may take some time)
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): /home/me/dl-101/midtermproject/input (dataset) [Installed subdataset␣
→˓in order to get /home/me/dl-101/midtermproject/input/iris.csv]
get(ok): input/iris.csv (file) [from web...]
action summary:
get (ok: 1)
install (ok: 1)

Nice, this worked well. The output files, however, can not be easily retrieved:

11.4. Summary 161

https://github.com/datalad-handbook/midterm_project
https://github.com/datalad-handbook/midterm_project

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad get prediction_report.csv pairwise_relationships.png
[ERROR] not available; (Note that these git remotes have annex-ignore set: origin)␣
→˓[get(/home/me/dl-101/midtermproject/pairwise_relationships.png)]
get(error): pairwise_relationships.png (file) [not available; (Note that these git␣
→˓remotes have annex-ignore set: origin)]
[ERROR] not available; (Note that these git remotes have annex-ignore set: origin)␣
→˓[get(/home/me/dl-101/midtermproject/prediction_report.csv)]
get(error): prediction_report.csv (file) [not available; (Note that these git␣
→˓remotes have annex-ignore set: origin)]
action summary:
get (error: 2)

Why is that? This is the first detail of publishing datasets we will dive into. When
publishing dataset content to GitHub with datalad push, it is the dataset’s history, i.e.,
everything that is stored in Git, that is published. The file content of these particular
files, though, is managed by GIT-ANNEX and not stored in Git, and thus only information
about the file name and location is known to Git. Because GitHub does not host large
data for free, annexed file content always needs to be deposited somewhere else (e.g., a
web server) to make it accessible via datalad get. The chapter Third party infrastructure
(page 177) will demonstrate how this can be done. For this dataset, it is not necessary
to make the outputs available, though: Because all provenance on their creation was
captured, we can simply recompute them with the datalad rerun command. If the tag
was published we can simply rerun any datalad run command since this tag:

$ datalad rerun --since ready4analysis

But without the published tag, we can rerun the analysis by specifying its shasum:

$ datalad rerun d715890b36b9a089eedbb0c929f52e182e889735
[INFO] run commit d715890; (analyze iris data...)
[INFO] Making sure inputs are available (this may take some time)
[WARNING] no content present; cannot unlock [unlock(/home/me/dl-101/midtermproject/
→˓pairwise_relationships.png)]
[WARNING] no content present; cannot unlock [unlock(/home/me/dl-101/midtermproject/
→˓prediction_report.csv)]
remove(ok): pairwise_relationships.png
remove(ok): prediction_report.csv
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): pairwise_relationships.png (file)
add(ok): prediction_report.csv (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
get (notneeded: 3)
remove (ok: 2)
save (notneeded: 1, ok: 1)

Hooray, your analysis was reproduced! You happily note that rerunning your analysis
was incredibly easy – it would not even be necessary to have any knowledge about the
analysis at all to reproduce it! With this, you realize again how letting DataLad take care
of linking input, output, and code can make your life and others’ lives so much easier.
Applying the YODA principles to your data analysis was very beneficial indeed. Proud of
your midterm project you can not wait to use those principles the next time again.

162 Chapter 11. Make the most out of datasets

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

144 https://github.com/datalad-handbook/midterm_project

11.4. Summary 163

CHAPTER

TWELVE

ONE STEP FURTHER

12.1 More on Dataset nesting

You may have noticed how working in the subdataset felt as if you would be working in an inde-
pendent dataset – there was no information or influence at all from the top-level DataLad-101
superdataset, and you build up a completely stand-alone history:

$ git log --oneline
0687926 Provide project description
f76acca [DATALAD RUNCMD] analyze iris data with classification analysis
dd36472 add script for kNN classification and plotting
01447d9 [DATALAD] modified subdataset properties
2465103 [DATALAD] Recorded changes
261ea45 Apply YODA dataset setup
50e40b2 [DATALAD] new dataset

In principle, this is no news to you. From section Dataset nesting (page 53) and the YODA
principles you already know that nesting allows for a modular re-use of any other DataLad
dataset, and that this re-use is possible and simple precisely because all of the information is
kept within a (sub)dataset.

What is new now, however, is that you applied changes to the dataset. While you already
explored the looks and feels of the longnow subdataset in previous sections, you now modified
the contents of the midterm_project subdataset. How does this influence the superdataset, and
how does this look like in the superdataset’s history? You know from section Dataset nesting
(page 53) that the superdataset only stores the state of the subdataset. Upon creation of the
dataset, the very first, initial state of the subdataset was thus recorded in the superdataset. But

164

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

now, after you finished your project, your subdataset evolved. Let’s query the superdataset what
it thinks about this.

move into the superdataset
$ cd ../
$ datalad status
modified: midterm_project (dataset)

From the superdataset’s perspective, the subdataset appears as being “modified”. Note how it is
not individual files that show up as “modified”, but indeed the complete subdataset as a single
entity.

What this shows you is that the modifications of the subdataset you performed are not auto-
matically recorded to the superdataset. This makes sense – after all it should be up to you to
decide whether you want record something or not –, but it is worth repeating: If you modify a
subdataset, you will need to save this in the superdataset in order to have a clean superdataset
status.

This point in time in DataLad-101 is a convenient moment to dive a bit deeper into the func-
tions of the datalad status command. If you are interested in this, checkout the dedicated
Findoutmore (page 173).

Let’s save the modification of the subdataset into the history of the superdataset. For this, to
avoid confusion, you can specify explicitly to which dataset you want to save a modification. -d
. specifies the current dataset, i.e., DataLad-101, as the dataset to save to:

$ datalad save -d . -m "finished my midterm project" midterm_project
add(ok): midterm_project (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

M12.2 More on how save can operate on nested datasets

In a superdataset with subdatasets, datalad save by default tries to figure out on its own
which dataset’s history of all available datasets a save should be written to. However, it
can reduce confusion or allow specific operations to be very explicit in the command call
and tell DataLad where to save what kind of modifications to.
If you want to save the current state of the subdataset into the superdataset (as necessary
here), start a save from the superdataset and have the -d/--dataset option point to its
root:

in the root of the superds
$ datalad save -d . -m "update subdataset"

If you are in the superdataset, and you want to save an unsaved modification in a sub-
dataset to the subdatasets history, let -d/--dataset point to the subdataset:

in the superds
$ datalad save -d path/to/subds -m "modified XY"

The recursive option allows you to save any content underneath the specified directory,
and recurse into any potential subdatasets:

$ datalad save . --recursive

12.1. More on Dataset nesting 165

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Let’s check which subproject commit is now recorded in the superdataset:

$ git log -p -n 1
commit 4d216b85af27e7fdabd0d2a62e9d8e8273064cab
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:23:05 2021 +0200

finished my midterm project

diff --git a/midterm_project b/midterm_project
index 261ea45..0687926 160000
--- a/midterm_project
+++ b/midterm_project
@@ -1 +1 @@
-Subproject commit 261ea45212b615fc7aca52d6f3509a731d666001
+Subproject commit 0687926665d919ee11ae41cf6be1c16d0a9d958c

As you can see in the log entry, the subproject commit changed from the first commit hash in
the subdataset history to the most recent one. With this change, therefore, your superdataset
tracks the most recent version of the midterm_project dataset, and your dataset’s status is clean
again.

12.2 Computational reproducibility with software containers

Just after submitting your midterm data analysis project, you get together with your friends.
“I’m curious: So what kind of analyses did y’all carry out?” you ask. The variety of methods and
datasets the others used is huge, and one analysis interests you in particular. Later that day, you
decide to install this particular analysis dataset to learn more about the methods used in there.
However, when you re-run your friends analysis script, it throws an error. Hastily, you call her
– maybe she can quickly fix her script and resubmit the project with only minor delays. “I don’t
know what you mean”, you hear in return. “On my machine, everything works fine!”

On its own, DataLad datasets can contain almost anything that is relevant to ensure repro-
ducibility: Data, code, human-readable analysis descriptions (e.g., README.md files), provenance
on the origin of all files obtained from elsewhere, and machine-readable records that link gen-
erated outputs to the commands, scripts, and data they were created from.

This however may not be sufficient to ensure that an analysis reproduces (i.e., produces the
same or highly similar results), let alone works on a computer different than the one it was
initially composed on. This is because the analysis does not only depend on data and code, but
also the software environment that it is conducted in.

A lack of information about the operating system of the computer, the precise versions of in-
stalled software, or their configurations may make it impossible to replicate your analysis on
a different machine, or even on your own machine once a new software update is installed.
Therefore, it is important to communicate all details about the computational environment for
an analysis as thoroughly as possible. Luckily, DataLad provides an extension that can link
computational environments to datasets, the datalad containers156 extension169.

This section will give a quick overview on what containers are and demonstrate how
datalad-containers helps to capture full provenance of an analysis by linking containers to
datasets and analyses.
156 http://docs.datalad.org/projects/container/en/latest/
169 To read more about DataLad’s extensions, see section DataLad extensions (page 285).

166 Chapter 12. One step further

http://docs.datalad.org/projects/container/en/latest/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Note: In order to run the commands in this section, the datalad-containers extension needs to
be installed separately, simply with pip install datalad-container.

Containers

To put it simple, computational containers are cut-down virtual machines that allow you to
package all software libraries and their dependencies (all in the precise version your analysis
requires) into a bundle you can share with others. On your own and other’s machines, the
container constitutes a secluded software environment that

• contains the exact software environment that you specified, ready to run analyses in

• does not effect any software outside of the container

Unlike virtual machines, software containers do not have their own operating system. Instead,
they use basic services of the underlying operating system of the computer they run on (in
a read-only fashion). This makes them lightweight and portable. By sharing software envi-
ronments with containers, others (and also yourself) have easy access to the correct software
without the need to modify the software environment of the machine the container runs on.
Thus, containers are ideal to encapsulate the software environment and share it together with
the analysis code and data to ensure computational reproducibility of your analyses, or to cre-
ate a suitable software environment on a computer that you do not have permissions to deploy
software on.

There are a number of different tools to create and use containers, with Docker157 being one
of the most well-known of them. While being a powerful tool, it is only rarely used on high
performance computing (HPC) infrastructure170. An alternative is Singularity158. Both of these
tools share core terminology:

Recipe A text file template that lists all required components of the computational environ-
ment. It is made by a human user.

Image This is built from the recipe file. It is a static filesystem inside a file, populated with the
software specified in the recipe, and some initial configuration.

Container A running instance of an Image that you can actually use for your computations. If
you want to create and run your own software container, you start by writing a recipe file
and build an Image from it. Alternatively, you can can also pull an Image built from a
publicly shared recipe from the Hub of the tool you are using.

Hub A storage resource to share and consume images. Among the most popular registries
are Singularity-Hub159 and Docker-Hub160. Both are optional, additional services not re-
quired to use software containers, but a convenient way to share recipes and have imaged
built from them by a service (instead of building them manually and locally). Another
large container registry is Amazon ECR161 which hosts Docker Images.

157 https://www.docker.com/
170 The main reason why Docker is not deployed on HPC systems is because it grants users “superuser privileges171”.

On multi-user systems such as HPC, users should not have those privileges, as it would enable them to tamper
with other’s or shared data and resources, posing a severe security threat.

171 https://en.wikipedia.org/wiki/Superuser
158 https://sylabs.io/docs/
159 https://singularity-hub.org/
160 https://hub.docker.com/
161 https://aws.amazon.com/ecr/

12.2. Computational reproducibility with software containers 167

https://www.docker.com/
https://sylabs.io/docs/
https://singularity-hub.org/
https://hub.docker.com/
https://aws.amazon.com/ecr/
https://en.wikipedia.org/wiki/Superuser

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Note that as of now, the datalad-containers extension supports Singularity and Docker images.
Singularity furthermore is compatible with Docker – you can use Docker Images as a basis
for Singularity Images, or run Docker Images with Singularity (even without having Docker
installed).

Additional requirement: Singularity

In order to use Singularity containers (and thus datalad containers), you have to in-
stall162 the software singularity.

162 https://sylabs.io/guides/3.0/user-guide/installation.html

Using datalad containers

One core feature of the datalad containers extension is that it registers computational con-
tainers to a dataset. This is done with the datalad containers-add command. Once a container
is registered, arbitrary commands can be executed inside of it, i.e., in the precise software envi-
ronment the container encapsulates. All it needs for this it to swap the datalad run command
introduced in section Keeping track (page 59) with the datalad containers-run command.

Let’s see this in action for the midterm_analysis dataset by rerunning the analysis you did for
the midterm project within a Singularity container. We start by registering a container to the
dataset. For this, we will pull an Image from Singularity hub. This Image was made for the
handbook, and it contains the relevant Python setup for the analysis. Its recipe lives in the
handbook’s resources repository163, and the Image is built from the recipe via Singularity hub.
If you’re curious how to create a Singularity Image, the hidden section below has some pointers:

M12.3 How to make a Singularity Image

Singularity containers are build from Image files, often called “recipes”, that hold a “def-
inition” of the software container and its contents and components. The singularity doc-
umentation164 has its own tutorial on how to build such Images from scratch. An alter-
native to writing the Image file by hand is to use Neurodocker165. This command-line
program can help you generate custom Singularity recipes (and also Dockerfiles, from
which Docker Images are build). A wonderful tutorial on how to use Neurodocker is this
introduction166 by Michael Notter.
Once a recipe exists, the command

sudo singularity build <NAME> <RECIPE>

will build a container (called <NAME>) from the recipe. Note that this command requires
root privileges (”sudo”). You can build the container on any machine, though, not nec-
essarily the one that is later supposed to actually run the analysis, e.g., your own laptop
versus a compute cluster. Alternatively, Singularity Hub167 integrates with Github and
builds containers from Images pushed to repositories on Github. The docs168 give you a
set of instructions on how to do this.
164 https://sylabs.io/guides/3.4/user-guide/build_a_container.html
165 https://github.com/ReproNim/neurodocker
166 https://miykael.github.io/nipype_tutorial/notebooks/introduction_neurodocker.html
167 https://singularity-hub.org/
168 https://singularityhub.github.io/singularityhub-docs/

163 https://github.com/datalad-handbook/resources

168 Chapter 12. One step further

https://sylabs.io/guides/3.0/user-guide/installation.html
https://sylabs.io/guides/3.0/user-guide/installation.html
https://github.com/datalad-handbook/resources
https://sylabs.io/guides/3.4/user-guide/build_a_container.html
https://sylabs.io/guides/3.4/user-guide/build_a_container.html
https://github.com/ReproNim/neurodocker
https://miykael.github.io/nipype_tutorial/notebooks/introduction_neurodocker.html
https://miykael.github.io/nipype_tutorial/notebooks/introduction_neurodocker.html
https://singularity-hub.org/
https://singularityhub.github.io/singularityhub-docs/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The datalad containers-add command takes an arbitrary name to give to the container, and a
path or url to a container Image:

we are in the midterm_project subdataset
$ datalad containers-add midterm-software --url shub://adswa/resources:2
[INFO] Initiating special remote datalad
add(ok): .datalad/config (file)
save(ok): . (dataset)
containers_add(ok): /home/me/dl-101/DataLad-101/midterm_project/.datalad/environments/
→˓midterm-software/image (file)
action summary:
add (ok: 1)
containers_add (ok: 1)
save (ok: 1)

M12.4 How do I add an Image from Dockerhub, Amazon ECR, or a local container?

Should the Image you want to use lie on Dockerhub, specify the --url option prefixed
with docker:// or dhub:// instead of shub:// like this:

datalad containers-add midterm-software --url docker://adswa/resources:2

If your Image exists on Amazon ECR, use a dhub:// prefix followed by the AWS ECR URL
as in

datalad containers-add --url dhub://12345678.dkr.ecr.us-west-2.amazonaws.com/maze-
→˓code/data-import:latest data-import

If you want to add a container that exists locally, specify the path to it like this:

datalad containers-add midterm-software --url path/to/container

This command downloaded the container from Singularity Hub, added it to the
midterm_project dataset, and recorded basic information on the container under its name
“midterm-software” in the dataset’s configuration at .datalad/config. You can find out more
about them in a dedicated find-out-more on these additional configurations (page 175).

Now that we have a complete computational environment linked to the midterm_project
dataset, we can execute commands in this environment. Let us for example try to repeat the
datalad run command from the section YODA-compliant data analysis projects (page 143) as a
datalad containers-run command.

The previous run command looked like this:

$ datalad run -m "analyze iris data with classification analysis" \
--input "input/iris.csv" \
--output "prediction_report.csv" \
--output "pairwise_relationships.png" \
"python3 code/script.py"

How would it look like as a containers-run command?

$ datalad containers-run -m "rerun analysis in container" \
--container-name midterm-software \
--input "input/iris.csv" \
--output "prediction_report.csv" \
--output "pairwise_relationships.png" \

(continues on next page)

12.2. Computational reproducibility with software containers 169

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

"python3 code/script.py"
[INFO] Making sure inputs are available (this may take some time)
unlock(ok): pairwise_relationships.png (file)
unlock(ok): prediction_report.csv (file)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): pairwise_relationships.png (file)
add(ok): prediction_report.csv (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
get (notneeded: 4)
save (notneeded: 1, ok: 1)
unlock (ok: 2)

Almost exactly like a datalad run command! The only additional parameter is container-name.
At this point, though, the --container-name flag is even optional because there is only a single
container registered to the dataset. But if your dataset contains more than one container you
will need to specify the name of the container you want to use in your command. The complete
command’s structure looks like this:

$ datalad containers-run --name <containername> [-m ...] [--input ...] [--output ...]
→˓<COMMAND>

M12.6 How can I list available containers or remove them?

The command datalad containers-list will list all containers in the current dataset:

$ datalad containers-list
midterm-software -> .datalad/environments/midterm-software/image

The command datalad containers-remove will remove a container from the dataset, if
there exists a container with name given to the command. Note that this will remove not
only the Image from the dataset, but also the configuration for it in .datalad/config.

Here is how the history entry looks like:

$ git log -p -n 1
commit e231e465180918f572c1f2954302b7b958f82c52
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:24:53 2021 +0200

[DATALAD RUNCMD] rerun analysis in container

=== Do not change lines below ===
{
"chain": [],
"cmd": "singularity exec .datalad/environments/midterm-software/image python3 code/

→˓script.py",
"dsid": "fea0e9c7-7932-41d5-8d57-97ac9ac6755a",
"exit": 0,
"extra_inputs": [
".datalad/environments/midterm-software/image"
],
"inputs": [

(continues on next page)

170 Chapter 12. One step further

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

"input/iris.csv"
],
"outputs": [
"prediction_report.csv",
"pairwise_relationships.png"
],
"pwd": "."

}
^^^ Do not change lines above ^^^

diff --git a/pairwise_relationships.png b/pairwise_relationships.png
index c3e4d53..963d5a8 120000
--- a/pairwise_relationships.png
+++ b/pairwise_relationships.png
@@ -1 +1 @@
-.git/annex/objects/09/M8/MD5E-s260804--3bf42e2d4c2a88ec0ddc5b16c4151c68.png/MD5E-s260804-
→˓-3bf42e2d4c2a88ec0ddc5b16c4151c68.png
\ No newline at end of file
+.git/annex/objects/q1/gp/MD5E-s261062--025dc493ec2da6f9f79eb1ce8512cbec.png/MD5E-s261062-
→˓-025dc493ec2da6f9f79eb1ce8512cbec.png
\ No newline at end of file

If you would rerun this commit, it would be re-executed in the software container registered
to the dataset. If you would share the dataset with a friend and they would rerun this commit,
the Image would first be obtained from its registered url, and thus your friend can obtain the
correct execution environment automatically.

Note that because this new containers-run command modified the midterm_project subdi-
rectory, we need to also save the most recent state of the subdataset to the superdataset
DataLad-101.

$ cd ../
$ datalad status
modified: midterm_project (dataset)

$ datalad save -d . -m "add container and execute analysis within container" midterm_
→˓project
add(ok): midterm_project (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Software containers, the datalad-containers extension, and DataLad thus work well together
to make your analysis completely reproducible – by not only linking code, data, and outputs,
but also the software environment of an analysis. And this does not only benefit your future
self, but also whomever you share your dataset with, as the information about the container is
shared together with the dataset. How cool is that?

If you are interested in more, you can read about another example of datalad containers-run
in the usecase An automatically and computationally reproducible neuroimaging analysis from
scratch (page 420).

12.2. Computational reproducibility with software containers 171

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

12.3 Summary

The last two sections have first of all extended your knowledge on dataset nesting:

• When subdatasets are created or installed, they are registered to the superdataset in their
current version state (as identified by their most recent commit’s hash). For a freshly
created subdatasets, the most recent commit is at the same time its first commit.

• Once the subdataset evolves, the superdataset recognizes this as a modification of the
subdatasets version state. If you want to record this, you need to save it in the super-
dataset:

$ datalad save -m "a short summary of changes in subds" <path to subds>

But more than nesting concepts, they have also extended your knowledge on reproducible anal-
yses with datalad run and you have experienced for yourself why and how software containers
can go hand-in-hand with DataLad:

• A software container encapsulates a complete software environment, independent from
the environment of the computer it runs on. This allows you to create or use secluded soft-
ware and also share it together with your analysis to ensure computational reproducibility.
The DataLad extension datalad containers172 can make this possible.

• The command datalad containers-add registers an Image from a path or url to your
dataset.

• If you use datalad containers-run instead of datalad run, you can reproducibly execute
a command of your choice within the software environment.

• A datalad rerun of a commit produced with datalad containers-run will re-execute the
command in the same software environment.

Now what can I do with it?

For one, you will not be surprised if you ever see a subdataset being shown as modified by
datalad status: You now know that if a subdataset evolves, it’s most recent state needs to be
explicitly saved to the superdatasets history.

On a different matter, you are now able to capture and share analysis provenance that includes
the relevant software environment. This does not only make your analyses projects automat-
ically reproducible, but automatically computationally reproducible - you can make sure that
your analyses runs on any computer with Singularity, regardless of the software environment
on this computer. Even if you are unsure how you can wrap up an environment into a software
container Image at this point, you could make use of hundreds of publicly available Images on
Singularity-Hub173 and Docker-Hub174.

With this, you have also gotten a first glimpse into an extension of DataLad: A Python module
you can install with Python package managers such as pip that extends DataLad’s functionality.

172 http://docs.datalad.org/projects/container/en/latest/
173 https://singularity-hub.org/
174 https://hub.docker.com/

172 Chapter 12. One step further

http://docs.datalad.org/projects/container/en/latest/
https://singularity-hub.org/
https://hub.docker.com/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M12.1 More on datalad status

First of all, let’s start with a quick overview of the different content types and content
states various datalad status commands in the course of DataLad-101 have shown up
to this point:
You have seen the following content types:

• file, e.g., notes.txt: any file (or symlink that is a placeholder to an annexed file)
• directory, e.g., books: any directory that does not qualify for the dataset type
• symlink, e.g., the .jgp that was manually unlocked in section Input and output

(page 70): any symlink that is not used as a placeholder for an annexed file
• dataset, e.g., the midterm_project: any top-level dataset, or any subdataset that

is properly registered in the superdataset
And you have seen the following content states: modified and untracked. The section
Miscellaneous file system operations (page 224) will show you many instances of deleted
content state as well.
But beyond understanding the report of datalad status, there is also additional func-
tionality: datalad status can handle status reports for a whole hierarchy of datasets,
and it can report on a subset of the content across any number of datasets in this hierar-
chy by providing selected paths. This is useful as soon as datasets become more complex
and contain subdatasets with changing contents.
When performed without any arguments, datalad status will report the state of the
current dataset. However, you can specify a path to any sub- or superdataset with the
--dataset option.
In order to demonstrate this a bit better, we will make sure that not only the state of the
subdataset within the superdataset is modified, but also that the subdataset contains a
modification. For this, let’s add an empty text file into the midterm_project subdataset:

$ touch midterm_project/an_empty_file

If you are in the root of DataLad-101, but interested in the status within the subdataset,
simply provide a path (relative to your current location) to the command:

$ datalad status midterm_project
untracked: midterm_project/an_empty_file (file)

Alternatively, to achieve the same, specify the superdataset as the --dataset and provide
a path to the subdataset with a trailing path separator like this:

$ datalad status -d . midterm_project/
untracked: midterm_project/an_empty_file (file)

Note that both of these commands return only the untracked file and not not the
modified subdataset because we’re explicitly querying only the subdataset for its sta-
tus. If you however, as done outside of this hidden section, you want to know about
the subdataset record in the superdataset without causing a status query for the state
within the subdataset itself, you can also provide an explicit path to the dataset (without
a trailing path separator). This can be used to specify a specific subdataset in the case of
a dataset with many subdatasets:

$ datalad status -d . midterm_project
modified: midterm_project (dataset)

But if you are interested in both the state within the subdataset, and the state of the
subdataset within the superdataset, you can combine the two paths:

12.3. Summary 173

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad status -d . midterm_project midterm_project/
modified: midterm_project (dataset)
untracked: midterm_project/an_empty_file (file)

Finally, if these subtle differences in the paths are not easy to memorize, the -r/
--recursive option will also report you both status aspects:

$ datalad status --recursive
modified: midterm_project (dataset)
untracked: midterm_project/an_empty_file (file)

This still was not all of the available functionality of the datalad status command. You
could for example adjust whether and how untracked dataset content should be reported
with the --untracked option, or get additional information from annexed content with
the --annex option. To get a complete overview on what you could do, check out the
technical documentation of datalad status here155.
Before we leave this hidden section, lets undo the modification of the subdataset by
removing the untracked file:

$ rm midterm_project/an_empty_file
$ datalad status --recursive
modified: midterm_project (dataset)

155 http://docs.datalad.org/en/latest/generated/man/datalad-status.html

174 Chapter 12. One step further

http://docs.datalad.org/en/latest/generated/man/datalad-status.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M12.5 What changes in .datalad/config when one adds a container?

$ cat .datalad/config
[datalad "dataset"]

id = fea0e9c7-7932-41d5-8d57-97ac9ac6755a
[datalad "containers.midterm-software"]

image = .datalad/environments/midterm-software/image
cmdexec = singularity exec {img} {cmd}

This recorded the Image’s origin on Singularity-Hub, the location of the Image in the
dataset under .datalad/environments/<NAME>/image, and it specifies the way in which
the container should be used: The line

cmdexec = singularity exec {img} {cmd}

can be read as: “If this container is used, take the cmd (what you wrap in a datalad
containers-run command) and plug it into a singularity exec command. The mode of
calling Singularity, namely exec, means that the command will be executed inside of the
container.
You can configure this call format by modifying it in the config file, or calling datalad
containers-add with the option --call-fmt <alternative format>. This can be useful
to, for example, automatically bind-mount the current working directory in the container.
In the alternative call format, the placeholders {img}, {cmd}, and {img_dspath} (a rel-
ative path to the dataset containing the image) are available. In all other cases with
variables that use curly brackets, you need to escape them with another curly bracket.
Here is an example call format that bind-mounts the current working directory (and thus
the dataset) automatically:

datalad containers-add --call-fmt 'singularity exec -B {{pwd}} --cleanenv {img}
→˓{cmd}'

Note that the Image is saved under .datalad/environments and the configuration is done
in .datalad/config – as these files are version controlled and shared with together with
a dataset, your software container and the information where it can be re-obtained from
are linked to your dataset.
This is how the containers-add command is recorded in your history:

12.3. Summary 175

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ git log -n 1 -p
commit 4abf32c5ab84aca1c6a1b54da71a0b14e395bceb
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:24:46 2021 +0200

[DATALAD] Configure containerized environment 'midterm-software'

diff --git a/.datalad/config b/.datalad/config
index f2270b6..efefa2d 100644
--- a/.datalad/config
+++ b/.datalad/config
@@ -1,2 +1,5 @@
[datalad "dataset"]

id = fea0e9c7-7932-41d5-8d57-97ac9ac6755a
+[datalad "containers.midterm-software"]
+ image = .datalad/environments/midterm-software/image
+ cmdexec = singularity exec {img} {cmd}
diff --git a/.datalad/environments/midterm-software/image b/.datalad/environments/
→˓midterm-software/image
new file mode 120000
index 0000000..75c8b41
--- /dev/null
+++ b/.datalad/environments/midterm-software/image
@@ -0,0 +1 @@
+../../../.git/annex/objects/F1/K3/MD5E-s230694943--
→˓944b0300fab145c7ebbd86078498b393/MD5E-s230694943--944b0300fab145c7ebbd86078498b393
\ No newline at end of file

176 Chapter 12. One step further

CHAPTER

THIRTEEN

THIRD PARTY INFRASTRUCTURE

13.1 Beyond shared infrastructure

Data sharing potentially involves a number of different elements:

Your dataset

work stations
& servers

Repository hosting
services

Third party
storage providers

Fig. 13.1: An overview of all elements potentially included in a publication workflow.

Users on a common, shared computational infrastructure such as an SSH SERVER can share
datasets via simple installations with paths, without any involvement of third party storage
providers or repository hosting services:

177

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

datalad get retrieves annexed
files automatically from local path

Clone a local path (on the same machine)

datalad clone <path/to/dataset>

datalad get retrieves annexed
files automatically from server

Clone from a server/cluster

datalad clone \
 <user@server:/path/to/dataset>

But at some point in a dataset’s life, you may want to share it with people that can’t access the
computer or server your dataset lives on, store it on other infrastructure to save diskspace, or
create a backup. When this happens, you will want to publish your dataset to repository hosting
services (for example GITHUB, GITLAB, or GIN) and/or third party storage providers (such as
Dropbox175, Google176, Amazon S3 buckets177, the Open Science Framework (OSF)178, and
many others).

This chapter tackles different aspects of dataset publishing. The remainder of this section talks
about general aspects of dataset publishing, and illustrates the idea of using third party services
as SPECIAL REMOTEs from which annexed file contents can be retrieved via datalad get.

The upcoming section Walk-through: Dataset hosting on GIN (page 208) shows you one of the
most easy ways to publish your dataset publicly or for selected collaborators and friends. If you
don’t want to dive in to all the details on dataset sharing, it is safe to directly skip ahead to this
section, and have your dataset published in only a few minutes.

Other sections in this chapter will showcase a variety of ways to publish datasets and their
contents to different services: The section Publishing datasets to Git repository hosting (page 184)
demonstrates how to publish datasets to any kind of Git repository hosting service. The sections
Walk-through: Amazon S3 as a special remote (page 197) and Walk-through: Dropbox as a special
remote (page 191) are concrete examples of sharing datasets publicly or with selected others
via different cloud services. The section Walk-through: Git LFS as a special remote on GitHub
(page 207) talks about using the centralized, for-pay service Git LFS179 for sharing dataset
content on GitHub, and the section Built-in data export (page 215) shows built-in dataset export
to services such as figshare.com180. If you want a walk-through for a different service, or if you
maybe even want to share your own walk-through, please get in touch181.

There can never be “too much” documentation

If you plan to share your own datasets with people that are unfamiliar with DataLad, it
may be helpful to give a short explanation of what a DataLad dataset is and what it can
do. For this, you can use a ready-made text block that the handbook provides. To find
this textblock, go to How can I help others get started with a shared dataset? (page 482).
Alternative, run datalad add-readme.

175 https://dropbox.com
176 https://google.com
177 https://aws.amazon.com/s3/?nc1=h_ls
178 https://osf.io/
179 https://git-lfs.github.com/
180 https://figshare.com/
181 https://github.com/datalad-handbook/book/issues/new

178 Chapter 13. Third party infrastructure

https://dropbox.com
https://google.com
https://aws.amazon.com/s3/?nc1=h_ls
https://osf.io/
https://git-lfs.github.com/
https://figshare.com/
https://github.com/datalad-handbook/book/issues/new

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Leveraging third party infrastructure

There are several ways to make datasets available for others:

• You can publish your dataset to a repository with annex support such as GIN or the
Open Science Framework (OSF)182,208. This is the easiest way to share datasets and all
their contents. Read on in the section Walk-through: Dataset hosting on GIN (page 208)
or consult the tutorials of the datalad-osf extension183 to learn how to do this.

• You can publish your dataset to a repository hosting service, and configure an exter-
nal resource that stores your annexed data. Such a resource can be a private web server,
but also a third party services cloud storage such as Dropbox184, Google185, Amazon S3
buckets186, Box.com187, owncloud188, sciebo189, or many more.

• You can export your dataset statically as a snapshot to a service such as Figshare190 or
the Open Science Framework (OSF)191208.

• You can publish your dataset to a repository hosting service and ensure that all dataset
contents are either available from pre-existing public sources or can be recomputed from
a RUN RECORD.

Dataset contents and third party services influence sharing

Because DataLad datasets are GIT repositories, it is possible to push datasets to any Git reposi-
tory hosting service, such as GITHUB, GITLAB, GIN, BITBUCKET, Gogs192, or Gitea193. You have
already done this in section YODA-compliant data analysis projects (page 143) when you shared
your midterm_project dataset via GITHUB.

However, most Git repository hosting services do not support hosting the file content of the files
managed by GIT-ANNEX. For example, the the results of the analysis in section YODA-compliant
data analysis projects (page 143), pairwise_comparisons.png and prediction_report.csv,
were not published to GitHub: There was meta data about their file availability, but if a friend
cloned this dataset and ran a datalad get command, content retrieval would fail because their
only known location is your private computer to which only you have access. Instead, they
would need to be recomputed from the RUN RECORD in the dataset.

When you are sharing DataLad datasets with other people or third party services, an important
distinction thus lies in annexed versus not-annexed content, i.e., files that stored in your dataset’s
ANNEX versus files that are committed into GIT. The third-party service of your choice may have
support for both annexed and non-annexed files, or only one them.
182 https://osf.io/
208 Requires the datalad-osf extension209.
209 http://docs.datalad.org/projects/osf/en/latest/index.html
183 http://docs.datalad.org/projects/osf/en/latest/index.html
184 https://dropbox.com
185 https://google.com
186 https://aws.amazon.com/s3/?nc1=h_ls
187 https://www.box.com/en-gb/home
188 https://owncloud.com
189 https://hochschulcloud.nrw
190 https://figshare.com/
191 https://osf.io/
192 https://gogs.io/
193 https://gitea.io/en-us/

13.1. Beyond shared infrastructure 179

https://osf.io/
http://docs.datalad.org/projects/osf/en/latest/index.html
https://dropbox.com
https://google.com
https://aws.amazon.com/s3/?nc1=h_ls
https://aws.amazon.com/s3/?nc1=h_ls
https://www.box.com/en-gb/home
https://owncloud.com
https://hochschulcloud.nrw
https://figshare.com/
https://osf.io/
https://gogs.io/
https://gitea.io/en-us/
http://docs.datalad.org/projects/osf/en/latest/index.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Git
- dataset history (commit messages,

 run records)

- All files + content committed into Git

 (useful with code, text, ...)

- File identity information of all annexed

 files (file name, identity hash, storage

 locations where to retrieve it from)

git-annex
- contents of annexed files

- organized in the "annex" or "object tree"

 of the dataset

Repository hosting
- usually no annex support &

 can't hold large data for free

- exposes Git history and files

 stored in Git

- datasets can be cloned from there

Storage hosting in a
special remote
- usually no Git repository hosting

 service

- stores the object tree/

 file contents

- datasets keep track of where

 data is stored, datalad get

 retrieves file contents from

 special remote

Fig. 13.2: Schematic difference between the Git and git-annex aspect of your dataset, and
where each part usually gets published to.

The common case: Repository hosting without annex support and special remotes

Because DataLad datasets are GIT repositories, it is possible to push datasets to any Git reposi-
tory hosting service, such as GITHUB, GITLAB, GIN, BITBUCKET, Gogs194, or Gitea195. But while
anything that is managed by Git is accessible in repository hosting services, they usually don’t
support storing annexed data210.

When you want to publish a dataset to a Git repository hosting service to allow others to easily
find and clone it, but you also want others to be able to retrieve annexed files in this dataset
via datalad get, annexed contents need to be pushed to additional storage hosting services.
The hosting services can be all kinds of private, institutional, or commercial services, and their
location will be registered in the dataset under the concept of a SPECIAL REMOTE.

M13.1 What is a special remote

A special-remote is an extension to Git’s concept of remotes, and can enable GIT-ANNEX

to transfer data from and possibly to places that are not Git repositories (e.g., cloud
services or external machines such as an HPC system). For example, an s3 special remote
uploads and downloads content to AWS S3, a web special remote downloads files from
the web, and datalad-archive extracts files from the annexed archives, etc. Don’t envision
a special-remote as merely a physical place or location – a special-remote is a protocol
that defines the underlying transport of your files to and/or from a specific location.

194 https://gogs.io/
195 https://gitea.io/en-us/
210 In addition to not storing annexed data, most Git repository hosting services also have a size limit for files kept

in Git. So while you could theoretically commit a sizable file into Git, this would not only negatively impact the
performance of your dataset as Git doesn’t handle large files well, but it would also prevent your dataset to be
published to a Git repository hosting service like GitHub211.

211 https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github

180 Chapter 13. Third party infrastructure

https://gogs.io/
https://gitea.io/en-us/
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

To register a special remote in your dataset and use it for file storage, you need to configure
the service of your choice and publish the annexed contents to it. Afterwards, the published
dataset (e.g., via GITHUB or GITLAB) stores the information about where to obtain annexed
file contents from such that datalad get works. Once you have configured the service of your
choice, you can push your datasets Git history to the repository hosting service and the annexed
contents to the special remote. But DataLad also makes it easy to push these different dataset
contents exactly where they need to be automatically via a PUBLICATION DEPENDENCY.

Exemplary walk-throughs for Dropbox196, Amazon S3 buckets197, and Git LFS198 can be found
in the upcoming sections in this chapter. But the general workflow looks as follows:

From your perspective (as someone who wants to share data), you will need to

• (potentially) install/setup the relevant special-remote,

• create a dataset sibling on GitHub/GitLab/. . . for others to install from

• set up a publication dependency between repository hosting and special remote , so that
annexed contents are automatically pushed to the special remote when ever you update
the sibling on the Git repository hosting site

• publish your dataset

This gives you the freedom to decide where your data lives and who can have access to it. Once
this set up is complete, updating and accessing a published dataset and its data is almost as
easy as if it would lie on your own machine.

From the perspective of a consumer (as someone who wants to obtain your dataset), they will
need to

• (potentially) install the relevant special-remote (dependent on the third-party service you
chose) and

• perform the standard datalad clone and datalad get commands as necessary.

Thus, from a collaborator’s perspective, with the exception of potentially installing/setting up
the relevant special-remote, obtaining your dataset and its data is as easy as with any public
DataLad dataset. While you have to invest some setup effort in the beginning, once this is done,
the workflows of yours and others are the same that you are already very familiar with.

Clone from a remote URL

datalad clone <URL> datalad get retrieves annexed files
from the original location or the special remote.
May need configuration by user or dataset provider.

196 https://dropbox.com
197 https://aws.amazon.com/s3/?nc1=h_ls
198 https://github.com/git-lfs/git-lfs

13.1. Beyond shared infrastructure 181

https://dropbox.com
https://aws.amazon.com/s3/?nc1=h_ls
https://github.com/git-lfs/git-lfs

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

If you are interested in learning how to set up different services as special remotes, you can take
a look at the sections Walk-through: Amazon S3 as a special remote (page 197), Walk-through:
Dropbox as a special remote (page 191) or Walk-through: Git LFS as a special remote on GitHub
(page 207) for concrete examples with DataLad datasets, and the general section Publishing
datasets to Git repository hosting (page 184) on setting up dataset siblings. In addition, there are
step-by-step walk-throughs in the documentation of git-annex for services such as S3199, Google
Cloud Storage200, Box.com201, Amazon Glacier202, OwnCloud203, and many more. Here is the
complete list: git-annex.branchable.com/special_remotes204.

The easy case: Repository hosting with annex support

There are a few Git repository hosting services with support for annexed contents. One of them
is GIN. What makes them extremely convenient is that there is no need to configure a special
remote – creating a SIBLING and running datalad push is enough.

Git
- dataset history (commit messages,

 run records)

- All files + content committed into Git

 (useful with code, text, ...)

- File identity information of all annexed

 files (file name, identity hash, storage

 locations where to retrieve it from)

git-annex
- contents of annexed files

- organized in the "annex" or "object tree"

 of the dataset

Repositories with annex
support
- examples: GIN (gin.g-node.org), GitLab

instances with enabled annex support

- can hold large data for free

- exposes Git history and all files + content

- datasets can be cloned from there

Read the section Walk-through: Dataset hosting on GIN (page 208) for a walk-through.

The uncommon case: Special remotes with repository hosting support

Typically, storage hosting services such as cloud storage providers do not provide the ability to
host Git repositories. Therefore, it is typically not possible to clone from a cloud storage. How-
ever, a number of DATALAD EXTENSIONs have been created that equip cloud storage providers
with the ability to also host Git repositories. While they do not get the ability to display repos-
itories the same way that pure Git repository hosting services like GitHub do, they do get the
super power of becoming clonable.
199 https://git-annex.branchable.com/tips/public_Amazon_S3_remote/
200 https://git-annex.branchable.com/tips/using_Google_Cloud_Storage/
201 https://git-annex.branchable.com/tips/using_box.com_as_a_special_remote/
202 https://git-annex.branchable.com/tips/using_Amazon_Glacier/
203 https://git-annex.branchable.com/tips/owncloudannex/
204 https://git-annex.branchable.com/special_remotes

182 Chapter 13. Third party infrastructure

https://git-annex.branchable.com/tips/public_Amazon_S3_remote/
https://git-annex.branchable.com/tips/using_Google_Cloud_Storage/
https://git-annex.branchable.com/tips/using_Google_Cloud_Storage/
https://git-annex.branchable.com/tips/using_box.com_as_a_special_remote/
https://git-annex.branchable.com/tips/using_Amazon_Glacier/
https://git-annex.branchable.com/tips/owncloudannex/
https://git-annex.branchable.com/special_remotes

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

One example for this is the Open Science Framework, which can become the home of datasets
by using the datalad-osf extension205. As long as you and your collaborators have the extension
installed, annexed dataset contents and the Git repository part of your dataset can be pushed
or cloned in one go.

Git
- dataset history (commit messages,

 run records)

- All files + content committed into Git

 (useful with code, text, ...)

- File identity information of all annexed

 files (file name, identity hash, storage

 locations where to retrieve it from)

git-annex
- contents of annexed files

- organized in the "annex" or "object tree"

 of the dataset

Publishing both components
to a special remote
- performed with DataLad extensions (e.g.,

 datalad-osf), or helpers (e.g., git-remote-rclone)

- publishes the Git repository (in two files) in

 conjunction with annexed data

- allows cloning from a special remote

Please take a look at the documentation and tutorials of datalad-osf extension206 for examples
and more information.

The creative case: Ensuring availability using only repository hosting

When you only want to use pure Git repository hosting services without annex support, you can
still allow others to obtain (some) file contents with some creativity:

For one, you can use commands such as datalad download-url (datalad-download manual)
or datalad addurls (datalad-addurls manual) to retrieve files from web sources and regis-
ter their location automatically. The first Chapter DataLad datasets (page 34) demonstrates
download-url, and the usecase Scaling up: Managing 80TB and 15 million files from the HCP
release (page 433) demonstrates addurls on a large scale.

Other than this, you can rely on digital provenance in the form of RUN RECORDs that allow con-
sumers of your dataset to recompute a result instead of datalad geting it. The midterm-project
example in section YODA-compliant data analysis projects (page 143) has been an example for
this.

The static case: Exporting dataset snapshots

While DataLad datasets have the great advantage that they carry a history with all kinds of
useful digital provenance and previous versions of files, it may not in all cases be necessary to
205 http://docs.datalad.org/projects/osf/en/latest/index.html
206 http://docs.datalad.org/projects/osf/en/latest/index.html

13.1. Beyond shared infrastructure 183

http://docs.datalad.org/projects/osf/en/latest/index.html
http://docs.datalad.org/projects/osf/en/latest/index.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

make use of this advantage. Sometimes, you may just want to share or archive the most recent
state of the dataset as a snapshot.

DataLad provides the ability to do this out of the box to arbitrary locations, and support for
specific services such as Figshare207. Find out more information on this in the section Built-
in data export (page 215). Other than that, some DATALAD EXTENSIONs allow an export to
additional services such as the Open Science Framework208.

General information on publishing datasets

Beyond concrete examples of publishing datasets, some general information may be useful in
addition: The section Overview: The datalad push command (page 219) illustrates the DataLad
command datalad push, a command that handles every publication operation, regardless of
the type of published content or its destination. In addition to this, the section Keeping (some)
dataset contents private (page 217) contains tips and strategies on publishing datasets without
leaking potentially private contents or information. Finally, you may be interested in publishing
datasets into centrally managed locations for backup, archival, or central data management. In
this case, take a look at the advanced section Remote Indexed Archives for dataset storage and
backup (page 294).

13.2 Publishing datasets to Git repository hosting

Because DataLad datasets are GIT repositories, it is possible to push datasets to any Git repos-
itory hosting service, such as GITHUB, GITLAB, GIN, BITBUCKET, Gogs215, or Gitea216. These
published datasets are ordinary SIBLINGs of your dataset, and among other advantages, they
can constitute a back-up, an entry-point to retrieve your dataset for others or yourself, the back-
bone for collaboration on datasets, or the means to enhance visibility, findability and citeability
of your work223. This section contains a brief overview on how to publish your dataset to
different services.

Git repository hosting and annexed data

As outlined in a number of sections before, Git repository hosting sites typically do not sup-
port dataset annexes - some, like GIN however, do. Depending on whether or not an annex
is supported, you can push either only your Git history to the sibling, or the complete dataset
including annexed file contents. You can find out whether a sibling on a remote hosting services
carries an annex or not by running the datalad siblings command. A +, -, or ? sign in paren-
thesis indicates whether the sibling carries an annex, does not carry an annex, or whether this
information isn’t yet known. In the example below you can see that a public GitHub repository
https://github.com/psychoinformatics-de/studyforrest-data-phase2 does not carry an annex on
github (the sibling origin), but that the annexed data are served from an additional sibling
mddatasrc (a SPECIAL REMOTE with annex support). Even though the dataset sibling on GitHub
207 https://figshare.com/
215 https://gogs.io/
216 https://gitea.io/en-us/
223 Many repository hosting services have useful features to make your work citeable. For example, GIN is able to

assign a DOI to your dataset, and GitHub allows CITATION.cff files. At the same time, archival services such as
Zenodo224 often integrate with published repositories, allowing you to preserve your dataset with them.

224 https://zenodo.org/

184 Chapter 13. Third party infrastructure

https://figshare.com/
https://gogs.io/
https://gitea.io/en-us/
https://github.com/psychoinformatics-de/studyforrest-data-phase2
https://zenodo.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

does not serve the data, it constitutes a simple, findable access point to retrieve the dataset, and
can be used to provide updates and fixes via PULL REQUESTs, issues, etc.

a clone of github/psychoinformatics/studyforrest-data-phase2 has the following siblings:
$ datalad siblings
.: here(+) [git]
.: mddatasrc(+) [http://psydata.ovgu.de/studyforrest/phase2/.git (git)]
.: origin(-) [git@github.com:psychoinformatics-de/studyforrest-data-phase2.git (git)]

There are multiple ways to create a dataset sibling on a repository hosting site to push your
dataset to.

How to add a sibling on a Git repository hosting site: The manual way

1. Create a new repository via the webinterface of the hosting service of your choice. It
does not need to have the same name as your local dataset, but it helps to associate local
dataset and remote siblings.

Fig. 13.3: Webinterface of GIN during the creation of a new repository.

1. Afterwards, copy the SSH or HTTPS URL of the repository. Usually, repository hosting
services will provide you with a convenient way to copy it to your clipboard. An SSH URL
takes the form git@<hosting-service>:/<user>/<repo-name>.git and an HTTPS URL
takes the form https://<hosting-service>/<user>/<repo-name>.git. The type of URL
you choose determines whether and how you will be able to push to your repository. Note
that many services will require you to use the SSH URL to your repository in order to do
push operations, so make sure to take the SSH and not the HTTPS URL if this is the case.

2. If you pick the SSH URL, make sure to have an SSH KEY set up. This usually requires
generating an SSH key pair if you do not have one yet, and uploading the public key to
the repository hosting service.

M13.2 What is an SSH key and how can I create one?

An SSH key is an access credential in the SSH protocol that can be used to login from
one system to remote servers and services, such as from your private computer to an

13.2. Publishing datasets to Git repository hosting 185

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Fig. 13.4: Webinterface of GITHUB during the creation of a new repository.

186 Chapter 13. Third party infrastructure

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

SSH SERVER. For repository hosting services such as GIN, GITHUB, or GITLAB, it can be
used to connect and authenticate without supplying your username or password for each
action.
This tutorial by GitHub217 is a detailed step-by-step instruction to generate and use SSH
keys for authentication, and it also shows you how to add your public SSH key to your
GitHub account so that you can install or clone datasets or Git repositories via SSH (in
addition to the http protocol), and the same procedure applies to GitLab and Gin.
Don’t be intimidated if you have never done this before – it is fast and easy: First, you
need to create a private and a public key (an SSH key pair). All this takes is a single
command in the terminal. The resulting files are text files that look like someone spilled
alphabet soup in them, but constitute a secure password procedure. You keep the private
key on your own machine (the system you are connecting from, and that only you have
access to), and copy the public key to the system or service you are connecting to.
On the remote system or service, you make the public key an authorized key to allow
authentication via the SSH key pair instead of your password. This either takes a single
command in the terminal, or a few clicks in a web interface to achieve. You should
protect your SSH keys on your machine with a passphrase to prevent others – e.g., in
case of theft – to log in to servers or services with SSH authentication225, and configure
an ssh agent to handle this passphrase for you with a single command. How to do all of
this is detailed in the above tutorial.
217 https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh/generatin

g-a-new-ssh-key-and-adding-it-to-the-ssh-agent
225 Your private SSH key is incredibly valuable, and it is important to keep it secret! Anyone who gets your

private key has access to anything that the public key is protecting. If the private key does not have a
passphrase, simply copying this file grants a person access!

1. Use the URL to add the repository as a sibling. There are two commands that allow you to
do that; both require you give the sibling a name of your choice (common name choices
are upstream, or a short-cut for your user name or the hosting platform, but its completely
up to you to decide):

1. git remote add <name> <url>

2. datalad siblings add --dataset . --name <name> --url <url>

2. Push your dataset to the new sibling: datalad push --to <name>

How to add a sibling on a Git repository hosting site: The automated way

DataLad provides create-sibling-* commands to automatically create datasets on certain
hosting sites. DataLad versions 0.16.0 and higher contain more of these commands, and pro-
vide a more streamlined parametrization. Please read the paragraph that matches your version
of DataLad below, and be mindful of a change in command arguments between DataLad ver-
sions 0.15.x and 0.16.x.

Using DataLad version < 0.16.0

If you are using DataLad version below 0.16.0, you can automatically create new repos-
itories from the command line for GITHUB and GITLAB using the commands datalad
create-sibling-github and datalad create-sibling-gitlab. Due to the different represen-
tation of repositories on the two sites, the two commands are parametrized differently, and it is

13.2. Publishing datasets to Git repository hosting 187

https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

worth to consult each command’s MANPAGE or --help, but below are basic usage examples for
the two commands:

GitLab: Using datalad create-sibling-gitlab is easiest with a python-gitlab configuration.
Please consult the python-gitlab documentation218 for details, but a basic configuration in the
file ~/.python-gitlab.cfg can look like this:

[global]
default = gitlab
ssl_verify = true
timeout = 5

[gitlab]
url = https://gitlab.myinstance.com
private_token = <super-secret-token>
api_version = 4

This configures the default GitLab instance (here, we have called it gitlab) with a specific
base URL and the user’s personal access token for authentication. Note that you will need to
generate and retrieve your own personal access token under the profile settings of the gitlab
instance of your choice (see the paragraph on authentication tokens below for more information
(page 190)). With this configuration, the --site parameter can identify the GitLab instance by
its name gitlab. If you have an SSH KEY configured, it is useful to specify --access as ssh –
this saves you the need to authenticate with every push:

$ datalad create-sibling-gitlab \
-d . \ # current dataset
--site gitlab \ # to the configured GitLab instance
--project DataLad-101 \ # repository name
--layout flat \
--access ssh # optional, but useful

create_sibling_gitlab(ok): . (dataset)
configure-sibling(ok): . (sibling)
action summary:
configure-sibling (ok: 1)
create_sibling_gitlab (ok: 1)

$ datalad siblings
here(+) [git]

jugit(-) [git@gitlab.myinstance.com:<user>/<repo>.git (git)]
$ datalad push --to gitlab

publish(ok): . (dataset)
action summary:
publish (ok: 1)

GitHub: The command datalad create-sibling-github requires a personal access token from
GitHub (see the paragraph on authentication tokens below for more information (page 190)).
When you are using it for the first time, you should be queried interactively for it. Subsequently,
your token should be stored internally.

By default, the URL that is set up for you is an HTTPS URL. If you have an SSH KEY configured,
it is useful to specify --access-protocol as ssh – with this the SSH URL is configured, saving
you the need to authenticate with every push.

218 https://python-gitlab.readthedocs.io/en/stable/cli-usage.html#configuration

188 Chapter 13. Third party infrastructure

https://python-gitlab.readthedocs.io/en/stable/cli-usage.html#configuration

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad create-sibling-github \
-d . \ # current dataset
DataLad-101 \ # repository name
--access-protocol ssh # optional, but useful

You need to authenticate with 'github' credentials. https://github.com/settings/tokens␣
→˓provides information on how to gain access
token: <my-super-secret-token>
create_sibling_github(ok): . (dataset) [Dataset sibling 'github', project at https://
→˓github.com/adswa/DataLad-101.git]
configure-sibling(ok): . (sibling)
action summary:
configure-sibling (ok: 1)
create_sibling_github (ok: 1)

$ datalad push --to github
publish(ok): . (dataset)
action summary:
publish (ok: 1)

Using DataLad version 0.16.0 and higher

Starting with DataLad version 0.16.0 or higher, you can automatically create new reposito-
ries from the command line for GITHUB, GITLAB, GIN, Gogs219, or Gitea220. This is imple-
mented with a new set of commands called create-sibling-github, create-sibling-gitlab,
create-sibling-gin, create-sibling-gogs, and create-sibling-gitea.

G13.1 Get DataLad features ahead of time by installing from a commit

If you want to get this feature ahead of the 0.16.0 release, you can install the most recent
version of the MASTER BRANCH or a specific COMMIT hash from GitHub, for example with

$ pip install git+git://github.com/datalad/datalad.git@master

When getting features ahead of time, your feedback is especially valuable. If you find
that something does not work, or if you have an idea for improvements, please get in
touch221.
221 https://github.com/datalad/datalad/issues/new

Each command is slightly tuned towards the peculiarities of each particular platform, but the
most important common parameters are streamlined across commands as follows:

• [REPONAME] (required): The name of the repository on the hosting site. It will be created
under a user’s namespace, unless this argument includes an organization name prefix.
For example, datalad create-sibling-github my-awesome-repo will create a new reposi-
tory under github.com/<user>/my-awesome-repo, while datalad create-sibling-github
<orgname>/my-awesome-repo will create a new repository of this name under the GitHub
organization <orgname> (given appropriate permissions).

• -s/--name <name> (required): A name under which the sibling is identified. By default,
it will be based on or similar to the hosting site. For example, the sibling created with
datalad create-sibling-github will be called github by default.

219 https://gogs.io/
220 https://gitea.io/en-us/

13.2. Publishing datasets to Git repository hosting 189

https://gogs.io/
https://gitea.io/en-us/
https://github.com/datalad/datalad/issues/new
https://github.com/datalad/datalad/issues/new

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• --credential <name> (optional): Credentials used for authentication are stored internally
by DataLad under specific names. These names allow you to have multiple credentials,
and flexibly decide which one to use. When --credential <name> is the name of an exist-
ing credential, DataLad tries to authenticate with the specified credential; when it does not
yet exist DataLad will prompt interactively for a credential, such as an access token, and
store it under the given <name> for future authentications. By default, DataLad will name
a credential according to the hosting service URL it used for, for example datalad-api.
github.com as the default for credentials used to authenticate against GitHub.

• --access-protocol {https|ssh|https-ssh} (default https): Whether to use SSH or
HTTPS URLs, or a hybrid version in which HTTPS is used to pull and SSH is used to
push. Using SSH URLs requires an SSH KEY setup, but is a very convenient authentica-
tion method, especially when pushing updates – which would need manual input on user
name and token with every push over HTTPS.

• --dry-run (optional): With this flag set, the command will not actually create the target
repository, but only perform tests for name collisions and report repository name(s).

• --private (optional): A switch that, if set, makes sure that the created repository is
private.

Other streamlined arguments, such as --recursive or --publish-depends allow you to perform
more complex configurations, for example publication of dataset hierarchies or connections to
SPECIAL REMOTEs. Upcoming walk-throughs will demonstrate them.

Self-hosted repository services, e.g., Gogs or Gitea instances, have an additional required argu-
ment, the --api flag. It needs to point to the URL of the instance, for example

$ datalad create-sibling-gogs my_repo_on_gogs --api "https://try.gogs.io"

Authentication by token

To create or update repositories on remote hosting services you will need to set up appropriate
authentication and permissions. In most cases, this will be in the form of an authorization token
with a specific permission scope.

What is a token?

Personal access tokens are an alternative to authenticating via your password, and take the form
of a long character string, associated with a human-readable name or description. If you are
prompted for username and password in the command line, you would enter your token in place
of the password226. Note that you do not have to type your token at every authentication – your
token will be stored on your system the first time you have used it and automatically reused
whenever relevant.

M13.3 How does the authentication storage work?

Passwords, user names, tokens, or any other login information is stored in your system’s
(encrypted) keyring222. It is a built-in credential store, used in all major operating sys-

226 GitHub deprecated user-password authentication227 and only supports authentication via personal access token
from November 13th 2020 onwards. Supplying a password instead of a token will fail to authenticate.

227 https://developer.github.com/changes/2020-02-14-deprecating-password-auth/

190 Chapter 13. Third party infrastructure

https://en.wikipedia.org/wiki/GNOME_Keyring
https://developer.github.com/changes/2020-02-14-deprecating-password-auth/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

tems, and can store credentials securely.
222 https://en.wikipedia.org/wiki/GNOME_Keyring

You can have multiple tokens, and each of them can get a different scope of permissions, but it
is important to treat your tokens like passwords and keep them secret.

Which permissions do they need?

The most convenient way to generate tokens is typically via the webinterface of the hosting
service of your choice. Often, you can specifically select which set of permissions a specific token
has in a drop-down menu similar (but likely not identical) to this screenshot from GitHub:

For creating and updating repositories with DataLad commands it is usually sufficient to grant
only repository-related permissions. However, broader permission sets may also make sense.
Should you employ GitHub workflows, for example, a token without “workflow” scope could
not push changes to workflow files, resulting in errors like this one:

[remote rejected] (refusing to allow a Personal Access Token to create or update workflow␣
→˓`.github/workflows/benchmarks.yml` without `workflow` scope)]

13.3 Walk-through: Dropbox as a special remote

Let’s say you’d like to share your complete DataLad-101 dataset with a friend overseas. After
all you know about DataLad, you’d like to let more people know about its capabilities. You
and your friend, however, do not have access to the same computational infrastructure, and
there are also many annexed files, e.g., the PDFs in your dataset, that you’d like your friend to
have but that can’t be simply computed or automatically obtained from web sources. What you
would like to do is to provide your friend with a URL to install a dataset from and successfully
run datalad get, just as with the many publicly available DataLad datasets such as the longnow
podcasts.

As an example, let’s walk through all necessary steps to publish the DataLad-101 dataset to
GitHub, and its file contents to Dropbox. To make this as convenient as possible, we will also
set up a PUBLICATION DEPENDENCY between the two.

To set up Dropbox as a third party storage provide you need to configure a special-remote called
rclone228. It is a command line program to sync files and directories to and from a large number
of commercial providers237.

• The first step is to install229 rclone on your computer. The installation instructions are
straightforward and the installation is quick if you are on a Unix-based system (macOS or
any Linux distribution).

• Afterwards, run rclone config from the command line to configure rclone to work with
Dropbox. Running this command will a guide you with an interactive prompt through

228 https://github.com/DanielDent/git-annex-remote-rclone
237 rclone is a useful special-remote for this example, because you can not only use it for Dropbox, but also for many

other third-party hosting services. For a complete overview of which third-party services are available and which
special-remote they need, please see this list238.

238 http://git-annex.branchable.com/special_remotes/
229 https://rclone.org/install/

13.3. Walk-through: Dropbox as a special remote 191

https://github.com/DanielDent/git-annex-remote-rclone
https://rclone.org/install/
http://git-annex.branchable.com/special_remotes/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Fig. 13.5: Webinterface to generate an authentication token on GitHub. One typically has to
set a name and permission set, and potentially an expiration date.

192 Chapter 13. Third party infrastructure

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

a ~2 minute configuration of the remote (here we will name the remote “dropbox-for-
friends” – the name will be used to refer to it later during the configuration of the dataset
we want to publish). The interactive dialog is outlined below, and all parts that require
user input are highlighted.

$ rclone config
2019/09/06 13:43:58 NOTICE: Config file "/home/me/.config/rclone/rclone.conf" not found -
→˓ using defaults
No remotes found - make a new one
n) New remote
s) Set configuration password
q) Quit config
n/s/q> n
name> dropbox-for-friends
Type of storage to configure.
Enter a string value. Press Enter for the default ("").
Choose a number from below, or type in your own value
1 / 1Fichier
\ "fichier"

2 / Alias for an existing remote
\ "alias"

[...]
8 / Dropbox
\ "dropbox"

[...]
31 / premiumize.me

\ "premiumizeme"
Storage> dropbox
** See help for dropbox backend at: https://rclone.org/dropbox/ **

Dropbox App Client Id
Leave blank normally.
Enter a string value. Press Enter for the default ("").
client_id>
Dropbox App Client Secret
Leave blank normally.
Enter a string value. Press Enter for the default ("").
client_secret>
Edit advanced config? (y/n)
y) Yes
n) No
y/n> n
If your browser doesn't open automatically go to the following link: http://127.0.0.
→˓1:53682/auth
Log in and authorize rclone for access
Waiting for code...

• At this point, this will open a browser and ask you to authorize rclone to manage your
Dropbox, or any other third-party service you have selected in the interactive prompt.
Accepting will bring you back into the terminal to the final configuration prompts:

Got code

[dropbox-for-friends]
type = dropbox
token = {"access_token":"meVHyc[...]",

"token_type":"bearer",
(continues on next page)

13.3. Walk-through: Dropbox as a special remote 193

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

"expiry":"0001-01-01T00:00:00Z"}

y) Yes this is OK
e) Edit this remote
d) Delete this remote
y/e/d> y
Current remotes:

Name Type
==== ====
dropbox-for-friends dropbox

e) Edit existing remote
n) New remote
d) Delete remote
r) Rename remote
c) Copy remote
s) Set configuration password
q) Quit config
e/n/d/r/c/s/q> q

• Once this is done, install git-annex-remote-rclone. It is a wrapper around rclone230

that makes any destination supported by rclone usable with GIT-ANNEX. If you are
on a recent version of Debian or Ubuntu (or have enabled the NeuroDebian231 reposi-
tory), you can get it conveniently via your package manager, e.g., with sudo apt-get
install git-annex-remote-rclone. Alternatively, git clone the git-annex-remote-
rclone232 repository to your machine (do not clone it into DataLad-101 but somewhere
else on your computer), and copy the path to this repository into your $PATH variable. If
you clone into /home/user-bob/repos, the command would look like this239:

$ git clone https://github.com/DanielDent/git-annex-remote-rclone.git
$ export PATH="/home/user-bob/repos/git-annex-remote-rclone:$PATH"

• Finally, in the dataset you want to share, run the git annex initremote command. Give
the remote a name (it is dropbox-for-friends here), and specify the name of the remote
you configured with rclone with the target parameters:

$ git annex initremote dropbox-for-friends type=external externaltype=rclone chunk=50MiB␣
→˓encryption=none target=dropbox-for-friends prefix=my_awesome_dataset

initremote dropbox-for-friends ok
(recording state in git...)

What has happened up to this point is that we have configured Dropbox as a third-party storage
service for the annexed contents in the dataset. On a conceptual, dataset level, your Dropbox
folder is now a SIBLING – the sibling name is the first positional argument after initremote, i.e.,
“dropbox-for-friends”:
230 https://rclone.org
231 https://neuro.debian.net
232 https://github.com/DanielDent/git-annex-remote-rclone
239 Note that export will extend your $PATH for your current shell. This means you will have to repeat this command

if you open a new shell. Alternatively, you can insert this line into your shells configuration file (e.g., ~/.bashrc)
to make this path available to all future shells of your user account. If you are unsure what any of this means,
take a look at this additional information on environment variables (page 124)

194 Chapter 13. Third party infrastructure

https://rclone.org
https://neuro.debian.net
https://github.com/DanielDent/git-annex-remote-rclone
https://github.com/DanielDent/git-annex-remote-rclone

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad siblings
.: here(+) [git]
.: dropbox-for-friends(+) [rclone]
.: roommate(+) [../mock_user/DataLad-101 (git)]

On Dropbox, a new folder will be created for your annexed files. By default, this folder will be
called git-annex, but it can be configured using the --prefix=<whatitshouldbecalled> option,
as done above. However, this directory on Dropbox is not the location you would refer your
friend or a collaborator to. The representation of the files in the special-remote is not human-
readable – it is a tree of annex objects, and thus looks like a bunch of very weirdly named
folders and files to anyone. Through this design it becomes possible to chunk files into smaller
units (see the git-annex documentation233 for more on this), optionally encrypt content on its
way from a local machine to a storage service (see the git-annex documentation234 for more on
this), and avoid leakage of information via file names. Therefore, the Dropbox remote is not
a places a real person would take a look at, instead they are only meant to be managed and
accessed via DataLad/git-annex.

To actually share your dataset with someone, you need to publish it to Github, Gitlab, or a
similar hosting service.

You could, for example, create a sibling of the DataLad-101 dataset on GitHub with the com-
mand create-sibling-github. This will create a new GitHub repository called “DataLad-101”
under your account, and configure this repository as a SIBLING of your dataset called github
(exactly like you have done in YODA-compliant data analysis projects (page 143) with the
midterm_project subdataset). However, in order to be able to link the contents stored in Drop-
box, you also need to configure a publication dependency to the dropbox-for-friends sibling –
this is done with the publish-depends <sibling> option.

$ datalad create-sibling-github -d . DataLad-101 \
--publish-depends dropbox-for-friends
[INFO] Configure additional publication dependency on "dropbox-for-friends"
.: github(-) [https://github.com/<user-name>/DataLad-101.git (git)]
'https://github.com/<user-name>/DataLad-101.git' configured as sibling 'github' for

→˓<Dataset path=/home/me/dl-101/DataLad-101>

datalad siblings will again list all available siblings:

$ datalad siblings
.: here(+) [git]
.: dropbox-for-friends(+) [rclone]
.: roommate(+) [../mock_user/DataLad-101 (git)]
.: github(-) [https://github.com/<user-name>/DataLad-101.git (git)]

Note that each sibling has either a + or - attached to its name. This indicates the presence (+) or
absence (-) of a remote data annex at this remote. You can see that your github sibling indeed
does not have a remote data annex. Therefore, instead of “only” publishing to this GitHub repos-
itory (as done in section YODA-compliant data analysis projects (page 143)), in order to also
publish annex contents, we made publishing to GitHub dependent on the dropbox-for-friends
sibling (that has a remote data annex), so that annexed contents are published there first.
233 https://git-annex.branchable.com/chunking/
234 https://git-annex.branchable.com/encryption/

13.3. Walk-through: Dropbox as a special remote 195

https://git-annex.branchable.com/chunking/
https://git-annex.branchable.com/encryption/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Publication dependencies are strictly local configuration

Note that the publication dependency is only established for your own dataset, it is not
shared with clones of the dataset. Internally, this configuration is a key value pair in the
section of your remote in .git/config:

[remote "github"]
annex-ignore = true
url = https://github.com/<user-name>/DataLad-101.git
fetch = +refs/heads/*:refs/remotes/github/*
datalad-publish-depends = dropbox-for-friends

With this setup, we can publish the dataset to GitHub. Note how the publication dependency is
served first:

$ datalad push --to github
[INFO] Transferring data to configured publication dependency: 'dropbox-for-friends'
[INFO] Publishing <Dataset path=/home/me/dl-101/DataLad-101> data to dropbox-for-
→˓friends
publish(ok): books/TLCL.pdf (file)
publish(ok): books/byte-of-python.pdf (file)
publish(ok): books/progit.pdf (file)
publish(ok): recordings/interval_logo_small.jpg (file)
publish(ok): recordings/salt_logo_small.jpg (file)
[INFO] Publishing to configured dependency: 'dropbox-for-friends'
[INFO] Publishing <Dataset path=/home/me/dl-101/DataLad-101> data to dropbox-for-
→˓friends
[INFO] Publishing <Dataset path=/home/me/dl-101/DataLad-101> to github
Username for 'https://github.com': <user-name>
Password for 'https://<user-name>@github.com':
publish(ok): . (dataset) [pushed to github: ['[new branch]', '[new branch]']]
action summary:
publish (ok: 6)

Afterwards, your dataset can be found on GitHub, and cloned or installed.

From the perspective of whom you share your dataset with. . .

If your friend would now want to get your dataset including the annexed contents, and you
made sure that they can access the Dropbox folder with the annexed files (e.g., by sharing an
access link), here is what they would have to do:

If the repository is on GitHub, a datalad clone with the URL will install the dataset:

$ datalad clone https://github.com/<user-name>/DataLad-101.git
[INFO] Cloning https://github.com/<user-name>/DataLad-101.git [1 other candidates]␣
→˓into '/Users/awagner/Documents/DataLad-101'
[INFO] Remote origin not usable by git-annex; setting annex-ignore
[INFO] access to 1 dataset sibling dropbox-for-friends not auto-enabled, enable with:
| datalad siblings -d "/Users/awagner/Documents/DataLad-101" enable -s dropbox-
→˓for-friends
install(ok): /Users/awagner/Documents/DataLad-101 (dataset)

Pay attention to one crucial information in this output:

196 Chapter 13. Third party infrastructure

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

[INFO] access to 1 dataset sibling dropbox-for-friends not auto-enabled, enable with:
| datalad siblings -d "/Users/<user-name>/Documents/DataLad-101" enable -s␣
→˓dropbox-for-friends

This means that someone who wants to access the data from dropbox needs to enable the special
remote. For this, this person first needs to install and configure rclone as well: Since rclone
is the protocol with which annexed data can be transferred from and to Dropbox, anyone who
needs annexed data from Dropbox needs this special remote. Therefore, the first steps are the
same as before:

• Install235 rclone (as described above).

• Run rclone config to configure rclone to work with Dropbox (as described above). It is
important to name the remote identically - in the example above, it would need to be
“dropbox-for-friends”. This means: You need to communicate the name of your special
remote to your friend, and they have to give it the same name as the one configured in
the dataset). (There are efforts towards extracting this information automatically from
datasets, but for the time being, this is an important detail to keep in mind).

• install git-annex-remote-rclone236 (as described above).

After this is done, you can execute what DataLad’s output message suggests to “enable” this
special remote (inside of the installed DataLad-101):

$ datalad siblings -d "/Users/awagner/Documents/DataLad-101" \
enable -s dropbox-for-friends

.: dropbox-for-friends(?) [git]

And once this is done, you can get any annexed file contents, for example the books, or the
cropped logos from chapter DataLad, Run! (page 59):

$ datalad get books/TLCL.pdf
get(ok): /home/some/other/user/DataLad-101/books/TLCL.pdf (file) [from dropbox-for-
→˓friends]

13.4 Walk-through: Amazon S3 as a special remote

Amazon S3240 (or Amazon Simple Storage Service) is a popular service by Amazon Web Ser-
vices241 (AWS) that provides object storage through a web service interface. An S3 bucket can
be configured as a GIT-ANNEX SPECIAL REMOTE, allowing it to be used as a DataLad publication
target. This means that you can use Amazon S3 to store your annexed data contents and allow
users to install your full dataset with DataLad from a publicly available repository service such
as GitHub.

M13.4 What is a special remote

A special-remote is an extension to Git’s concept of remotes, and can enable GIT-ANNEX to
transfer data from and possibly to places that are not Git repositories (e.g., cloud services
or external machines such as an HPC system). For example, s3 special remote uploads

235 https://rclone.org/install/
236 https://github.com/DanielDent/git-annex-remote-rclone
240 https://aws.amazon.com/s3/
241 https://aws.amazon.com/

13.4. Walk-through: Amazon S3 as a special remote 197

https://rclone.org/install/
https://github.com/DanielDent/git-annex-remote-rclone
https://aws.amazon.com/s3/
https://aws.amazon.com/
https://aws.amazon.com/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

and downloads content to AWS S3, web special remote downloads files from the web,
datalad-archive extracts files from the annexed archives, etc. Don’t envision a special-
remote as merely a physical place or location – a special-remote is a protocol that defines
the underlying transport of your files to and/or from a specific location.

In this section, we provide a walkthrough on how to set up Amazon S3 for hosting your DataLad
dataset, and how to access this data locally from GitHub.

Prerequisites

In order to use Amazon S3 for hosting your datasets, and to follow the steps below, you need
to:

• Signup for an AWS account242

• Verify your account

• Find your AWS access key

• Signup for a GitHub account243

• Install wget244 in order to download sample data

• Optional: install the AWS Command Line Interface245

The AWS signup246 procedure requires you to provide your e-mail address, physical address,
and credit card details before verification is possible.

AWS account usage can incur costs

While Amazon provides Free Tier247 access to its services, it can still potentially result in
costs if usage exceeds Free Tier Limits248. Be sure to take note of these limits, or set up
automatic tracking alerts249 to be notified before incurring unnecessary costs.
247 https://aws.amazon.com/free/
248 https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/free-tier-limits.html
249 https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/tracking-free-tier-usage.html

To find your AWS access key, log in to the AWS Console250, open the dropdown menu at your
username (top right), and select “My Security Credentials”. A new page will open with several
options, including “Access keys (access key ID and secret access key)” from where you can select
“Create New Access Key” or access existing credentials. Take note to copy both the “Access Key
ID” and “Secret Access Key”.

To ensure that your access key details are known when initializing the special remote, export
them as ENVIRONMENT VARIABLEs in your shell:

$ export AWS_ACCESS_KEY_ID="<your-access-key-ID>"
$ export AWS_SECRET_ACCESS_KEY"<your-secret-access-key>"

242 https://aws.amazon.com/
243 https://github.com/join
244 https://www.gnu.org/software/wget/
245 https://aws.amazon.com/cli/
246 https://aws.amazon.com/
250 https://console.aws.amazon.com/

198 Chapter 13. Third party infrastructure

https://aws.amazon.com/
https://github.com/join
https://www.gnu.org/software/wget/
https://aws.amazon.com/cli/
https://aws.amazon.com/
https://aws.amazon.com/free/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/free-tier-limits.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/tracking-free-tier-usage.html
https://console.aws.amazon.com/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Fig. 13.6: Create a new AWS access key from “My Security Credentials”

In order to work directly with AWS via your command-line shell, you can install the AWS CLI251.
However, that is not required for this walkthrough.

Lastly, to publish your data repository to GitHub, from which users will be able do install the
complete dataset, you will need a GitHub account252.

Your DataLad dataset

If you already have a small DataLad dataset to practice with, feel free to use it during the rest
of the walkthrough. If you do not have data, no problem! As a general introduction, the steps
below will download a small public neuroimaging dataset, and transform it into a DataLad
dataset. We’ll use the MoAEpilot253 dataset containing anatomical and functional images from
a single subject, as well as some metadata.

In the first step, we create a new directory called neuro-data-s3, we download and extract the
data, and then we move the extracted contents into our new directory:

$ cd <wherever-you-want-to-create-the-dataset>
$ mkdir neuro-data-s3 && \
wget https://www.fil.ion.ucl.ac.uk/spm/download/data/MoAEpilot/MoAEpilot.bids.zip -O␣
→˓neuro-data-s3.zip && \
unzip neuro-data-s3.zip -d neuro-data-s3 && \
rm neuro-data-s3.zip && \
cd neuro-data-s3 && \
mv MoAEpilot/* . && \
rm -R MoAEpilot

--2021-06-01 09:32:25-- https://www.fil.ion.ucl.ac.uk/spm/download/data/MoAEpilot/
→˓MoAEpilot.bids.zip
Resolving www.fil.ion.ucl.ac.uk (www.fil.ion.ucl.ac.uk)... 193.62.66.18
Connecting to www.fil.ion.ucl.ac.uk (www.fil.ion.ucl.ac.uk)|193.62.66.18|:443...␣
→˓connected.

(continues on next page)

251 https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
252 https://github.com/join
253 https://www.fil.ion.ucl.ac.uk/spm/data/auditory/

13.4. Walk-through: Amazon S3 as a special remote 199

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://github.com/join
https://www.fil.ion.ucl.ac.uk/spm/data/auditory/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

HTTP request sent, awaiting response... 200 OK
Length: 30176409 (29M) [application/zip]
Saving to: ‘neuro-data-s3.zip’

neuro-data-s3.zip 100
→˓%[===>
→˓] 28.78M 55.3MB/s in 0.5s

2021-06-01 09:32:25 (55.3 MB/s) - ‘neuro-data-s3.zip’ saved [30176409/30176409]

Archive: neuro-data-s3.zip
creating: neuro-data-s3/MoAEpilot/

inflating: neuro-data-s3/MoAEpilot/task-auditory_bold.json
inflating: neuro-data-s3/MoAEpilot/README
inflating: neuro-data-s3/MoAEpilot/dataset_description.json
inflating: neuro-data-s3/MoAEpilot/CHANGES

creating: neuro-data-s3/MoAEpilot/sub-01/
creating: neuro-data-s3/MoAEpilot/sub-01/func/

inflating: neuro-data-s3/MoAEpilot/sub-01/func/sub-01_task-auditory_events.tsv
inflating: neuro-data-s3/MoAEpilot/sub-01/func/sub-01_task-auditory_bold.nii

creating: neuro-data-s3/MoAEpilot/sub-01/anat/
inflating: neuro-data-s3/MoAEpilot/sub-01/anat/sub-01_T1w.nii

Now we can view the directory tree to see the dataset content:

$ tree
.

CHANGES
README
dataset_description.json
sub-01

anat
sub-01_T1w.nii

func
sub-01_task-auditory_bold.nii
sub-01_task-auditory_events.tsv

task-auditory_bold.json

The next step is to ensure that this is a valid DataLad dataset, with main as the default branch.

Ensure main is set as default branch for newly-created repositories

Any new dataset configured with master instead of main as the default branch will get
git-annex configured to be the default displayed branch when it is pushed to GitHub.
See this FAQ for more information (page 487). This can be prevented by:

• a user/organization setting on GitHub about default branches254

• setting main as the default branch by changing your global git config:

git config --global init.defaultBranch main

254 https://github.blog/changelog/2020-08-26-set-the-default-branch-for-newly-created-repositories/

We can turn our neuro-data-s3 directory into a DataLad dataset with the datalad create
--force command. After that, we save the dataset with datalad save:

200 Chapter 13. Third party infrastructure

https://github.blog/changelog/2020-08-26-set-the-default-branch-for-newly-created-repositories/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad create --force --description "neuro data to host on s3"
[INFO] Creating a new annex repo at /Users/jsheunis/Documents/neuro-data-s3
[INFO] Scanning for unlocked files (this may take some time)
create(ok): /Users/jsheunis/Documents/neuro-data-s3 (dataset)

$ datalad save -m "Add public data"
add(ok): CHANGES (file)
add(ok): README (file)
add(ok): dataset_description.json (file)
add(ok): sub-01/anat/sub-01_T1w.nii (file)
add(ok): sub-01/func/sub-01_task-auditory_bold.nii (file)
add(ok): sub-01/func/sub-01_task-auditory_events.tsv (file)
add(ok): task-auditory_bold.json (file)
save(ok): . (dataset)
action summary:
add (ok: 7)
save (ok: 1)

Initialize the S3 special remote

The steps below have been adapted from instructions provided on git-annex documentation255.

By initializing the special remote, what actually happens in the background is that a SIBLING is
added to the DataLad dataset. This can be verified by running datalad siblings before and
after initializing the special remote. Before, the only “sibling” is the actual DataLad dataset:

$ datalad siblings
.: here(+) [git]

To initialize a public S3 bucket as a special remote, we run git annex initremote with several
options, for which git-annex documentation on S3256 provides detailed information. Be sure
to select a unique bucket name that adheres to Amazon S3’s bucket naming rules257. You can
declare the bucket name (in this example “sample-neurodata-public”) as a variable since it will
be used again later.

$ BUCKET=sample-neurodata-public
$ git annex initremote public-s3 type=S3 encryption=none \
bucket=$BUCKET public=yes datacenter=EU autoenable=true
initremote public-s3 (checking bucket...) (creating bucket in EU...) ok
(recording state in git...)

The options used in this example include:

• public-s3: the name we select for our special remote, so that git-annex and DataLad can
identify it

• type=S3: the type of special remote (git-annex can work with many special remote
types258)

• encryption=none: no encryption (alternatively enable encryption=shared, meaning files
will be encrypted on S3, and anyone with a clone of the git repository will be able to

255 https://git-annex.branchable.com/tips/public_Amazon_S3_remote/
256 https://git-annex.branchable.com/special_remotes/S3/
257 https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
258 https://git-annex.branchable.com/special_remotes/

13.4. Walk-through: Amazon S3 as a special remote 201

https://git-annex.branchable.com/tips/public_Amazon_S3_remote/
https://git-annex.branchable.com/special_remotes/S3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/special_remotes/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

download and decrypt them)

• bucket=$BUCKET: the name of the bucket to be created on S3 (using the declared variable)

• public=yes: Set to “yes” to allow public read access to files sent to the S3 remote

• datacenter=EU: specify where the data will be located; here we set “EU” which is
EU/Ireland a.k.a. eu-west-1 (defaults to “US” if not specified)

• autoenable=true: git-annex will attempt to enable the special remote when it is run in a
new clone, implying that users won’t have to run extra steps when installing the dataset
with DataLad

After git annex initremote has successfully initialized the special remote, you can run datalad
siblings to see that a sibling has been added:

$ datalad siblings
.: here(+) [git]
.: public-s3(+) [git]

You can also visit the S3 Console259 and navigate to “Buckets” to see your newly created bucket.
It should only have a single annex-uuid file as content, since no actual file content has been
pushed yet.

Fig. 13.7: A newly created public S3 bucket

Lastly, for git-annex to be able to download files from the bucket without requiring your AWS
credentials, it needs to know where to find the bucket. We do this by setting the bucket URL,
which takes a standard format incorporating the bucket name and location (see the code blocl
below). Alternatively, this URL can also be copied from your AWS console.

$ git annex enableremote public-s3 \
publicurl="https://$BUCKET.s3-eu-west-1.amazonaws.com"
enableremote public-s3 ok
(recording state in git...)

259 https://console.aws.amazon.com/s3/

202 Chapter 13. Third party infrastructure

https://console.aws.amazon.com/s3/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Publish the dataset

The special remote is ready, and now we want to give people seamless access to the Data-
Lad dataset. A common way to do this is to create a sibling of the dataset on GitHub using
create-sibling-github. In order to link the contents in the S3 special remote to the GitHub
sibling, we also need to configure a publication dependency to the public-s3 sibling, which
is done with the publish-depends <sibling> option. For consistency, we’ll give the GitHub
repository the same name as the dataset name.

$ datalad create-sibling-github -d . neuro-data-s3 \
--publish-depends public-s3
[INFO] Configure additional publication dependency on "public-s3"
.: github(-) [https://github.com/jsheunis/sample-neuro-data.git (git)]
'https://github.com/jsheunis/sample-neuro-data.git' configured as sibling 'github' for␣
→˓Dataset(/Users/jsheunis/Documents/neuro-data-s3)

Notice that by creating this sibling, DataLad created an actual (empty) dataset repository on
GitHub, which required preconfigured GitHub authentication details.

GitHub deprecated its User Password authentication

GitHub decided to deprecate user-password authentication260 and only supports au-
thentication via personal access token from November 13th 2020 onwards. Changes
in DataLad’s API reflect this change starting with DataLad version 0.13.6 by removing
the github-passwd argument. Starting with DataLad 0.16.0, a new set of commands for
interactions with a variety of hosting services will be introduced (for more information,
see section Publishing datasets to Git repository hosting (page 184)).
To ensure successful authentication, please create a personal access token at
github.com/settings/tokens261,264, and either

• supply the token with the argument --github-login <TOKEN> from the command
line,

• or supply the token from the command line when queried for a password

260 https://developer.github.com/changes/2020-02-14-deprecating-password-auth/
261 https://github.com/settings/tokens
264 Instead of using GitHub’s WebUI you could also obtain a token using the command line GitHub interface

(https://github.com/sociomantic-tsunami/git-hub) by running git hub setup (if no 2FA is used). If you
decide to use the command line interface, here is help on how to use it: Clone the GitHub repository265 to
your local computer. Decide whether you want to build a Debian package to install, or install the single-
file Python script distributed in the repository. Make sure that all requirements266 for your preferred
version are installed , and run either make deb followed by sudo dpkg -i deb/git-hub*all.deb, or make
install.

The creation of the sibling (named github) can also be confirmed with datalad siblings:

$ datalad siblings
.: here(+) [git]
.: public-s3(+) [git]
.: github(-) [https://github.com/jsheunis/neuro-data-s3.git (git)]

The next step is to actually push the file content to where it needs to be in order to allow others
to access the data. We do this with datalad push --to github. The --to github specifies
which sibling to push the dataset to, but because of the publication dependency DataLad will
push the annexed contents to the special remote first.

13.4. Walk-through: Amazon S3 as a special remote 203

https://developer.github.com/changes/2020-02-14-deprecating-password-auth/
https://github.com/settings/tokens
https://github.com/sociomantic-tsunami/git-hub
https://github.com/sociomantic-tsunami/git-hub
https://github.com/sociomantic-tsunami/git-hub

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad push --to github
copy(ok): CHANGES (file) [to public-s3...]
copy(ok): README (file) [to public-s3...]
copy(ok): dataset_description.json (file) [to public-s3...]
copy(ok): sub-01/anat/sub-01_T1w.nii (file) [to public-s3...]
copy(ok): sub-01/func/sub-01_task-auditory_bold.nii (file) [to public-s3...]
copy(ok): sub-01/func/sub-01_task-auditory_events.tsv (file) [to public-s3...]
copy(ok): task-auditory_bold.json (file) [to public-s3...]
publish(ok): . (dataset) [refs/heads/main->github:refs/heads/main [new branch]]
publish(ok): . (dataset) [refs/heads/git-annex->github:refs/heads/git-annex [new branch]]

You can now view the annexed file content (with MD5 hashes as filenames) in the S3 bucket262:

Fig. 13.8: The public S3 bucket with annexed file content pushed

Lastly, the GitHub repository will also show the newly pushed dataset (with the “files” being
symbolic links to the annexed content on the S3 remote):

Test the setup!

You have now successfully created a DataLad dataset with an AWS S3 special remote for an-
nexed file content and with a public GitHub sibling from which the dataset can be accessed.
Users can now datalad clone the dataset using the GitHub repository URL:

$ cd /tmp
$ datalad clone https://github.com/<enter-your-your-organization-or-account-name-here>/
→˓neuro-data-s3.git
[INFO] Scanning for unlocked files (this may take some time)

(continues on next page)

262 https://console.aws.amazon.com/s3/

204 Chapter 13. Third party infrastructure

https://console.aws.amazon.com/s3/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Fig. 13.9: The public GitHub repository with the DataLad dataset

(continued from previous page)

[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): /tmp/neuro-data-s3 (dataset)

$ cd neuro-data-s3
$ datalad get . -r
[INFO] Installing Dataset(/tmp/neuro-data-s3) to get /tmp/neuro-data-s3 recursively
get(ok): CHANGES (file) [from public-s3...]
get(ok): README (file) [from public-s3...]
get(ok): dataset_description.json (file) [from public-s3...]
get(ok): sub-01/anat/sub-01_T1w.nii (file) [from public-s3...]
get(ok): sub-01/func/sub-01_task-auditory_bold.nii (file) [from public-s3...]
get(ok): sub-01/func/sub-01_task-auditory_events.tsv (file) [from public-s3...]
get(ok): task-auditory_bold.json (file) [from public-s3...]
action summary:
get (ok: 7)

The results of running the code above show that DataLad could install the dataset correctly
and get all annexed file content successfully from the public-s3 sibling.

Congrats!

Advanced examples

When there is a lot to upload, automation is your friend. Below, we try to collect a few real
world examples that go beyond toy examples. Do you have one and want to share it with the
world as well? Please get in touch263!

263 https://github.com/datalad-handbook/book/issues/new

13.4. Walk-through: Amazon S3 as a special remote 205

https://github.com/datalad-handbook/book/issues/new

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Automated uploads of dataset hierarchies

The script below is a quick-and-dirty solution to the task of exporting a hierarchy of datasets to
an S3 bucket. I needs to be invoked with three positional arguments, the path to the DATALAD

SUPERDATASET, the S3 bucket name, and a prefix.

#!/bin/bash

set -eu

export PS4='> '
set -x

topds="$1"
bucket="$2"
prefix="$3"

TEMP
srname="${bucket}5"

topdsfull=$PWD/$topds/

if ! git annex version | grep 8.2021 ; then
echo "E: need recent git annex. check what you have"
exit 1

fi

{ echo "$topdsfull"; datalad -f '{path}' subdatasets -r -d "$topds"; } | \
while read ds; do

relds=$(relpath "$ds" "$topdsfull")
fileprefix="$prefix/$relds/"
fileprefix=$(python -c "import os,sys; print(os.path.normpath(sys.argv[1]))" "

→˓$fileprefix")
echo $relds;
(

cd "$ds";
TODO: make sure that there is no ./ or // in fileprefix
if ! git remote | grep -q "$srname"; then

git annex initremote --debug "$srname" \
type=S3 \
autoenable=true \
bucket=$bucket \
encryption=none \
exporttree=yes \
"fileprefix=$fileprefix/" \
host=s3.amazonaws.com \
partsize=1GiB \
port=80 \
"publicurl=https://s3.amazonaws.com/$bucket" \
public=yes \
versioning=yes

fi
git annex export --to "$srname" --jobs 6 master

)
done

206 Chapter 13. Third party infrastructure

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

13.5 Walk-through: Git LFS as a special remote on GitHub

Some repository hosting services provide for-pay support for large files, and can thus be used
as special remotes as well. GitHub and GitLab for example support Git Large File Storage267

(Git LFS) for managing data files using Git. A free GitHub subscription allows up to 1GB of free
storage and up to 1GB of bandwidth monthly268. As such, it might be sufficient for some use
cases, and could be configured quite easily.

In order to store annexed dataset contents on GitHub, we need first to create a repository on
GitHub:

$ datalad create-sibling-github test-github-lfs
.: github(-) [https://github.com/yarikoptic/test-github-lfs.git (git)]
'https://github.com/yarikoptic/test-github-lfs.git' configured as sibling 'github' for
→˓<Dataset path=/tmp/test-github-lfs>

and then initialize a SPECIAL REMOTE of type git-lfs, pointing to the same GitHub repository:

$ git annex initremote github-lfs type=git-lfs url=https://github.com/yarikoptic/test-
→˓github-lfs encryption=none embedcreds=no

If you would like to compress data in Git LFS, you need to take a detour via encryption during
git annex initremote – this has compression as a convenient side effect. Here is an example
initialization:

$ git annex initremote --force github-lfs type=git-lfs url=https://github.com/yarikoptic/
→˓test-github-lfs encryption=shared

With this single step it becomes possible to transfer contents to GitHub:

$ git annex copy --to=github-lfs file.dat
copy file.dat (to github-lfs...)
ok
(recording state in git...)

and the entire dataset to the same GitHub repository:

$ datalad push --to=github
[INFO] Publishing <Dataset path=/tmp/test-github-lfs> to github
publish(ok): . (dataset) [pushed to github: ['[new branch]', '[new branch]']]

Because the special remote URL coincides with the regular remote URL on GitHub, siblings
enable (as shown in the section Walk-through: Dropbox as a special remote (page 191)) will not
even be necessary when datalad is installed from GitHub.

No drop from LFS

Unfortunately, it is impossible to drop contents from Git LFS:
help.github.com/en/github/managing-large-files269

269 https://docs.github.com/en/github/managing-large-files/versioning-large-files/removing-files-from-gi
t-large-file-storage#git-lfs-objects-in-your-repository

267 https://github.com/git-lfs/git-lfs
268 https://docs.github.com/en/github/managing-large-files/versioning-large-files/about-storage-and-bandwidth

-usage

13.5. Walk-through: Git LFS as a special remote on GitHub 207

https://github.com/git-lfs/git-lfs
https://docs.github.com/en/github/managing-large-files/versioning-large-files/about-storage-and-bandwidth-usage
https://docs.github.com/en/github/managing-large-files/versioning-large-files/about-storage-and-bandwidth-usage
https://docs.github.com/en/github/managing-large-files/versioning-large-files/removing-files-from-git-large-file-storage#git-lfs-objects-in-your-repository

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

13.6 Walk-through: Dataset hosting on GIN

GIN270 (G-Node infrastructure) is a free data management system designed for comprehensive
and reproducible management of scientific data. It is a web-based repository store and provides
fine-grained access control to share data. GIN builds up on GIT and GIT-ANNEX, and is an easy
alternative to other third-party services to host and share your DataLad datasets272. It allows
to share datasets and their contents with selected collaborators or making them publicly and
anonymously available. And even if you prefer to expose and share your datasets via GitHub, you
can still use Gin to host your data (page 214).

Git
- dataset history (commit messages,

 run records)

- All files + content committed into Git

 (useful with code, text, ...)

- File identity information of all annexed

 files (file name, identity hash, storage

 locations where to retrieve it from)

git-annex
- contents of annexed files

- organized in the "annex" or "object tree"

 of the dataset

Repositories with annex
support
- examples: GIN (gin.g-node.org), GitLab

instances with enabled annex support

- can hold large data for free

- exposes Git history and all files + content

- datasets can be cloned from there

Fig. 13.10: Some repository hosting services such as Gin have annex support, and can thus
hold the complete dataset. This makes publishing datasets very easy.

Go further for dataset access from GIN

If you reached this section to find out how to access a DataLad dataset shared on Gin,
please skip to the section Sharing and accessing the dataset (page 210).

Prerequisites

In order to use GIN for hosting and sharing your datasets, you need to

• register

• upload your public SSH KEY for SSH access
270 https://gin.g-node.org/G-Node/Info/wiki
272 GIN looks and feels similar to GitHub, and among a number advantages, it can assign a DOI to your dataset,

making it cite-able. Moreover, its web interface273 and client274 are useful tools with a variety of features that are
worthwhile to check out, as well.

273 https://gin.g-node.org/G-Node/Info/wiki/WebInterface
274 https://gin.g-node.org/G-Node/Info/wiki/GinUsageTutorial

208 Chapter 13. Third party infrastructure

https://gin.g-node.org/G-Node/Info/wiki
https://gin.g-node.org/G-Node/Info/wiki/WebInterface
https://gin.g-node.org/G-Node/Info/wiki/GinUsageTutorial

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• create an empty repository on GIN and publish your dataset to it

Once you have registered271 an account on the GIN server by providing your e-mail address,
affiliation, and name, and selecting a user name and password, you should upload your SSH
KEY to allow SSH access (you can find an explanation of what SSH keys are and how you
can create one in this Findoutmore (page 185) in the general section Publishing datasets to Git
repository hosting (page 184)). To do this, visit the settings of your user account. On the left
hand side, select the tab “SSH Keys”, and click the button “Add Key”:

Fig. 13.11: Upload your SSH key to GIN

You should copy the contents of your public key file into the field labeled content, and enter
an arbitrary but informative Key Name, such as “My private work station”. Afterwards, you are
done!

Publishing your dataset to GIN

To publish an existing dataset to GIN, create a new, empty repository on GIN first. Unlike with
datalad create-sibling-github (that does this step automatically for you on GITHUB), this
needs to be done via the web interface:

Afterwards, add this repository as a sibling of your dataset. To do this, use the datalad siblings
add command and the SSH URL of the repository as shown below. Note that since this is the
first time you will be connecting to the GIN server via SSH, you will likely be asked to confirm
to connect. This is a safety measure, and you can type “yes” to continue:

$ datalad siblings add -d . \
--name gin \
--url git@gin.g-node.org:/adswa/DataLad-101.git

The authenticity of host 'gin.g-node.org (141.84.41.219)' can't be established.
ECDSA key fingerprint is SHA256:E35RRG3bhoAm/WD+0dqKpFnxJ9+yi0uUiFLi+H/lkdU.
Are you sure you want to continue connecting (yes/no)? yes
[INFO] Failed to enable annex remote gin, could be a pure git or not accessible
[WARNING] Failed to determine if gin carries annex.
.: gin(-) [git@gin.g-node.org:/adswa/DataLad-101.git (git)]

Afterwards, you can publish your dataset with datalad push. As the repository on GIN sup-
ports a dataset annex, there is no publication dependency to an external data hosting service
271 https://gin.g-node.org/user/sign_up

13.6. Walk-through: Dataset hosting on GIN 209

https://gin.g-node.org/user/sign_up

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Fig. 13.12: Create a new repository on Gin using the web interface.

necessary, and the dataset contents stored in Git and in git-annex are published to the same
place:

$ datalad push --to gin
[INFO] Determine push target
[INFO] Push refspecs
[INFO] Transfer data
copy(ok): books/TLCL.pdf (file) [to gin...]
copy(ok): books/bash_guide.pdf (file) [to gin...]
copy(ok): books/byte-of-python.pdf (file) [to gin...]
copy(ok): books/progit.pdf (file) [to gin...]
[INFO] Update availability information
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start resolving deltas
publish(ok): . (dataset) [refs/heads/git-annex->gin:refs/heads/git-annex 6714aa0..455829a]
publish(ok): . (dataset) [refs/heads/master->gin:refs/heads/master [new branch]]
[INFO] Finished push of Dataset(/home/me/dl-101/DataLad-101)

If you refresh the GIN web interface afterwards, you will find all of your dataset – including
annexed contents! – on GIN. What is especially cool is that the GIN web interface (unlike
GITHUB) can even preview your annexed contents.

Sharing and accessing the dataset

Once your dataset is published, you can point collaborators and friends to it.

If it is a public repository, retrieving the dataset and getting access to all published data contents
(in a read-only fashion) is done by cloning the repository’s https url. This does not require a
user account on Gin.

210 Chapter 13. Third party infrastructure

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Fig. 13.13: A published dataset in a Gin repository at gin.g-node.org.

Take the URL in the browser, not the copy-paste URL

Please note that you need to use the browser URL of the repository, not the copy-paste
URL on the upper right hand side of the repository if you want to get anonymous HTTPS
access! The two URLs differ only by a .git extension:

• Browser bar: https://gin.g-node.org/<user>/<repo>
• Copy-paste “HTTPS clone”: https://gin.g-node.org/<user>/<repo>.git

A dataset cloned from https://gin.g-node.org/<user>/<repoy>.git, however, can not
retrieve annexed files!

$ datalad clone https://gin.g-node.org/adswa/DataLad-101
[INFO] Cloning dataset to Dataset(/home/me/dl-101/clone_of_dl-101/DataLad-101)
[INFO] Attempting to clone from https://gin.g-node.org/adswa/DataLad-101 to /home/me/dl-
→˓101/clone_of_dl-101/DataLad-101
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/clone_of_dl-101/DataLad-101)
[INFO] scanning for unlocked files (this may take some time)
install(ok): /home/me/dl-101/clone_of_dl-101/DataLad-101 (dataset)

Subsequently, datalad get calls will be able to retrieve all annexed file contents that have been
published to the repository.

If it is a private dataset, cloning the dataset from Gin requires a user name and password for
anyone you want to share your dataset with. The “Collaboration” tab under Settings lets you
set fine-grained access rights, and it is possible to share datasets with collaborators that are not
registered on GIN with provided Guest accounts. If you are unsure if your dataset is private, this
find-out-more shows you how to find out (page 212). In order to get access to annexed contents,
cloning requires setting up an SSH key as detailed above, and cloning via the SSH url:

$ datalad clone git@gin.g-node.org:/adswa/DataLad-101.git

13.6. Walk-through: Dataset hosting on GIN 211

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Likewise, in order to publish changes back to a Gin repository, the repository needs to be cloned
via its SSH url.

M13.5 How do I know if my repository is private?

Private repos are marked with a lock sign. To make it public, untick the “Private” box,
found under “Settings”:

Subdataset publishing

Just as the input subdataset iris_data in your published midterm_project was referencing
its source on GITHUB, the longnow subdataset in your published DataLad-101 dataset directly
references the original dataset on GITHUB. If you click onto recordings and then longnow in
GIN’s webinterface, you will be redirected to the podcast’s original dataset.

The subdataset midterm_project, however, is not successfully referenced. If you click on it, you
would get to a 404 Error page. The crucial difference between this subdataset and the longnow
dataset is its entry in the .gitmodules file of DataLad-101:

$ cat .gitmodules
[submodule "recordings/longnow"]

path = recordings/longnow
url = https://github.com/datalad-datasets/longnow-podcasts.git
datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e

[submodule "midterm_project"]
path = midterm_project
url = ./midterm_project
datalad-id = e5a3d370-223d-11ea-af8b-e86a64c8054c

While the longnow subdataset is referenced with a valid URL to GitHub, the midterm project’s
URL is a relative path from the root of the superdataset. This is because the longnow
subdataset was installed with datalad clone -d . (that records the source of the sub-
dataset), and the midterm_project dataset was created as a subdataset with datalad create

212 Chapter 13. Third party infrastructure

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

-d . midterm_project. Since there is no repository at https://gin.g-node.org/<USER>/
DataLad-101/midterm_project (which this submodule entry would resolve to), accessing the
subdataset fails.

However, since you have already published this dataset (to GitHub), you could update the
submodule entry and provide the accessible GitHub URL instead. This can be done via the
set-property <NAME> <VALUE> option of datalad subdatasets275 (replace the URL shown here
with the URL your dataset was published to – likely, you only need to change the user name):

$ datalad subdatasets --contains midterm_project \
--set-property url https://github.com/adswa/midtermproject

subdataset(ok): midterm_project (dataset)

$ cat .gitmodules
[submodule "recordings/longnow"]

path = recordings/longnow
url = https://github.com/datalad-datasets/longnow-podcasts.git
datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e
datalad-url = https://github.com/datalad-datasets/longnow-podcasts.git

[submodule "midterm_project"]
path = midterm_project
url = https://github.com/adswa/midtermproject
datalad-id = fea0e9c7-7932-41d5-8d57-97ac9ac6755a

Handily, the datalad subdatasets command saved this change to the .gitmodules file auto-
matically and the state of the dataset is clean:

$ datalad status
nothing to save, working tree clean

Afterwards, publish these changes to gin and see for yourself how this fixed the problem:

$ datalad push --to gin
[INFO] Determine push target
[INFO] Push refspecs
[INFO] Transfer data
[INFO] Update availability information
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
publish(ok): . (dataset) [refs/heads/master->gin:refs/heads/master b1c8ba0..c35b6c1]
[INFO] Finished push of Dataset(/home/me/dl-101/DataLad-101)

If the subdataset was not published before, you could publish the subdataset to a location of
your choice, and modify the .gitmodules entry accordingly.

275 Alternatively, you can configure the siblings url with git config:

$ git config -f .gitmodules --replace-all submodule.midterm_project.url https://github.com/adswa/
→˓midtermproject

Remember, though, that this command modifies .gitmodules without an automatic, subsequent save, so that you
will have to save this change manually.

13.6. Walk-through: Dataset hosting on GIN 213

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Using Gin as a data source behind the scenes

Even if you do not want to point collaborators to yet another hosting site but want to be able
to expose your datasets via services they use and know already (such as GitHub or GitLab), Gin
can be very useful: You can let Gin perform data hosting in the background by using it as an
“autoenabled data source” that a dataset SIBLING (even if it is published to GitHub or GitLab)
can retrieve data from. You will need to have a Gin account and SSH key setup, so please take
a look at the first part of this section if you do not yet know how to do this.

Then, follow these steps:

• First, create a new repository on Gin (see step by step instructions above).

• In your to-be-published dataset, add this repository as a sibling, this time setting –url and
–pushurl arguments explicitly. Make sure to configure a SSH URL as a --pushurl but a
HTTPS URL as a url. Please also note that the HTTPS URL written after --url DOES
NOT have the .git suffix. Here is the command:

$ datalad siblings add \
-d . \
--name gin \
--pushurl git@gin.g-node.org:/studyforrest/aggregate-fmri-timeseries.git \
--url https://gin.g-node.org/studyforrest/aggregate-fmri-timeseries \

• Locally, run git config --unset-all remote.gin.annex-ignore to prevent GIT-ANNEX

from ignoring this new dataset

• Push your data to the repository on Gin (datalad push --to gin). This pushes the actual
state of the repository, including content, but also adjusts the GIT-ANNEX configuration.

• Configure this sibling as a “common data source”. Use the same name as previously in
--name (to indicate which sibling you are configuring) and give a new, different, name
after --as-common-datasrc:

$ datalad siblings configure \
--name gin \
--as-common-datasrc gin-src

• Push to the repository on Gin again (datalad push --to gin) to make the configuration
change known to the Gin sibling.

• Publish your dataset to GitHub/GitLab/. . . , or update an existing published dataset
(datalad push)

Afterwards, datalad get retrieves files from Gin, even if the dataset has been cloned from
GitHub.

G13.2 siblings as a common data source

The argument as-common-datasrc <name> configures a sibling as a common data source
– in technical terms, as an auto-enabled git-annex special remote.

214 Chapter 13. Third party infrastructure

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

13.7 Built-in data export

Apart from flexibly configurable special remotes that allow publishing annexed content to a
variety of third party infrastructure, DataLad also has some built-in support for “exporting”
data to other services. This usually means that a static snapshot of your dataset and its files
are shared in archives or collections of files. While an export of a dataset looses some of the
advantages that a DataLad dataset has, for example a transparent version history, it can be a
fast and simple way to make the most recent version of your dataset available or archived.

One example is the command export-archive. Running this command creates a .tar.gz file
with the content of your dataset. This compressed archive can be uploaded to any data hosting
portal manually. This moves data out of version control and decentralized tracking, and essen-
tially “throws it over the wall” - while your data (also the annexed data) will be available for
download from where you share it, none of the special features a DataLad dataset provides will
be available, such as its history or configurations.

Another example is export-to-figshare. Figshare276 is an online open access repository where
researchers can preserve and share their research outputs, including figures, datasets, or images
- and thus everything that could potentially be managed in a Datalad dataset. Running datalad
export-to-figshare allows you to publish the dataset as a snapshot. Note that this requires
a free account on Figshare, and the generation of an access token277 for authentication. An
interactive prompt will ask you to supply authentication credentials, and guide you through the
process of creating a new article.

$ datalad export-to-figshare
[INFO] Exporting current tree as an archive under /home/me/DataLad-101 since␣

→˓figshare does not support directories
[INFO] Uploading /home/me/datalad_b1cbbaa9-dd5c-473e-8092-e911021f33cb.zip to␣

→˓figshare
Article
Would you like to create a new article to upload to? If not - we will list existing␣

→˓articles (choices: yes, no): yes

New article
Please enter the title (must be at least 3 characters long). [abcd#b1cbbaa9-dd5c-

→˓473e-8092-e911021f33cb]: my-cool-dataset

[INFO] Created a new (private) article 16676764 at https://figshare.com/account/
→˓articles/16676764. Please visit it, enter additional meta-data and make public

[INFO] 'Registering' /home/me/datalad_b1cbbaa9-dd5c-473e-8092-e911021f33cb.zip␣
→˓within annex

[INFO] Adding URL https://ndownloader.figshare.com/files/30876682 for it
[INFO] Registering links back for the content of the archive
[INFO] Adding content of the archive /home/me/datalad_b1cbbaa9-dd5c-473e-8092-

→˓e911021f33cb.zip into annex AnnexRepo(/home/me/DataLad-101)
[INFO] Initiating special remote datalad-archives
[INFO] Finished adding /home/me/datalad_b1cbbaa9-dd5c-473e-8092-e911021f33cb.zip:␣

→˓Files processed: 4, removed: 4, +git: 2, +annex: 2
[INFO] Removing generated and now registered in annex archive
export_to_figshare(ok): Dataset(/home/me/DataLad-101) [Published archive https://

→˓ndownloader.figshare.com/files/30876682]

The screenshot below shows how the DataLad-101 dataset looks like in exported form:

276 https://figshare.com/
277 https://figshare.com/account/applications

13.7. Built-in data export 215

https://figshare.com/
https://figshare.com/account/applications

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

216 Chapter 13. Third party infrastructure

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

You could then extend the dataset with metadata, obtain a DOI278 for it and make it citable,
and point others to it in order to download it as an archive of files.

Beyond this, as the command export-archive is used by it to prepare content for upload to
Figshare, annexed files also will be annotated as available from the archive on Figshare using
datalad-archive special remote. As a result, if you publish your Figshare dataset and share
your DataLad dataset on a repository hosting service without support for annexed files, users
will still be able to fetch content from the tarball shared on Figshare.

$ datalad siblings
.: here(+) [git]
.: datalad-archives(+) [datalad-archives]

13.8 Keeping (some) dataset contents private

Datasets can contain information that you don’t want to share with others. Maybe the collection
of pictures from your team-building event also contains those after-hour photos where you
drunkenly kidnapped a tram. Or you are handling data with strict privacy requirements, such
as patient data or medical imaging files. Whatever it may be, this short section summarizes
strategies that help you to ensure to private information is not leaked, even when you publicly
share datasets that contain it.

Strategy 1: Never save private information to Git

The most important strategy to keep in mind in handling datasets with potentially sensitive
information is to never save sensitive information into Git. NEVER. Saving sensitive infor-
mation into a dataset or Git repository that you intend to share is the equivalent of including
your account password as an attachment to every email you write – you don’t necessarily point
out that there is private information, but it lies around for everyone to accidentally find. Once
a file with sensitive contents has been saved in the version history, sharing this dataset may
accidentally expose the sensitive information even if it has been removed in the most recent
version – the transparent revision history of a dataset allows to simply restore the file.

Thus, make sure to always manage sensitive files with GIT-ANNEX, even if the file is just a small
text file. Having the file annexed allows you to specifically not share its contents, even when
you make your dataset publicly available. However, it is highly important to realize that while
annexed file’s contents are not saved into Git, annex file’s names are. If private information such
as a medical patients non-anonymized ID or other potentially identifying information becomes
a part of the file name, this information is exposed in the Git history of the dataset. Keep in
mind that this applies even if you renamed the file.

M13.6 Help! I accidentally saved sensitive information to Git!

The only lasting way to remove contents from the dataset history completely is to
substantially rewrite the dataset’s history via tools such as git-filter-repo or git
filter-branch, two very dangerous and potentially destructive operations. If you ever
need to go there, the advanced section Fixing up too-large datasets (page 328) contains a
paragraph on “Getting contents out of Git”.

278 https://www.doi.org/driven_by_DOI.html

13.8. Keeping (some) dataset contents private 217

https://www.doi.org/driven_by_DOI.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Strategy 2: Restrict access via third party service or file system permissions

When you have a dataset and only authorized actors should be allowed to access it, it is pos-
sible to set access restrictions simply via choice of (third party) storage permissions. When it
is an access restricted dataset on shared infrastructure, for example a scientific dataset that
only researchers who signed a data usage agreement should have access to, it could suffice to
create specific Unix groups279 with authorized users, and give only those groups the necessary
permissions. Depending on what permissions are set, unauthorized actors would not be able to
retrieve file contents, or be able to clone the dataset at all.

The ability of repository hosting services to make datasets private and only allow select collab-
orators access is yet another method of keeping complete datasets as private as necessary, even
though you should think twice on whether or not you should host sensitive repositories at all
on these services.

One method to exert potentially fine-grained access control over file contents is via choice of
(third party) hosting service for some or all annexed file contents. If you chose a service only
selected people have access to, and publish annexed contents exclusively there, then only those
selected people can perform a successful datalad get. For example, when it is a dataset with
content hosted on third party cloud storage such as S3 buckets, permission settings in the
storage locations would allow data providers to specify or limit who is able to retrieve the file
contents. An example for this is the usecase Scaling up: Managing 80TB and 15 million files from
the HCP release (page 433), where file contents from the human connectome project can only
be retrieved when a user has obtained the necessary credentials first.

Strategy 3: Selective publishing

If it is individual files that you do not want to share, you can selectively publish the contents of
all files you want others to have, and withhold the data of the files you do not want to share. This
can be done by providing paths to the data that should be published, or a git-annex-wanted280

configuration and the --data auto option.

Let’s say you have a dataset with three files:

• experiment.txt

• subject_1.dat

• subject_2.data

Consider that all of these files are annexed. While the information in experiment.txt is fine for
everyone to see, subject_1.dat and subject_2.dat contain personal and potentially identifying
data that can not be shared. Nevertheless, you want collaborators to know that these files exist.
By publishing only the file contents of experiment.txt with

$ datalad push --to github experiment.txt

only meta data about file availability of subject_1.dat and subject_2.dat exists, but as these
files’ annexed data is not published, a datalad get will fail. Note, though, that push will publish
the complete dataset history (unless you specify a commit range with the --since option – see
the manual281 for more information).
279 https://en.wikipedia.org/wiki/Group_identifier
280 https://git-annex.branchable.com/git-annex-wanted/
281 http://docs.datalad.org/en/latest/generated/man/datalad-push.html

218 Chapter 13. Third party infrastructure

https://en.wikipedia.org/wiki/Group_identifier
https://git-annex.branchable.com/git-annex-wanted/
http://docs.datalad.org/en/latest/generated/man/datalad-push.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

13.9 Overview: The datalad push command

Previous sections on publishing DataLad datasets have each shown you crucial aspects of the
functions of dataset publishing with datalad push. This section wraps them all together.

push availability

datalad push requires DataLad version 0.13.0 or higher. Older DataLad versions need
to use the datalad publish command. For details into datalad publish, please check
out the find-out-more on the difference between the two commands (page 223) at the end
of this page.

The general overview

datalad push is the command to turn to when you want to publish datasets. It is capable of
publishing all dataset content, i.e., files stored in GIT, and files stored with GIT-ANNEX, to a
known dataset SIBLING.

G13.3 Push internals

The datalad push uses git push, and git annex copy under the hood. Publication
targets need to either be configured remote Git repositories, or git-annex special remotes
(if they support data upload).

In order to publish a dataset, the dataset needs to have a sibling to push to. This, for instance,
can be a GITHUB, GITLAB, or GIN repository, but it can also be a Remote Indexed Archive (RIA)
store for backup or storage of datasets286, or a regular clone.

M13.7 all of the ways to configure siblings

• Add an existing repository as a sibling with the datalad siblings command. Here
are common examples:

to a remote repository
$ datalad siblings add --name github-repo --url <url.to.github>
to a local path
$ datalad siblings add --name local-sibling --url /path/to/sibling/ds
to a clone on an SSH-accessible machine
$ datalad siblings add --name server-sibling --url [user@]hostname:/path/to/
→˓sibling/ds

• Create a sibling on an external hosting service from scratch, right from within
your repository: This can be done with the commands create-sibling-github
(for GitHub) or create-siblings-gitlab (for GitLab), or create-sibling-ria (for
a remote indexed archive dataset store286). Note that create-sibling-ria can add
an existing store as a sibling or create a new one from scratch.

• Create a sibling on a local or SSH accessible Unix machine with datalad
create-sibling (datalad-create-sibling manual).

286 RIA siblings are filesystem-based, scalable storage solutions for DataLad datasets. You can find out more about
them in the section Remote Indexed Archives for dataset storage and backup (page 294).

13.9. Overview: The datalad push command 219

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

In order to publish dataset content, DataLad needs to know to which sibling content shall be
pushed. This can be specified with the --to option directly from the command line:

$ datalad push --to <sibling>

If you have more than one BRANCH in your dataset, note that a datalad push command will
by default update only the current branch. If updating multiple branches is relevant for your
workflow, please check out the find-out-more about this (page 221).

By default, push will make the last saved state of the dataset available. Consequently, if the
sibling is in the same state as the dataset, no push is attempted. Additionally, push will attempt
to automatically decide what type of dataset contents are going to be published. With a sibling
that has a SPECIAL REMOTE configured as a PUBLICATION DEPENDENCY, or a sibling that contains
an annex (such as a Gin repository or a REMOTE INDEXED ARCHIVE (RIA) STORE), both the
contents stored in Git (i.e., a dataset’s history) as well as file contents stored in git-annex will be
published unless dataset configurations overrule this. Alternatively, one can enforce particular
operations or push a subset of dataset contents. For one, when specifying a path in the datalad
push command, only data or changes for those paths are considered for a push. Additionally,
one can select a particular mode of operation with the -data option. Several different modes
are possible:

• nothing: With this option, annexed contents are not published. This means that the
sibling will have information on the annexed files’ names, but file contents will not be
available, and thus datalad get calls in the sibling would fail.

• anything: Transfer all annexed contents.

• auto: With this option, the decision which data is transferred is based on configurations
that can determine rules on a per-file and per-sibling level. On a technical level, the
git annex copy call to publish file contents is called with its --auto option. With this
option, only data that satisfies specific git-annex configurations gets transferred. Those
configurations could be numcopies settings (the number of copies available at different
remotes), or wanted settings (preferred contents for a specific remote), and need to be
created by a user287with git-annex commands. If you have files you want to keep private,
or do not need published, these configurations are very useful.

• auto-if-wanted (Default): Unless a wanted or numcopies configuration exists in the
dataset, all content are published. Should a wanted or numcopies configuration exist,
the command enables --auto in the underlying git annex copy call.

Beyond different modes of transferring data, the -f/--force option allows to force specific
publishing operations with three different modes. Be careful when using it, as its modes possibly
overrule safety protections or optimizations:

• checkdatapresent: With this option, the underlying git annex copy call to publish file
contents is invoked without a --fast option. Usually, the --fast option increases the
speed of the operation, as it disables a check whether the sibling already has content. This
however, might skip copying content in some cases. Therefore, --force datatransfer is
a slower, but more fail-safe option to publish annexed file contents.

• gitpush: This option triggers a git push --force. Be very careful using this option! If
the changes on the dataset conflict with the changes that exist in the sibling, the changes

287 For information on the numcopies and wanted settings of git-annex see its documentation at git-
annex.branchable.com/git-annex-wanted/288 and git-annex.branchable.com/git-annex-numcopies/289.

288 https://git-annex.branchable.com/git-annex-wanted/
289 https://git-annex.branchable.com/git-annex-numcopies/

220 Chapter 13. Third party infrastructure

https://git-annex.branchable.com/git-annex-wanted/
https://git-annex.branchable.com/git-annex-wanted/
https://git-annex.branchable.com/git-annex-numcopies/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

in the sibling will be overwritten.

• all: The final mode, all, combines all force modes – thus attempting to really get your
dataset contents published by any means.

datalad push can publish available subdatasets recursively if the -r/--recursive flag is spec-
ified. Note that this requires that all subdatasets that should be published have sibling names
identical to the sibling specified in the top-level push command, or that appropriate default
publication targets are configured throughout the dataset hierarchy.

M13.8 Pushing more than the current branch

If you have more than one BRANCH in your dataset, a datalad push --to <sibling> will
by default only push the current BRANCH, unless you provide configurations that alter this
default. Here are two ways in which this can be achieved:
Option 1: Setting the push.default configuration variable from simple (the default) to
matching will configure the dataset such that push pushes all branches to the sibling. A
concrete example: On a dataset level, this can be done using

$ git config --local push.default matching

Option 2: Tweaking the default push refspec282 for the dataset allows to select a range
of branches that should be pushed. The link above gives a thorough introduction into the
refspec. For a hands-on example, consider how it is done for the published DataLad-101
dataset283:
The published version of the handbook is known to the local handbook dataset as a
REMOTE called public, and each section of the book is identified with a custom branch
name that corresponds to the section name. Whenever an update to the public dataset
is pushed, apart from pushing only the master branch, all branches starting with the
section identifier sct are pushed automatically as well. This configuration was achieved
by specifying these branches (using GLOBBING with *) in the push specification of this
REMOTE:

$ git config --local remote.public.push 'refs/heads/sct*'

282 https://git-scm.com/book/en/v2/Git-Internals-The-Refspec
283 https://github.com/datalad-handbook/DataLad-101

Pushing errors

If you are unfamiliar with Git, please be aware that cloning a dataset to a different place and
subsequently pushing to it can lead to Git error messages if changes are pushed to a currently
checked out BRANCH of the sibling (in technical Git terms: When pushing to a checked-out
branch of a non-bare repository remote). As an example, consider what happens if we attempt
a datalad push to the sibling roommate that we created in the chapter Collaboration (page 92):

$ datalad push --to roommate
[INFO] Determine push target
[INFO] Push refspecs
[INFO] Transfer data
copy(ok): books/TLCL.pdf (file) [to roommate...]
copy(ok): books/bash_guide.pdf (file) [to roommate...]

(continues on next page)

13.9. Overview: The datalad push command 221

https://git-scm.com/book/en/v2/Git-Internals-The-Refspec
https://github.com/datalad-handbook/DataLad-101
https://github.com/datalad-handbook/DataLad-101

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

copy(ok): books/byte-of-python.pdf (file) [to roommate...]
[INFO] Update availability information
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start resolving deltas
[INFO] Finished
publish(ok): . (dataset) [refs/heads/git-annex->roommate:refs/heads/git-annex dc458de..
→˓2f9d5f3]
[ERROR] refs/heads/master->roommate:refs/heads/master [remote rejected] (branch is␣
→˓currently checked out) [publish(/home/me/dl-101/DataLad-101)]
publish(error): . (dataset) [refs/heads/master->roommate:refs/heads/master [remote␣
→˓rejected] (branch is currently checked out)]
[INFO] Finished push of Dataset(/home/me/dl-101/DataLad-101)

Publishing fails with the error message [remote rejected] (branch is currently checked
out). This can be prevented with configuration settings284 in Git versions 2.3 or higher, or
by pushing to a branch of the sibling that is currently not checked-out. For more information
on this, and other error messages during push, please checkout the section How to get help
(page 258).

13.10 Summary

Without access to the same computational infrastructure, you can share your DataLad datasets
with friends and collaborators by leveraging third party services. DataLad integrates well with
a variety of free or commercial services, and with many available service options this gives you
freedom in deciding where you store your data and thus who can get access.

• An easy, free, and fast option is GIN290, a web-based repository store for scientific data
management. If you are registered and have SSH authentication set up, you can create a
new, empty repository, add it as a sibling to your dataset, and publish all dataset contents
– including annexed data, as GIN supports repositories with an annex.

• Other repository hosting services such as GitHub and GitLab292do not support an annex.
If a dataset is shared via one of those platforms, annexed data needs to be published to
an external data store. The published dataset stores information about where to obtain
annexed file contents from such that a datalad get works.

• The external data store can be any of a variety of third party hosting providers. To en-
able data transfer to and from this service, you (may) need to configure an appropriate
SPECIAL REMOTE, and configure a publication dependency. The section Beyond shared
infrastructure (page 177) walked you through how this can be done with Dropbox291.

• The --data and --force options of datalad push allows to override automatic decision
making on to-be-published contents. If it isn’t specified, DataLad will attempt to figure out

284 https://github.blog/2015-02-06-git-2-3-has-been-released/
290 https://gin.g-node.org
292 Older versions of GITLAB provide a git-annex configuration, but it is disabled by default, and to enable it you

would need to have administrative access to the server and client side of your GitLab instance. Find out more
here293.

293 https://docs.gitlab.com/12.10/ee/administration/git_annex.html
291 https://dropbox.com

222 Chapter 13. Third party infrastructure

https://github.blog/2015-02-06-git-2-3-has-been-released/
https://gin.g-node.org
https://dropbox.com
https://docs.gitlab.com/12.10/ee/administration/git_annex.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M13.9 On the datalad publish command

Starting with DataLad version 0.13.0, datalad push was introduced and became an
alternative to datalad publish, which will be removed in a future DataLad release.
By default, datalad publish publishes the last saved state of the dataset (i.e., its Git
history) to a specified sibling:

$ datalad publish --to <sibling>

Like push, it supports recursive publishing across dataset hierarchies (if all datasets have
appropriately configured default publication targets or identical sibling names) with the
-r/--recursive flag, and it supports the --since option.
Main differences to push lie in publishs --transfer-data option that can be specified
with either all, auto or none and determines whether and how annexed contents should
be published if the sibling carries an annex: none will transfer only Git history and no an-
nexed data, auto relies on configurations of the sibling, and all will publish all annexed
contents.
By default, when using a plain datalad publish --to <sibling> with no path spec-
ification or --transfer-data option, publish will be used in auto mode. In practice,
this default will most likely lead to the same outcome as when specifying none: only your
datasets history, but no annexed contents will be published. On a technical level, the auto
option leads to adding auto to the underlying git annex copy command, which in turn
publishes annexed contents based on the git-annex preferred content configuration285 of
the sibling.
In order to publish all annexed contents, one needs to specify --transfer-data all.
Alternatively, adding paths to the publish call will publish the specified annexed content
(unless --transfer-data none is explicitly added). As yet another alternative, one needs
to add the same configuration for GIT-ANNEX that the option --auto of push need.
285 https://git-annex.branchable.com/git-annex-preferred-content/

itself which and how dataset contents shall be published. With a path to files, directories,
or subdatasets you can also publish only selected contents’ data.

Now what can I do with it?

Finally you can share datasets and their annexed contents with others without the need for a
shared computational infrastructure. It remains your choice where to publish your dataset to
– considerations of data access, safety, or potential costs will likely influence your choice of
service.

13.10. Summary 223

https://git-annex.branchable.com/git-annex-preferred-content/

CHAPTER

FOURTEEN

HELP YOURSELF

14.1 What to do if things go wrong

After all of the DataLad-101 lectures and tutorials so far, you really begin to appreciate the
pre-crafted examples and tasks the handbook provides. “Nothing really goes wrong, and if so,
it’s intended”, you acknowledge. “But how does this prepare me for life after the course? I’ve
seen a lot of different errors and know many caveats and principles already, but I certainly will
mess something up at one point. How can I get help, or use the history of the dataset to undo
what I screwed up? Also, I’m not sure whether I know what I can and can not do with the files
inside of my dataset. . . What if I would like to remove one, for example?”

Therefore, this upcoming chapter is a series of tutorials about common file system operations,
interactions with the history of datasets, and how to get help after errors.

14.2 Miscellaneous file system operations

With all of the information about symlinks and object trees, you might be reluctant to perform
usual file system managing operations, such as copying, moving, renaming or deleting files or
directories with annexed content.

If I renamed one of those books, would the symlink that points to the file content still be correct?
What happens if I’d copy an annexed file? If I moved the whole books/ directory? What if I
moved all of DataLad-101 into a different place on my computer? What if renamed the whole
superdataset? And how do I remove a file, or directory, or subdataset?

224

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Therefore, there is an extra tutorial offered by the courses’ TA today, and you attend. There is
no better way of learning than doing. Here, in the safe space of the DataLad-101 course, you
can try out all of the things you would be unsure about or reluctant to try on the dataset that
contains your own, valuable data.

Below you will find common questions about file system management operations, and each
question outlines caveats and solutions with code examples you can paste into your own ter-
minal. Because these code snippets will add many commits to your dataset, we’re cleaning up
within each segment with common git operations that manipulate the datasets history – be sure
to execute these commands as well (and be sure to be in the correct dataset).

Renaming files

Let’s try it. In Unix, renaming a file is exactly the same as moving a file, and uses the mv
command.

$ cd books/
$ mv TLCL.pdf The_Linux_Command_Line.pdf
$ ls -lah
total 24K
drwxr-xr-x 2 adina adina 4.0K Jul 29 16:24 .
drwxr-xr-x 8 adina adina 4.0K Jul 29 16:24 ..
lrwxrwxrwx 1 adina adina 131 Jan 19 2009 bash_guide.pdf -> ../.git/annex/objects/WF/Gq/
→˓MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--
→˓0ab2c121bcf68d7278af266f6a399c5f.pdf
lrwxrwxrwx 1 adina adina 131 Jun 16 2020 byte-of-python.pdf -> ../.git/annex/objects/z1/
→˓Q8/MD5E-s4208954--ab3a8c2f6b76b18b43c5949e0661e266.pdf/MD5E-s4208954--
→˓ab3a8c2f6b76b18b43c5949e0661e266.pdf
lrwxrwxrwx 1 adina adina 133 Jun 29 2019 progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-
→˓s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--
→˓05cd7ed561d108c9bcf96022bc78a92c.pdf
lrwxrwxrwx 1 adina adina 131 Jan 28 2019 The_Linux_Command_Line.pdf -> ../.git/annex/
→˓objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

Try to open the renamed file, e.g., with evince The_Linux_Command_Line.pdf. This works!

But let’s see what changed in the dataset with this operation:

$ datalad status
untracked: /home/me/dl-101/DataLad-101/books/The_Linux_Command_Line.pdf (symlink)
deleted: /home/me/dl-101/DataLad-101/books/TLCL.pdf (symlink)

We can see that the old file is marked as deleted, and simultaneously, an untracked file appears:
the renamed PDF.

While this might appear messy, a datalad save will clean all of this up. Therefore, do not panic
if you rename a file, and see a dirty dataset status with deleted and untracked files – datalad
save handles these and other cases really well under the hood.

$ datalad save -m "rename the book"
delete(ok): books/TLCL.pdf (file)
add(ok): books/The_Linux_Command_Line.pdf (file)
save(ok): . (dataset)
action summary:

(continues on next page)

14.2. Miscellaneous file system operations 225

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

add (ok: 1)
delete (ok: 1)
save (ok: 1)

The datalad save command will identify that a file was renamed, and will summarize this
nicely in the resulting commit:

$ git log -n 1 -p
commit 6a97027f7cea0afd1f20e333d9d69c0942a8c48b
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:00 2021 +0200

rename the book

diff --git a/books/TLCL.pdf b/books/The_Linux_Command_Line.pdf
similarity index 100%
rename from books/TLCL.pdf
rename to books/The_Linux_Command_Line.pdf

Note that datalad save commits all modifications when it’s called without a path specification,
so any other changes will be saved in the same commit as the rename. If there are unsaved
modifications you do not want to commit together with the file name change, you could give
both the new and the deleted file as a path specification to datalad save, even if it feels
unintuitive to save a change that is marked as a deletion in a datalad status:

datalad save -m "rename file" oldname newname

Alternatively, there is also a way to save the name change only using Git tools only, outlined in
the following hidden section. If you are a Git user, you will be very familiar with it.

M14.1 Renaming with Git tools

Git has built-in commands that provide a solution in two steps.
If you have followed along with the previous datalad save, let’s revert the renaming of
the the files:

$ git reset --hard HEAD~1
$ datalad status
HEAD is now at 1fae7c2 add container and execute analysis within container
nothing to save, working tree clean

Now we’re checking out how to rename files and commit this operation using only Git:
A Git-specific way to rename files is the git mv command:

$ git mv TLCL.pdf The_Linux_Command_Line.pdf

$ datalad status
added: /home/me/dl-101/DataLad-101/books/The_Linux_Command_Line.pdf (file)

deleted: /home/me/dl-101/DataLad-101/books/TLCL.pdf (file)

We can see that the old file is still seen as “deleted”, but the “new”, renamed file is
“added”. A git status displays the change in the dataset a bit more accurately:

226 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)

renamed: TLCL.pdf -> The_Linux_Command_Line.pdf

Because the git mv places the change directly into the staging area (the index) of Git297,
a subsequent git commit -m "rename book" will write the renaming – and only the
renaming – to the dataset’s history, even if other (unstaged) modifications are present.

$ git commit -m "rename book"
[master 6dbccb8] rename book
1 file changed, 0 insertions(+), 0 deletions(-)
rename books/{TLCL.pdf => The_Linux_Command_Line.pdf} (100%)

297 If you want to learn more about the Git-specific concepts of worktree, staging area/index or HEAD, the
upcoming section Back and forth in time (page 245) will talk briefly about them and demonstrate helpful
commands.

To summarize, renaming files is easy and worry-free. Do not be intimidated by a file marked as
deleted – a datalad save will rectify this. Be mindful of other modifications in your dataset,
though, and either supply appropriate paths to datalad save, or use Git tools to exclusively
save the name change and nothing else.

Let’s revert this now, to have a clean history.

$ git reset --hard HEAD~1
$ datalad status
HEAD is now at 1fae7c2 add container and execute analysis within container
nothing to save, working tree clean

Moving files from or into subdirectories

Let’s move an annexed file from within books/ into the root of the superdataset:

$ mv TLCL.pdf ../TLCL.pdf
$ datalad status
untracked: /home/me/dl-101/DataLad-101/TLCL.pdf (symlink)
deleted: /home/me/dl-101/DataLad-101/books/TLCL.pdf (symlink)

In general, this looks exactly like renaming or moving a file in the same directory. There is a
subtle difference though: Currently, the symlink of the annexed file is broken. There are two
ways to demonstrate this. One is trying to open the file – this will currently fail. The second
way is to look at the symlink:

$ cd ../
$ ls -l TLCL.pdf
lrwxrwxrwx 1 adina adina 131 Jul 29 16:25 TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

The first part of the symlink should point into the .git/ directory, but currently, it does not –
the symlink still looks like TLCL.pdf would be within books/. Instead of pointing into .git, it
currently points to ../.git, which is non-existent, and even outside of the superdataset. This is

14.2. Miscellaneous file system operations 227

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

why the file cannot be opened: When any program tries to follow the symlink, it will not resolve,
and an error such as “no file or directory” will be returned. But do not panic! A datalad save
will rectify this as well:

$ datalad save -m "moved book into root"
$ ls -l TLCL.pdf
delete(ok): books/TLCL.pdf (file)
add(ok): TLCL.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
delete (ok: 1)
save (ok: 1)

lrwxrwxrwx 1 adina adina 128 Jul 29 16:25 TLCL.pdf -> .git/annex/objects/jf/3M/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

After a datalad save, the symlink is fixed again. Therefore, in general, whenever moving
or renaming a file, especially between directories, a datalad save is the best option to turn
to. Therefore, while it might be startling if you’ve moved a file and can not open it directly
afterwards, everything will be rectified by datalad save as well.

M14.2 Why a move between directories is actually a content change

Let’s see how this shows up in the dataset history:

$ git log -n 1 -p
commit cdff14955d0175d57af4beee3316b45c54195632
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:03 2021 +0200

moved book into root

diff --git a/TLCL.pdf b/TLCL.pdf
new file mode 120000
index 0000000..34328e2
--- /dev/null
+++ b/TLCL.pdf
@@ -0,0 +1 @@
+.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
\ No newline at end of file
diff --git a/books/TLCL.pdf b/books/TLCL.pdf
deleted file mode 120000
index 4c84b61..0000000
--- a/books/TLCL.pdf
+++ /dev/null
@@ -1 +0,0 @@
-../.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/
→˓MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
\ No newline at end of file

As you can see, this action does not show up as a move, but instead a deletion and
addition of a new file. Why? Because the content that is tracked is the actual symlink,
and due to the change in relative location, the symlink needed to change. Hence, what
looks and feels like a move on the file system for you is actually a move plus a content

228 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

change for Git.

G14.1 git annex fix

A datalad save command internally uses a git commit to save changes to a dataset. git
commit in turn triggers a git annex fix command. This git-annex command fixes up
links that have become broken to again point to annexed content, and is responsible for
cleaning up what needs to be cleaned up. Thanks, git-annex!

Finally, let’s clean up:

$ git reset --hard HEAD~1
HEAD is now at 1fae7c2 add container and execute analysis within container

Moving files across dataset boundaries

Generally speaking, moving files across dataset hierarchies is not advised. While DataLad blurs
the dataset boundaries to ease working in nested dataset, the dataset boundaries do still exist.
If you move a file from one subdataset into another, or up or down a dataset hierarchy, you will
move it out of the version control it was in (i.e., from one .git directory into a different one).
From the perspective of the first subdataset, the file will be deleted, and from the perspective
of the receiving dataset, the file will be added to the dataset, but straight out of nowhere,
with none of its potential history from its original dataset attached to it. Before moving a file,
consider whether copying it (outlined in the next but one paragraph) might be a more suitable
alternative.

If you are willing to sacrifice298 the file’s history and move it to a different dataset, the procedure
differs between annexed files, and files stored in Git.

For files that Git manages, moving and saving is simple: Move the file, and save the resulting
changes in both affected datasets (this can be done with a recursive save from a top-level
dataset, though).

$ mv notes.txt midterm_project/notes.txt
$ datalad status -r
modified: midterm_project (dataset)
untracked: midterm_project/notes.txt (file)
deleted: notes.txt (file)

$ datalad save -r -m "moved notes.txt from root of top-ds to midterm subds"
add(ok): notes.txt (file)
save(ok): midterm_project (dataset)
delete(ok): notes.txt (file)
add(ok): midterm_project (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
delete (ok: 1)
save (notneeded: 2, ok: 2)

298 Or rather: split – basically, the file is getting a fresh new start. Think of it as some sort of witness-protection
program with complete disrespect for provenance. . .

14.2. Miscellaneous file system operations 229

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Note how the history of notes.txt does not exist in the subdataset – it appears as if the file was
generated at once, instead of successively over the course:

$ cd midterm_project
$ git log notes.txt
commit 73706bbae3ccd44dd1b8f7250fd711e591a517e7
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:05 2021 +0200

moved notes.txt from root of top-ds to midterm subds

(Undo-ing this requires git resets in both datasets)

in midterm_project
$ git reset --hard HEAD~

in DataLad-101
$ cd ../
$ git reset --hard HEAD~
HEAD is now at e231e46 [DATALAD RUNCMD] rerun analysis in container
HEAD is now at 1fae7c2 add container and execute analysis within container

The process is a bit more complex for annexed files. Let’s do it wrong, first: What happens if
we move an annexed file in the same way as notes.txt?

$ mv books/TLCL.pdf midterm_project
$ datalad status -r
deleted: books/TLCL.pdf (symlink)

modified: midterm_project (dataset)
untracked: midterm_project/TLCL.pdf (symlink)

$ datalad save -r -m "move annexed file around"
add(ok): TLCL.pdf (file) [TLCL.pdf is a git-annex symlink. Its content is not available␣
→˓in this repository. (Maybe TLCL.pdf was copied from another repository?)]
save(ok): midterm_project (dataset)
delete(ok): books/TLCL.pdf (file)
add(ok): midterm_project (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
delete (ok: 1)
save (notneeded: 2, ok: 2)

At this point, this does not look that different to the result of moving notes.txt. Note, though,
that the deleted and untracked PDFs are symlinks – and therein lies the problem: What was
moved was not the file content (which is still in the annex of the top-level dataset, DataLad-101),
but its symlink that was stored in Git. After moving the file, the symlink is broken, and git-annex
has no way of finding out where the file content could be:

$ cd midterm_project
$ git annex whereis TLCL.pdf
whereis TLCL.pdf (0 copies) failed
git-annex: whereis: 1 failed

Let’s rewind, and find out how to do it correctly:

230 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ git reset --hard HEAD~
$ cd ../
$ git reset --hard HEAD~
HEAD is now at e231e46 [DATALAD RUNCMD] rerun analysis in container
HEAD is now at 1fae7c2 add container and execute analysis within container

The crucial step to remember is to get the annexed file out of the annex prior to moving it. For
this, we need to fall back to git-annex commands:

$ git annex unlock books/TLCL.pdf
$ mv books/TLCL.pdf midterm_project
$ datalad status -r
unlock books/TLCL.pdf ok
(recording state in git...)
deleted: books/TLCL.pdf (file)

modified: midterm_project (dataset)
untracked: midterm_project/TLCL.pdf (file)

Afterwards, a (recursive) save commits the removal of the book from DataLad-101, and adds
the file content into the annex of midterm_project:

$ datalad save -r -m "move book into midterm_project"
add(ok): TLCL.pdf (file)
save(ok): midterm_project (dataset)
delete(ok): books/TLCL.pdf (file)
add(ok): midterm_project (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
delete (ok: 1)
save (notneeded: 2, ok: 2)

Even though you did split the file’s history, at least its content is in the correct dataset now:

$ cd midterm_project
$ git annex whereis TLCL.pdf
whereis TLCL.pdf (1 copy)

eeb3bae2-0e0c-41f3-b759-e6b76fd48f1a -- me@muninn:~/dl-101/DataLad-101/midterm_
→˓project [here]
ok

But more than showing you how it can be done, if necessary, this paragraph hopefully convinced
you that moving files across dataset boundaries is not convenient. It can be a confusing and
potentially “file-content-losing”-dangerous process, but it also dissociates a file from its prove-
nance that is captured in its previous dataset, with no machine-readable way to learn about the
move easily. A better alternative may be copying files with the datalad copy-file command
introduced in detail in Subsample datasets using datalad copy-file (page 313), and demonstrated
in the next but one paragraph. Let’s quickly clean up by moving the file back:

in midterm_project
$ git annex unannex TLCL.pdf
unannex TLCL.pdf ok
(recording state in git...)

14.2. Miscellaneous file system operations 231

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ mv TLCL.pdf ../books
$ cd ../
$ datalad save -r -m "move book back from midterm_project"
save(ok): midterm_project (dataset)
add(ok): midterm_project (file)
add(ok): books/TLCL.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
save (notneeded: 2, ok: 2)

Copying files

Let’s create a copy of an annexed file, using the Unix command cp to copy.

$ cp books/TLCL.pdf copyofTLCL.pdf
$ datalad status
untracked: copyofTLCL.pdf (file)

That’s expected. The copy shows up as a new, untracked file. Let’s save it:

$ datalad save -m "add copy of TLCL.pdf"
add(ok): copyofTLCL.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

$ git log -n 1 -p
commit 8049f0ace5bc3268e7b9a7b3bc2030b4a3859bfb
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:11 2021 +0200

add copy of TLCL.pdf

diff --git a/copyofTLCL.pdf b/copyofTLCL.pdf
new file mode 120000
index 0000000..34328e2
--- /dev/null
+++ b/copyofTLCL.pdf
@@ -0,0 +1 @@
+.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
\ No newline at end of file

That’s it.

M14.3 Symlinks!

If you have read the additional content in the section Data integrity (page 85), you know
that the same file content is only stored once, and copies of the same file point to the
same location in the object tree.
Let’s check that out:

232 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ ls -l copyofTLCL.pdf
$ ls -l books/TLCL.pdf
lrwxrwxrwx 1 adina adina 128 Jul 29 16:25 copyofTLCL.pdf -> .git/annex/objects/jf/
→˓3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf
lrwxrwxrwx 1 adina adina 131 Jan 28 2019 books/TLCL.pdf -> ../.git/annex/objects/
→˓jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

Indeed! Apart from their relative location (.git versus ../.git) their symlink is identical.
Thus, even though two copies of the book exist in your dataset, your disk needs to store
it only once.
In most cases, this is just an interesting fun-fact, but beware when dropping content with
datalad drop (Removing annexed content entirely (page 241)): If you drop the content of
one copy of a file, all other copies will lose this content as well.

Finally, let’s clean up:

$ git reset --hard HEAD~1
HEAD is now at 324a09b move book back from midterm_project

Copying files across dataset boundaries

copy-file availability

datalad copy-file requires DataLad version 0.13.0 or higher.

Instead of moving files across dataset boundaries, copying them is an easier and – beginning
with DataLad version 0.13.0 – actually supported method. The DataLad command that can
be used for this is datalad copy-file (datalad-copy-file manual). This command allows to
copy files (from any dataset or non-dataset location, annexed or not annexed) into a dataset. If
the file is copied from a dataset and is annexed, its availability metadata is added to the new
dataset as well, and there is no need for unannex’ing the or even retrieving its file contents.
Let’s see this in action for a file stored in Git, and a file stored in annex:

$ datalad copy-file notes.txt midterm_project -d midterm_project
[INFO] Copying non-annexed file or copy into non-annex dataset: /home/me/dl-101/DataLad-
→˓101/notes.txt -> AnnexRepo(/home/me/dl-101/DataLad-101/midterm_project)
copy_file(ok): /home/me/dl-101/DataLad-101/notes.txt
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
copy_file (ok: 1)
save (ok: 1)

$ datalad copy-file books/bash_guide.pdf midterm_project -d midterm_project
copy_file(ok): /home/me/dl-101/DataLad-101/books/bash_guide.pdf [/home/me/dl-101/DataLad-
→˓101/midterm_project/bash_guide.pdf]
save(ok): . (dataset)
action summary:

(continues on next page)

14.2. Miscellaneous file system operations 233

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

copy_file (ok: 1)
save (ok: 1)

Both files have been successfully transferred and saved to the subdataset, and no unannexing
was necessary. Note, though, that notes.txt was annexed in the subdataset, as this subdataset
was not configured with the text2git RUN PROCEDURE.

$ tree midterm_project
midterm_project

bash_guide.pdf -> .git/annex/objects/WF/Gq/MD5E-s1198170--
→˓0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf

CHANGELOG.md
code

README.md
script.py

input
iris.csv -> .git/annex/objects/qz/Jg/MD5E-s3975--341a3b5244f213282b7b0920b729c592.

→˓csv/MD5E-s3975--341a3b5244f213282b7b0920b729c592.csv
notes.txt -> .git/annex/objects/mf/wJ/MD5E-s5074--99d027490a2f9a9c49cffc2c34b55d5c.

→˓txt/MD5E-s5074--99d027490a2f9a9c49cffc2c34b55d5c.txt
pairwise_relationships.png -> .git/annex/objects/q1/gp/MD5E-s261062--

→˓025dc493ec2da6f9f79eb1ce8512cbec.png/MD5E-s261062--025dc493ec2da6f9f79eb1ce8512cbec.png
prediction_report.csv -> .git/annex/objects/8q/6M/MD5E-s345--

→˓a88cab39b1a5ec59ace322225cc88bc9.csv/MD5E-s345--a88cab39b1a5ec59ace322225cc88bc9.csv
README.md

2 directories, 9 files

The subdataset has two new commits as datalad copy-file can take care of saving changes
in the copied-to dataset, and thus the new subdataset state would need to be saved in the
superdataset.

$ datalad status -r
modified: midterm_project (dataset)

Still, just as when we moved files across dataset boundaries, the files’ provenance record is lost:

$ cd midterm_project
$ git log notes.txt
commit d75fdadbb0e91ef4bcdc2587e02e6dd8b965f0d5
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:12 2021 +0200

[DATALAD] Recorded changes

Nevertheless, copying files with datalad copy-file is easier and safer than moving them with
standard Unix commands, especially so for annexed files. A more detailed introduction to
datalad copy-file and a concrete usecase can currently be found in Subsample datasets using
datalad copy-file (page 313).

Let’s clean up:

$ git reset --hard HEAD~2
HEAD is now at a3cd3ca move book back from midterm_project

234 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Moving/renaming a subdirectory or subdataset

Moving or renaming subdirectories, especially if they are subdatasets, can be a minefield. But
in principle, a safe way to proceed is using the Unix mv command to move or rename, and the
datalad save to clean up afterwards, just as in the examples above. Make sure to not use git
mv, especially for subdatasets.

Let’s for example rename the books directory:

$ mv books/ readings
$ datalad status
untracked: readings (directory)
deleted: books/TLCL.pdf (symlink)
deleted: books/bash_guide.pdf (symlink)
deleted: books/byte-of-python.pdf (symlink)
deleted: books/progit.pdf (symlink)

$ datalad save -m "renamed directory"
delete(ok): books/TLCL.pdf (file)
delete(ok): books/bash_guide.pdf (file)
delete(ok): books/byte-of-python.pdf (file)
delete(ok): books/progit.pdf (file)
add(ok): readings/TLCL.pdf (file)
add(ok): readings/bash_guide.pdf (file)
add(ok): readings/byte-of-python.pdf (file)
add(ok): readings/progit.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 4)
delete (ok: 4)
save (ok: 1)

This is easy, and complication free. Moving (as in: changing the location, instead of the name)
the directory would work in the same fashion, and a datalad save would fix broken symlinks
afterwards. Let’s quickly clean this up:

$ git reset --hard HEAD~1
HEAD is now at 324a09b move book back from midterm_project

But let’s now try to move the longnow subdataset into the root of the superdataset:

$ mv recordings/longnow .
$ datalad status
untracked: longnow (directory)
deleted: recordings/longnow (dataset)

$ datalad save -m "moved subdataset"
delete(ok): recordings/longnow (file)
add(ok): longnow (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
delete (ok: 1)
save (ok: 1)

14.2. Miscellaneous file system operations 235

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad status
nothing to save, working tree clean

This seems fine, and it has indeed worked. However, reverting a commit like this is tricky, at the
moment. This could lead to trouble if you at a later point try to revert or rebase chunks of your
history including this move. Therefore, if you can, try not to move subdatasets around. For
now we’ll clean up in a somewhat “hacky” way: Reverting, and moving remaining subdataset
contents back to their original place by hand to take care of the unwanted changes the commit
reversal introduced.

$ git reset --hard HEAD~1
warning: unable to rmdir 'longnow': Directory not empty
HEAD is now at 324a09b move book back from midterm_project

$ mv -f longnow recordings

The take-home message therefore is that it is best not to move subdatasets, but very possible
to move subdirectories if necessary. In both cases, do not attempt moving with the git mv, but
stick with mv and a subsequent datalad save.

Moving/renaming a superdataset

Once created, a DataLad superdataset may not be in an optimal place on your file system, or
have the best name.

After a while, you might think that the dataset would fit much better into /home/user/
research_projects/ than in /home/user/Documents/MyFiles/tmp/datalad-test/. Or maybe
at some point, a long name such as My-very-first-DataLad-project-wohoo-I-am-so-excited
does not look pretty in your terminal prompt anymore, and going for finance-2019 seems more
professional.

These will be situations in which you want to rename or move a superdataset. Will that break
anything?

In all standard situations, no, it will be completely fine. You can use standard Unix commands
such as mv to do it, and also whichever graphical user interface or explorer you may use.

Beware of one thing though: If your dataset either is a sibling or has a sibling with the source
being a path, moving or renaming the dataset will break the linkage between the datasets. This
can be fixed easily though. We can try this in the following hidden section.

M14.4 If a renamed/moved dataset is a sibling. . .

As section DIY configurations (page 112) explains, each sibling is registered in .git/
config in a “submodule” section. Let’s look at how our sibling “roommate” is registered
there:

236 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ cat .git/config
[core]

repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
editor = nano

[annex]
uuid = 142a8659-5566-466d-af37-5958d071a995
version = 8
backends = MD5E

[filter "annex"]
smudge = git-annex smudge -- %f
clean = git-annex smudge --clean -- %f

[submodule "recordings/longnow"]
active = true
url = https://github.com/datalad-datasets/longnow-podcasts.git

[remote "roommate"]
url = ../mock_user/DataLad-101
fetch = +refs/heads/*:refs/remotes/roommate/*
annex-uuid = dfa64995-4862-40bf-b5c7-518db36f3f4d
annex-ignore = false

[submodule "midterm_project"]
active = true
url = ./midterm_project

[submodule "longnow"]
active = true
url = https://github.com/datalad-datasets/longnow-podcasts.git

As you can see, its “url” is specified as a relative path. Say your room mate’s directory is
a dataset you would want to move. Let’s see what happens if we move the dataset such
that the path does not point to the dataset anymore:

add an intermediate directory
$ cd ../mock_user
$ mkdir onemoredir
move your room mates dataset into this new directory
$ mv DataLad-101 onemoredir

This means that relative to your DataLad-101, your room mates dataset is not at ../
mock_user/DataLad-101 anymore, but in ../mock_user/onemoredir/DataLad-101. The
path specified in the configuration file is thus wrong now.

navigate back into your dataset
$ cd ../DataLad-101
attempt a datalad update
$ datalad update
[INFO] Fetching updates for Dataset(/home/me/dl-101/DataLad-101)
CommandError: 'git fetch --verbose --progress --prune --recurse-submodules=no␣
→˓roommate' failed with exitcode 128 under /home/me/dl-101/DataLad-101
fatal: '../mock_user/DataLad-101' does not appear to be a git repository
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

Here we go:

14.2. Miscellaneous file system operations 237

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

'fatal: '../mock_user/DataLad-101' does not appear to be a git repository
fatal: Could not read from remote repository.

Git seems pretty insistent (given the amount of error messages) that it can not seem
to find a Git repository at the location the .git/config file specified. Luckily, we can
provide this information. Edit the file with an editor of your choice and fix the path from
url = ../mock_user/DataLad-101 to url = ../mock_user/onemoredir/DataLad-101.
Below, we are using the stream editor sed294 for this operation.

$ sed -i 's/..\/mock_user\/DataLad-101/..\/mock_user\/onemoredir\/DataLad-101/' .
→˓git/config

This is how the file looks now:

$ cat .git/config
[core]

repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
editor = nano

[annex]
uuid = 142a8659-5566-466d-af37-5958d071a995
version = 8
backends = MD5E

[filter "annex"]
smudge = git-annex smudge -- %f
clean = git-annex smudge --clean -- %f

[submodule "recordings/longnow"]
active = true
url = https://github.com/datalad-datasets/longnow-podcasts.git

[remote "roommate"]
url = ../mock_user/onemoredir/DataLad-101
fetch = +refs/heads/*:refs/remotes/roommate/*
annex-uuid = dfa64995-4862-40bf-b5c7-518db36f3f4d
annex-ignore = false

[submodule "midterm_project"]
active = true
url = ./midterm_project

[submodule "longnow"]
active = true
url = https://github.com/datalad-datasets/longnow-podcasts.git

Let’s try to update now:

$ datalad update
[INFO] Fetching updates for Dataset(/home/me/dl-101/DataLad-101)
update(ok): . (dataset)

Nice! We fixed it! Therefore, if a dataset you move or rename is known to other datasets
from its path, or identifies siblings with paths, make sure to adjust them in the .git/
config file.
To clean up, we’ll redo the move of the dataset and the modification in .git/config.

238 Chapter 14. Help yourself

https://en.wikipedia.org/wiki/Sed

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ cd ../mock_user && mv onemoredir/DataLad-101 .
$ rm -r onemoredir
$ cd ../DataLad-101 && sed -i 's/..\/mock_user\/onemoredir\/DataLad-101/..\/mock_
→˓user\/DataLad-101/' .git/config

294 https://en.wikipedia.org/wiki/Sed

Getting contents out of git-annex

Files in your dataset can either be handled by GIT or GIT-ANNEX. Self-made or predefined
configurations to .gitattributes, defaults, or the --to-git option to datalad save allow you
to control which tool does what on up to single-file basis. Accidentally though, you may give
a file of yours to git-annex when it was intended to be stored in Git, or you want to get a
previously annexed file into Git.

Consider you intend to share the cropped .png images you created from the longnow logos.
Would you publish your DataLad-101 dataset so GITHUB or GITLAB, these files would not be
available to others, because annexed dataset contents can not be published to these services.
Even though you could find a third party service of your choice and publish your dataset and the
annexed data (see section Beyond shared infrastructure (page 177)), you’re feeling lazy today.
And since it is only two files, and they are quite small, you decide to store them in Git – this
way, the files would be available without configuring an external data store.

To get contents out of the dataset’s annex you need to unannex them. This is done with the
git-annex command git annex unannex. Let’s see how it works:

$ git annex unannex recordings/*logo_small.jpg
unannex recordings/interval_logo_small.jpg ok
unannex recordings/salt_logo_small.jpg ok
(recording state in git...)

Your dataset’s history records the unannexing of the files.

$ git log -p -n 1
commit 324a09b6d97b867ee5896b0ec5af25db716d9c3f
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:10 2021 +0200

move book back from midterm_project

diff --git a/books/TLCL.pdf b/books/TLCL.pdf
new file mode 120000
index 0000000..4c84b61
--- /dev/null
+++ b/books/TLCL.pdf
@@ -0,0 +1 @@
+../.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
\ No newline at end of file
diff --git a/midterm_project b/midterm_project
index 566e7d3..a3cd3ca 160000
--- a/midterm_project
+++ b/midterm_project

(continues on next page)

14.2. Miscellaneous file system operations 239

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

@@ -1 +1 @@
-Subproject commit 566e7d3aab39017a90b1afb68f9cb15317363c18
+Subproject commit a3cd3cad564736d67d90b3a77561c28b05e902ef

Once files have been unannexed, they are “untracked” again, and you can save them into Git,
either by adding a rule to .gitattributes, or with datalad save --to-git:

$ datalad save --to-git -m "save cropped logos to Git" recordings/*jpg
add(ok): recordings/interval_logo_small.jpg (file)
add(ok): recordings/salt_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
save (ok: 1)

Deleting (annexed) files/directories

Removing annexed file content from a dataset is possible in two different ways: Either by
removing the file from the current state of the repository (which Git calls the worktree) but
keeping the content in the history of the dataset, or by removing content entirely from a dataset
and its history.

Removing a file, but keeping content in history

An rm <file> or rm -rf <directory> with a subsequent datalad save will remove a file or
directory, and save its removal. The file content however will still be in the history of the dataset,
and the file can be brought back to existence by going back into the history of the dataset or
reverting the removal commit:

download a file
$ datalad download-url -m "Added flower mosaic from wikimedia" \
https://upload.wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.jpg \
--path flowers.jpg

$ ls -l flowers.jpg
[INFO] Downloading 'https://upload.wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.
→˓jpg' into '/home/me/dl-101/DataLad-101/flowers.jpg'
download_url(ok): /home/me/dl-101/DataLad-101/flowers.jpg (file)
add(ok): flowers.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

lrwxrwxrwx 1 adina adina 128 Oct 8 2014 flowers.jpg -> .git/annex/objects/7q/9Z/MD5E-
→˓s4487679--3898ef0e3497a89fa1ea74698992bf51.jpg/MD5E-s4487679--
→˓3898ef0e3497a89fa1ea74698992bf51.jpg

removal is easy:
$ rm flowers.jpg

This will lead to a dirty dataset status:

240 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad status
deleted: flowers.jpg (symlink)

If a removal happened by accident, a git checkout -- flowers.jpg would undo the removal at
this stage. To stick with the removal and clean up the dataset state, datalad save will suffice:

$ datalad save -m "removed file again"
delete(ok): flowers.jpg (file)
save(ok): . (dataset)
action summary:
delete (ok: 1)
save (ok: 1)

This commits the deletion of the file in the dataset’s history. If this commit is reverted, the file
comes back to existence:

$ git reset --hard HEAD~1
$ ls
HEAD is now at afe8e14 Added flower mosaic from wikimedia
books
code
flowers.jpg
midterm_project
notes.txt
recordings

In other words, with an rm and subsequent datalad save, the symlink is removed, but the
content is retained in the history.

Removing annexed content entirely

The command to remove file content entirely and irreversibly from a repository is the datalad
drop command (datalad-drop manual). This command will delete the content stored in the
annex of the dataset, and can be very helpful to make a dataset more lean if the file content
is either irrelevant or can be retrieved from other sources easily. Think about a situation in
which a very large result file is computed by default in some analysis, but is not relevant for
any project, and can thus be removed. Or if only the results of an analysis need to be kept, but
the file contents from its input datasets can be dropped at these input datasets are backed-up
else where. Because the command works on annexed contents, it will drop file content from a
dataset, but it will retain the symlink for this file (as this symlink is stored in Git).

drop can take any number of files. If an entire dataset is specified, all file content in sub-
directories is dropped automatically, but for content in sub-datasets to be dropped, the -r/
--recursive flag has to be included. By default, DataLad will not drop any content that does
not have at least one verified remote copy that the content could be retrieved from again. It is
possible to drop the downloaded image, because thanks to datalad download-url its original
location in the web in known:

$ datalad drop flowers.jpg
drop(ok): /home/me/dl-101/DataLad-101/flowers.jpg (file) [checking https://upload.
→˓wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.jpg...]

Currently, the file content is gone, but the symlink still exist. Opening the remaining symlink
will fail, but the content can be obtained easily again with datalad get:

14.2. Miscellaneous file system operations 241

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad get flowers.jpg
get(ok): flowers.jpg (file) [from web...]

If a file has no verified remote copies, DataLad will only drop its content if the --nocheck option
is specified. We will demonstrate this by generating a random PDF file:

$ convert xc:none -page Letter a.pdf
$ datalad save -m "add empty pdf"
add(ok): a.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

DataLad will safeguard dropping content that it can not retrieve again:

$ datalad drop a.pdf
drop(error): /home/me/dl-101/DataLad-101/a.pdf (file) [unsafe; Could only verify the␣
→˓existence of 0 out of 1 necessary copies; (Use --nocheck to override this check, or␣
→˓adjust numcopies.)]

But with the --nocheck flag it will work:

$ datalad drop --nocheck a.pdf
drop(ok): /home/me/dl-101/DataLad-101/a.pdf (file)

Note though that this file content is irreversibly gone now, and even going back in time in the
history of the dataset will not bring it back into existence.

Finally, let’s clean up:

$ git reset --hard HEAD~2
HEAD is now at 9d34329 save cropped logos to Git

Deleting content stored in Git

It is much harder to delete dataset content that is stored in Git compared to content stored in
git-annex. Operations such as rm or git rm remove the file from the worktree, but not from its
history, and they can be brought back to life just as annexed contents that were solely rm’ed.
There is also no straightforward Git equivalent of drop. To accomplish a complete removal of
a file from a dataset, we recommend the external tool git-filter-repo295. It is a powerful and
potentially very dangerous tool to rewrite Git history.

Usually, removing files stored in Git completely is not a common or recommended operation,
as it involves quite aggressive rewriting of the dataset history. Sometimes, however, sensitive
files, for example private SSH KEYs or passwords, or too many or too large files are accidentally
saved into Git, and need to get out of the dataset history. The command git-filter-repo
<path-specification> --force will “filter-out”, i.e., remove all files but the ones specified
in <path-specification> from the datasets history. The section Fixing up too-large datasets
(page 328) shows an example invocation. If you want to use it, however, make sure to attempt
it in a dataset clone or with its --dry-run flag first. It is easy to loose dataset history and files
with this tool.
295 https://github.com/newren/git-filter-repo

242 Chapter 14. Help yourself

https://github.com/newren/git-filter-repo

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Uninstalling or deleting subdatasets

Depending on the exact aim, two commands are of relevance for deleting a DataLad subdataset.
The softer (and not so much “deleting” version) is to uninstall a dataset with the datalad
uninstall (datalad-uninstall manual). This command can be used to uninstall any number
of subdatasets. Note though that only subdatasets can be uninstalled; the command will error if
given a sub-directory, a file, or a top-level dataset.

clone a subdataset - the content is irrelevant, so why not a cloud :)
$ datalad clone -d . \
https://github.com/datalad-datasets/disneyanimation-cloud.git \
cloud
[INFO] Cloning dataset to Dataset(/home/me/dl-101/DataLad-101/cloud)
[INFO] Attempting to clone from https://github.com/datalad-datasets/disneyanimation-cloud.
→˓git to /home/me/dl-101/DataLad-101/cloud
[INFO] Start enumerating objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/DataLad-101/cloud)
[INFO] scanning for unlocked files (this may take some time)
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): cloud (dataset)
add(ok): cloud (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

To uninstall the dataset, use

$ datalad uninstall cloud
uninstall(ok): cloud (dataset)
action summary:
drop (notneeded: 1)
uninstall (ok: 1)

Note that the dataset is still known in the dataset, and not completely removed. A datalad get
[-n/--no-data] cloud would install the dataset again.

In case one wants to fully delete a subdataset from a dataset, the datalad remove command
(datalad-remove manual) is relevant299. It needs a pointer to the root of the superdataset
with the -d/--dataset flag, a path to the subdataset to be removed, and optionally a commit
message (-m/--message) or recursive specification (-r/--recursive). To remove a subdataset,
we will install the uninstalled subdataset again, and subsequently remove it with the datalad
remove command:

$ datalad get -n cloud
[INFO] Cloning dataset to Dataset(/home/me/dl-101/DataLad-101/cloud)
[INFO] Attempting to clone from https://github.com/datalad-datasets/disneyanimation-cloud.
→˓git to /home/me/dl-101/DataLad-101/cloud
[INFO] Start enumerating objects

(continues on next page)

299 This is indeed the only case in which datalad remove is relevant. For all other cases of content deletion a normal
rm with a subsequent datalad save works best.

14.2. Miscellaneous file system operations 243

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/DataLad-101/cloud)
[INFO] scanning for unlocked files (this may take some time)
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): /home/me/dl-101/DataLad-101/cloud (dataset) [Installed subdataset in order␣
→˓to get /home/me/dl-101/DataLad-101/cloud]

delete the subdataset
$ datalad remove -m "remove obsolete subds" -d . cloud
uninstall(ok): cloud (dataset)
remove(ok): cloud (dataset)
save(ok): . (dataset)
action summary:
drop (notneeded: 1)
remove (ok: 1)
save (ok: 1)
uninstall (ok: 1)

Note that for both commands a pointer to the current directory will not work. datalad remove
. or datalad uninstall . will fail, even if the command is executed in a subdataset instead of
the top-level superdataset – you need to execute the command from a higher-level directory.

Deleting a superdataset

If for whatever reason you at one point tried to remove a DataLad dataset, whether with a GUI
or the command line call rm -rf <directory>, you likely have seen permission denied errors
such as

rm: cannot remove '<directory>/.git/annex/objects/Mz/M1/MD5E-s422982--
→˓2977b5c6ea32de1f98689bc42613aac7.jpg/MD5E-s422982--2977b5c6ea32de1f98689bc42613aac7.jpg
→˓': Permission denied
rm: cannot remove '<directory>/.git/annex/objects/FP/wv/MD5E-s543180--
→˓6209797211280fc0a95196b0f781311e.jpg/MD5E-s543180--6209797211280fc0a95196b0f781311e.jpg
→˓': Permission denied
[...]

This error indicates that there is write-protected content within .git that cannot not be deleted.
What is this write-protected content? It’s the file content stored in the object tree of git-annex.
If you want, you can re-read the section on Data integrity (page 85) to find out how git-annex
revokes write permission for the user to protect the file content given to it. To remove a dataset
with annexed content one has to regain write permissions to everything in the dataset. This is
done with the chmod296 command:

chmod -R u+w <dataset>

This recursively (-R, i.e., throughout all files and (sub)directories) gives users (u) write permis-
sions (+w) for the dataset.

Afterwards, rm -rf <dataset> will succeed.
296 https://en.wikipedia.org/wiki/Chmod

244 Chapter 14. Help yourself

https://en.wikipedia.org/wiki/Chmod

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

However, instead of rm -rf, a faster way to remove a dataset is using datalad remove: Run
datalad remove <dataset> outside of the superdataset to remove a top-level dataset with all
its contents. Likely, both --nocheck and --recursive flags are necessary to remove content that
does not have verified remotes, and to traverse into subdatasets.

Be aware though that both ways to delete a dataset will irretrievably delete the dataset, it’s
contents, and it’s history.

Summary

To sum up, file system management operations are safe and easy. Even if you are currently con-
fused about one or two operations, worry not – the take-home-message is simple: Use datalad
save whenever you move or rename files. Be mindful that a datalad status can appear unintu-
itive or that symlinks can break if annexed files are moved, but all of these problems are solved
after a datalad save command. Apart from this command, having a clean dataset status prior
to doing anything is your friend as well. It will make sure that you have a neat and organized
commit history, and no accidental commits of changes unrelated to your file system manage-
ment operations. The only operation you should beware of is moving subdatasets around – this
can be a minefield. With all of these experiences and tips, you feel confident that you know
how to handle your datasets files and directories well and worry-free.

14.3 Back and forth in time

Almost everyone inadvertently deleted or overwrote files at some point with a hasty operation
that caused data fatalities or at least troubles to re-obtain or restore data. With DataLad, no
mistakes are forever: One powerful feature of datasets is the ability to revert data to a previous
state and thus view earlier content or correct mistakes. As long as the content was version
controlled (i.e., tracked), it is possible to look at previous states of the data, or revert changes –
even years after they happened – thanks to the underlying version control system GIT.

To get a glimpse into how to work with the history of a dataset, today’s lecture has an external
Git-expert as a guest lecturer. “I do not have enough time to go through all the details in only
one lecture. But I’ll give you the basics, and an idea of what is possible. Always remember:
Just google what you need. You will find thousands of helpful tutorials or questions on Stack

14.3. Back and forth in time 245

https://stackoverflow.com
https://stackoverflow.com

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Overflow300 right away. Even experts will constantly seek help to find out which Git command
to use, and how to use it.”, he reassures with a wink.

The basis of working with the history is to look at it with tools such as TIG, GITK, or simply
the git log command. The most important information in an entry (commit) in the history
is the SHASUM (or hash) associated with it. This hash is how dataset modifications in the
history are identified, and with this hash you can communicate with DataLad or GIT about
these modifications or version states304. Here is an excerpt from the DataLad-101 history to
show a few abbreviated hashes of the 15 most recent commits305:

$ git log -15 --oneline
8dc1281 remove obsolete subds
64abc8d [DATALAD] modified subdataset properties
072fbda [DATALAD] Recorded changes
9d34329 save cropped logos to Git
324a09b move book back from midterm_project
ce929ad move book into midterm_project
1fae7c2 add container and execute analysis within container
4d216b8 finished my midterm project
35ca35c [DATALAD] Recorded changes
2d253b4 add note on DataLad's procedures
cf02939 add note on configurations and git config
d58f5ba Add note on adding siblings
67a7a5e Merge remote-tracking branch 'roommate/master'
e75e2df Include nesting demo from datalad website
4069dac add note about datalad update

“I’ll let you people direct this lecture”, the guest lecturer proposes. “You tell me what you would
be interested in doing, and I’ll show you how it’s done. For the rest of the lecture, call me
Google!”

Fixing (empty) commit messages

From the back of the lecture hall comes a question you’re really glad someone asked: “It has
happened to me that I accidentally did a datalad save and forgot to specify the commit mes-
sage, how can I fix this?”. The room nods in agreement – apparently, others have run into this
premature slip of the Enter key as well.

Let’s demonstrate a simple example. First, let’s create some random files. Do this right in your
dataset.

$ cat << EOT > Gitjoke1.txt
Git knows what you did last summer!
EOT

$ cat << EOT > Gitjoke2.txt
Knock knock. Who's there? Git.
Git-who?

(continues on next page)

300 https://stackoverflow.com
304 For example, the datalad rerun command introduced in section DataLad, Re-Run! (page 64) takes such a hash as

an argument, and re-executes the datalad run or datalad rerun RUN RECORD associated with this hash. Likewise,
the git diff can work with commit hashes.

305 There are other alternatives to reference commits in the history of a dataset, for example “counting” ancestors
of the most recent commit using the notation HEAD~2, HEAD^2 or HEAD@{2}. However, using hashes to reference
commits is a very fail-save method and saves you from accidentally miscounting.

246 Chapter 14. Help yourself

https://stackoverflow.com
https://stackoverflow.com

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

Sorry, 'who' is not a git command - did you mean 'show'?
EOT

$ cat << EOT > Gitjoke3.txt
In Soviet Russia, git commits YOU!
EOT

This will generate three new files in your dataset. Run a datalad status to verify this:

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke2.txt (file)
untracked: Gitjoke3.txt (file)

And now:

$ datalad save
add(ok): Gitjoke1.txt (file)
add(ok): Gitjoke2.txt (file)
add(ok): Gitjoke3.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
save (ok: 1)

Whooops! A datalad save without a commit message that saved all of the files.

$ git log -p -1
commit 4be0dfb8cdc258975dbf1481a94c8e42e3802197
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:37 2021 +0200

[DATALAD] Recorded changes

diff --git a/Gitjoke1.txt b/Gitjoke1.txt
new file mode 100644
index 0000000..d7e1359
--- /dev/null
+++ b/Gitjoke1.txt
@@ -0,0 +1 @@
+Git knows what you did last summer!
diff --git a/Gitjoke2.txt b/Gitjoke2.txt
new file mode 100644
index 0000000..51beecb
--- /dev/null
+++ b/Gitjoke2.txt
@@ -0,0 +1,3 @@
+Knock knock. Who's there? Git.
+Git-who?
+Sorry, 'who' is not a git command - did you mean 'show'?
diff --git a/Gitjoke3.txt b/Gitjoke3.txt
new file mode 100644
index 0000000..7b83d95
--- /dev/null
+++ b/Gitjoke3.txt
@@ -0,0 +1 @@

(continues on next page)

14.3. Back and forth in time 247

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

+In Soviet Russia, git commits YOU!

As expected, all of the modifications present prior to the command are saved into the most
recent commit, and the commit message DataLad provides by default, [DATALAD] Recorded
changes, is not very helpful.

Changing the commit message of the most recent commit can be done with the command git
commit --amend. Running this command will open an editor (the default, as configured in Git),
and allow you to change the commit message. Make sure to read the find-out-more on changing
other than the most recent commit (page 278) in case you want to improve the commit message
of more commits than only the latest.

Try running the git commit --amend command right now and give the commit a new commit
message (you can just delete the one created by DataLad in the editor)!

Untracking accidentally saved contents (tracked in Git)

The next question comes from the front: “It happened that I forgot to give a path to the datalad
save command when I wanted to only start tracking a very specific file. Other times I just didn’t
remember that additional, untracked files existed in the dataset and saved unaware of those.
I know that it is good practice to only save those changes together that belong together, so is
there a way to disentangle an accidental datalad save again?”

Let’s say instead of saving all three previously untracked Git jokes you intended to save only
one of those files. What we want to achieve is to keep all of the files and their contents in the
dataset, but get them out of the history into an untracked state again, and save them individually
afterwards.

Untracking is different for Git versus git-annex!

Note that this is a case with text files (stored in Git)! For accidental annexing of files,
please make sure to check out the next paragraph!

This is a task for the git reset command. It essentially allows to undo commits by resetting the
history of a dataset to an earlier version. git reset comes with several modes that determine
the exact behavior it, but the relevant one for this aim is --mixed306. Specifying the command:

git reset --mixed COMMIT

will preserve all changes made to files since the specified commit in the dataset but remove
them from the dataset’s history. This means all commits since COMMIT (but not including COMMIT)
will not be in your history anymore and become “untracked files” or “unsaved changes” instead.
In other words, the modifications you made in these commits that are “undone” will still be
present in your dataset – just not written to the history anymore. Let’s try this to get a feel for
it.

The COMMIT in the command can either be a hash or a reference with the HEAD pointer.
306 The option --mixed is the default mode for a git reset command, omitting it (i.e., running just git reset) leads

to the same behavior. It is explicitly stated in this book to make the mode clear, though.

248 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M14.6 Git terminology: branches and HEADs?

A Git repository (and thus any DataLad dataset) is built up as a tree of commits. A branch
is a named pointer (reference) to a commit, and allows you to isolate developments. The
default branch is called master. HEAD is a pointer to the branch you are currently on, and
thus to the last commit in the given branch.

Using HEAD, you can identify the most recent commit, or count backwards starting from
the most recent commit. HEAD~1 is the ancestor of the most recent commit, i.e., one
commit back (f30ab in the figure above). Apart from the notation HEAD~N, there is also
HEAD^N used to count backwards, but less frequently used and of importance primarily in
the case of merge commits. This post301 explains the details well.
301 https://stackoverflow.com/questions/2221658/whats-the-difference-between-head-and-head-in-git

Let’s stay with the hash, and reset to the commit prior to saving the Gitjokes.

First, find out the shasum, and afterwards, reset it.

$ git log -n 3 --oneline
4be0dfb [DATALAD] Recorded changes
8dc1281 remove obsolete subds
64abc8d [DATALAD] modified subdataset properties

$ git reset --mixed 8dc1281daa00a661e1c6387632b638e945e2f6a6

Let’s see what has happened. First, let’s check the history:

$ git log -n 2 --oneline
8dc1281 remove obsolete subds
64abc8d [DATALAD] modified subdataset properties

As you can see, the commit in which the jokes were tracked is not in the history anymore! Go
on to see what datalad status reports:

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke2.txt (file)
untracked: Gitjoke3.txt (file)

Nice, the files are present, and untracked again. Do they contain the content still? We will read
all of them with cat:

14.3. Back and forth in time 249

https://stackoverflow.com/questions/2221658/whats-the-difference-between-head-and-head-in-git

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ cat Gitjoke*
Git knows what you did last summer!
Knock knock. Who's there? Git.
Git-who?
Sorry, 'who' is not a git command - did you mean 'show'?
In Soviet Russia, git commits YOU!

Great. Now we can go ahead and save only the file we intended to track:

$ datalad save -m "save my favorite Git joke" Gitjoke2.txt
add(ok): Gitjoke2.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Finally, let’s check how the history looks afterwards:

$ git log -2
commit 81609fc44c66a0f3bcec4c7a5910181dc8c08d6c
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:38 2021 +0200

save my favorite Git joke

commit 8dc1281daa00a661e1c6387632b638e945e2f6a6
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:35 2021 +0200

remove obsolete subds

Wow! You have rewritten history307 !

Untracking accidentally saved contents (stored in git-annex)

The previous git reset undid the tracking of text files. However, those files are stored in Git,
and thus their content is also stored in Git. Files that are annexed, however, have their content
stored in git-annex, and not the file itself is stored in the history, but a symlink pointing to
the location of the file content in the dataset’s annex. This has consequences for a git reset
command: Reverting a save of a file that is annexed would revert the save of the symlink into
Git, but it will not revert the annexing of the file. Thus, what will be left in the dataset is an
untracked symlink.

To undo an accidental save of that annexed a file, the annexed file has to be “unlocked” first
with a datalad unlock command.

We will simulate such a situation by creating a PDF file that gets annexed with an accidental
datalad save:

create an empty pdf file
$ convert xc:none -page Letter apdffile.pdf
accidentally save it
$ datalad save
add(ok): Gitjoke1.txt (file)
add(ok): Gitjoke3.txt (file)

(continues on next page)

250 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

add(ok): apdffile.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
save (ok: 1)

This accidental save has thus added both text files stored in Git, but also a PDF file to the history
of the dataset. As an ls -l reveals, the PDF file has been annexed and is thus a SYMLINK:

$ ls -l apdffile.pdf
lrwxrwxrwx 1 adina adina 122 Jul 29 16:25 apdffile.pdf -> .git/annex/objects/QZ/Zz/MD5E-
→˓s1858--bbcdd91170cf142948f5fb348b060626.pdf/MD5E-s1858--
→˓bbcdd91170cf142948f5fb348b060626.pdf

Prior to resetting, the PDF file has to be unannexed. To unannex files, i.e., get the contents out
of the object tree, the datalad unlock command is relevant:

$ datalad unlock apdffile.pdf
unlock(ok): apdffile.pdf (file)

The file is now no longer symlinked:

$ ls -l apdffile.pdf
-rw-r--r-- 1 adina adina 1858 Jul 29 16:25 apdffile.pdf

Finally, git reset --mixed can be used to revert the accidental save. Again, find out the shasum
first, and afterwards, reset it.

$ git log -n 3 --oneline
8c792b6 [DATALAD] Recorded changes
81609fc save my favorite Git joke
8dc1281 remove obsolete subds

$ git reset --mixed 81609fc44c66a0f3bcec4c7a5910181dc8c08d6c

To see what has happened, let’s check the history:

$ git log -n 2 --oneline
81609fc save my favorite Git joke
8dc1281 remove obsolete subds

. . . and also the status of the dataset:

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke3.txt (file)
untracked: apdffile.pdf (file)

The accidental save has been undone, and the file is present as untracked content again. As
before, this action has not been recorded in your history.

14.3. Back and forth in time 251

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Viewing previous versions of files and datasets

The next question is truly magical: How does one see data as it was at a previous state in
history?

This magic trick can be performed with the git checkout. It is a very heavily used command
for various tasks, but among many it can send you back in time to view the state of a dataset at
the time of a specific commit.

Let’s say you want to find out which notes you took in the first few chapters of the handbook.
Find a commit SHASUM in your history to specify the point in time you want to go back to:

$ git log -n 20 --oneline
81609fc save my favorite Git joke
8dc1281 remove obsolete subds
64abc8d [DATALAD] modified subdataset properties
072fbda [DATALAD] Recorded changes
9d34329 save cropped logos to Git
324a09b move book back from midterm_project
ce929ad move book into midterm_project
1fae7c2 add container and execute analysis within container
4d216b8 finished my midterm project
35ca35c [DATALAD] Recorded changes
2d253b4 add note on DataLad's procedures
cf02939 add note on configurations and git config
d58f5ba Add note on adding siblings
67a7a5e Merge remote-tracking branch 'roommate/master'
e75e2df Include nesting demo from datalad website
4069dac add note about datalad update
401df53 add note on git annex whereis
dfe8e39 add note about cloning from paths and recursive datalad get
41ea4e6 add note on clean datasets
4753f3f [DATALAD RUNCMD] Resize logo for slides

Let’s go 15 commits back in time:

$ git checkout 401df53b3e9a7a4523e51a5faa33e2572a6cdb2c
warning: unable to rmdir 'midterm_project': Directory not empty
Note: switching to '401df53b3e9a7a4523e51a5faa33e2572a6cdb2c'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

git switch -c <new-branch-name>

Or undo this operation with:

git switch -

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at 401df53 add note on git annex whereis

How did your notes.txt file look at this point?

252 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ tail notes.txt

Note that a recursive "datalad get" would install all further
registered subdatasets underneath a subdataset, so a safer way to
proceed is to set a decent --recursion-limit:
"datalad get -n -r --recursion-limit 2 <subds>"

The command "git annex whereis PATH" lists the repositories that have
the file content of an annexed file. When using "datalad get" to
retrieve file content, those repositories will be queried.

Neat, isn’t it? By checking out a commit shasum you can explore a previous state of a datasets
history. And this does not only apply to simple text files, but every type of file in your dataset,
regardless of size. The checkout command however led to something that Git calls a “detached
HEAD state”. While this sounds scary, a git checkout master will bring you back into the most
recent version of your dataset and get you out of the “detached HEAD state”:

$ git checkout master
Previous HEAD position was 401df53 add note on git annex whereis
Switched to branch 'master'

Note one very important thing: The previously untracked files are still there.

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke3.txt (file)
untracked: apdffile.pdf (file)

The contents of notes.txt will now be the most recent version again:

$ tail notes.txt
configurations, create files or file hierarchies, or perform arbitrary
tasks in datasets. They can be shipped with DataLad, its extensions,
or datasets, and you can even write your own procedures and distribute
them.
The "datalad run-procedure" command is used to apply such a procedure
to a dataset. Procedures shipped with DataLad or its extensions
starting with a "cfg" prefix can also be applied at the creation of a
dataset with "datalad create -c <PROC-NAME> <PATH>" (omitting the
"cfg" prefix).

. . . Wow! You traveled back and forth in time! But an even more magical way to see the
contents of files in previous versions is Git’s cat-file command: Among many other things, it
lets you read a file’s contents as of any point in time in the history, without a prior git checkout
(note that the output is shortened for brevity and shows only the last few lines of the file):

Note that subdatasets will not be installed by default, but are only
registered in the superdataset -- you will have to do a
"datalad get -n PATH/TO/SUBDATASET" to install the subdataset for file
availability meta data. The -n/--no-data options prevents that file
contents are also downloaded.

Note that a recursive "datalad get" would install all further
registered subdatasets underneath a subdataset, so a safer way to
proceed is to set a decent --recursion-limit:
"datalad get -n -r --recursion-limit 2 <subds>"

(continues on next page)

14.3. Back and forth in time 253

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

The command "git annex whereis PATH" lists the repositories that have
the file content of an annexed file. When using "datalad get" to
retrieve file content, those repositories will be queried.

The cat-file command is very versatile, and it’s documentation302 will list all of its functionality.
To use it to see the contents of a file at a previous state as done above, this is how the general
structure looks like:

$ git cat-file --textconv SHASUM:<path/to/file>

Undoing latest modifications of files

Previously, we saw how to remove files from a datasets history that were accidentally saved and
thus tracked for the first time. How does one undo a modification to a tracked file?

Let’s modify the saved Gitjoke1.txt:

$ echo "this is by far my favorite joke!" >> Gitjoke2.txt

$ cat Gitjoke2.txt
Knock knock. Who's there? Git.
Git-who?
Sorry, 'who' is not a git command - did you mean 'show'?
this is by far my favorite joke!

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke3.txt (file)
untracked: apdffile.pdf (file)
modified: Gitjoke2.txt (file)

$ datalad save -m "add joke evaluation to joke" Gitjoke2.txt
add(ok): Gitjoke2.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

How could this modification to Gitjoke2.txt be undone? With the git reset command again.
If you want to “unsave” the modification but keep it in the file, use git reset --mixed as before.
However, if you want to get rid of the modifications entirely, use the option --hard instead of
--mixed:

$ git log -n 2 --oneline
2fe94e2 add joke evaluation to joke
81609fc save my favorite Git joke

$ git reset --hard 81609fc44c66a0f3bcec4c7a5910181dc8c08d6c
HEAD is now at 81609fc save my favorite Git joke

302 https://git-scm.com/docs/git-cat-file

254 Chapter 14. Help yourself

https://git-scm.com/docs/git-cat-file

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ cat Gitjoke2.txt
Knock knock. Who's there? Git.
Git-who?
Sorry, 'who' is not a git command - did you mean 'show'?

The change has been undone completely. This method will work with files stored in Git and
annexed files.

Note that this operation only restores this one file, because the commit that was undone only
contained modifications to this one file. This is a demonstration of one of the reasons why one
should strive for commits to represent meaningful logical units of change – if necessary, they
can be undone easily.

Undoing past modifications of files

What git reset did was to undo commits from the most recent version of your dataset. How
would one undo a change that happened a while ago, though, with important changes being
added afterwards that you want to keep?

Let’s save a bad modification to Gitjoke2.txt, but also a modification to notes.txt:

$ echo "bad modification" >> Gitjoke2.txt

$ datalad save -m "did a bad modification" Gitjoke2.txt
add(ok): Gitjoke2.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

$ cat << EOT >> notes.txt

Git has many handy tools to go back in forth in time and work with the
history of datasets. Among many other things you can rewrite commit
messages, undo changes, or look at previous versions of datasets.
A superb resource to find out more about this and practice such Git
operations is this chapter in the Pro-git book:
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
EOT

$ datalad save -m "add note on helpful git resource" notes.txt
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

The objective is to remove the first, “bad” modification, but keep the more recent modification
of notes.txt. A git reset command is not convenient, because resetting would need to reset
the most recent, “good” modification as well.

One way to accomplish it is with an interactive rebase, using the git rebase -i command308.
Experienced Git-users will know under which situations and how to perform such an interactive
rebase.

14.3. Back and forth in time 255

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

However, outlining an interactive rebase here in the handbook could lead to problems for read-
ers without (much) Git experience: An interactive rebase, even if performed successfully, can
lead to many problems if it is applied with too little experience, for example in any collaborative
real-world project.

Instead, we demonstrate a different, less intrusive way to revert one or more changes at any
point in the history of a dataset: the git revert command. Instead of rewriting the history, it
will add an additional commit in which the changes of an unwanted commit are reverted.

The command looks like this:

$ git revert SHASUM

where SHASUM specifies the commit hash of the modification that should be reverted.

M14.7 Reverting more than a single commit

You can also specify a range of commits like this:

$ git revert OLDER_SHASUM..NEWERSHASUM

This command will revert all commits starting with the one after OLDER_SHASUM (i.e. not
including this commit) until and including the one specified with NEWERSHASUM. For each
reverted commit, one new commit will be added to the history that reverts it. Thus, if
you revert a range of three commits, there will be three reversal commits. If you however
want the reversal of a range of commits saved in a single commit, supply the --no-commit
option as in

$ git revert --no-commit OLDER_SHASUM..NEWERSHASUM

After running this command, run a single git commit to conclude the reversal and save
it in a single commit.

Let’s see how it looks like:

$ git revert f865b2562abb60a942425fbab557e1c25dce877a
[master b1c8ba0] Revert "did a bad modification"
Date: Thu Jul 29 16:25:44 2021 +0200
1 file changed, 1 deletion(-)

This is the state of the file in which we reverted a modification:

$ cat Gitjoke2.txt
Knock knock. Who's there? Git.
Git-who?
Sorry, 'who' is not a git command - did you mean 'show'?

It does not contain the bad modification anymore. And this is what happened in the history of
the dataset:

$ git log -n 3
commit b1c8ba0aa730d7227243fb91ef928d6c14afbbcc
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:44 2021 +0200

Revert "did a bad modification"

(continues on next page)

256 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

This reverts commit f865b2562abb60a942425fbab557e1c25dce877a.

commit b041c7117dd0b8559ba9402a8901fc1a495067de
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:44 2021 +0200

add note on helpful git resource

commit f865b2562abb60a942425fbab557e1c25dce877a
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 16:25:43 2021 +0200

did a bad modification

The commit that introduced the bad modification is still present, but it transparently gets un-
done with the most recent commit. At the same time, the good modification of notes.txt was
not influenced in any way. The git revert command is thus a transparent and safe way of un-
doing past changes. Note though that this command can only be used efficiently if the commits
in your datasets history are meaningful, independent units – having several unrelated modifi-
cations in a single commit may make an easy solution with git revert impossible and instead
require a complex checkout, revert, or rebase operation.

Finally, let’s take a look at the state of the dataset after this operation:

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke3.txt (file)
untracked: apdffile.pdf (file)

As you can see, unsurprisingly, the git revert command had no effects on anything else but
the specified commit, and previously untracked files are still present.

Oh no! I’m in a merge conflict!

When working with the history of a dataset, especially when rewriting the history with an
interactive rebase or when reverting commits, it is possible to run into so-called merge conflicts.
Merge conflicts happen when Git needs assistance in deciding which changes to keep and which
to apply. It will require you to edit the file the merge conflict is happening in with a text editor,
but such merge conflict are by far not as scary as they may seem during the first few times of
solving merge conflicts.

This section is not a guide on how to solve merge-conflicts, but a broad overview on the neces-
sary steps, and a pointer to a more comprehensive guide.

• The first thing to do if you end up in a merge conflict is to read the instructions Git is
giving you – they are a useful guide.

• Also, it is reassuring to remember that you can always get out of a merge conflict by
aborting the operation that led to it (e.g., git rebase --abort).

• To actually solve a merge conflict, you will have to edit files: In the documents the merge
conflict applies to, Git marks the sections it needs help with with markers that consists of
>, <, and = signs and commit shasums or branch names. There will be two marked parts,
and you have to delete the one you do not want to keep, as well as all markers.

14.3. Back and forth in time 257

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• Afterwards, run git add <path/to/file> and finally a git commit.

An excellent resource on how to deal with merge conflicts is this post303.

Summary

This guest lecture has given you a glimpse into how to work with the history of your DataLad
datasets. To conclude this section, let’s remove all untracked contents from the dataset. This can
be done with git clean: The command git clean -f swipes your dataset clean and removes
any untracked file. Careful! This is not revertible, and content lost with this commands
can not be recovered! If you want to be extra sure, run git clean -fn beforehand – this will
give you a list of the files that would be deleted.

$ git clean -f
Removing Gitjoke1.txt
Removing Gitjoke3.txt
Removing apdffile.pdf

Afterwards, the datalad status returns nothing, indicating a clean dataset state with no un-
tracked files or modifications.

$ datalad status
nothing to save, working tree clean

Finally, if you want, apply your new knowledge about reverting commits to remove the
Gitjoke2.txt file.

14.4 How to get help

All DataLad errors or problems you encounter during DataLad-101 are intentional and serve
illustrative purposes. But what if you run into any DataLad errors outside of this course? Fortu-
nately, the syllabus has a whole section on that, and on one lazy, warm summer-afternoon you
flip through it.

303 https://docs.github.com/en/github/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-
merge-conflict-using-the-command-line

258 Chapter 14. Help yourself

https://docs.github.com/en/github/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

You realize that you already know the most important things: The number one advice on how
to get help is “Read the error message.”310. The second advice it “I’m not kidding: Read the
error message311. The third advice, finally, says “Honestly, read the f***ing error message312.

Help yourself

If you run into a DataLad problem and you have followed the three steps above, but the error
message does not give you a clue on how to proceed313, the first you should do is

1. find out which version of DataLad you use

2. read the help page of the command that failed

The first step is important in order to find out whether a command failed due to using a wrong
DataLad version. In order to use this book and follow along, your DataLad version should be
datalad-0.12 or higher, for example.

To find out which version you are using, run

$ datalad --version
datalad 0.14.6+27.gec839bcf5

If you want a comprehensive overview of your full setup, datalad wtf336 is the command to
turn to (datalad-wtf manual). Running this command will generate a report about the DataLad
installation and configuration. The output below shows an excerpt.

$ datalad wtf
WTF
configuration <SENSITIVE, report disabled by configuration>
credentials
- keyring:
- active_backends:
- PlaintextKeyring with no encyption v.1.0 at /home/me/.local/share/python_keyring/

→˓keyring_pass.cfg
- config_file: /home/me/.config/python_keyring/keyringrc.cfg
- data_root: /home/me/.local/share/python_keyring

datalad
- full_version: 0.14.6+27.gec839bcf5
- version: 0.14.6+27.gec839bcf5

dataset
- id: 8e04afb0-af85-4070-be29-858d30d85017
- metadata: <SENSITIVE, report disabled by configuration>
- path: /home/me/dl-101/DataLad-101
- repo: AnnexRepo

dependencies
- annexremote: 1.4.5
- appdirs: 1.4.4

310 https://poster.keepcalmandposters.com/default/5986752_keep_calm_and_read_the_error_message.png
311 https://images.app.goo.gl/GWQ82AAJnx1dWtWx6
312 https://images.app.goo.gl/ddxg4aowbji6XTrw7
313 https://imgs.xkcd.com/comics/code_quality_3.png
336 wtf in datalad wtf could stand for many things. “Why the Face?” “Wow, that’s fantastic!”, “What’s this for?”,

“What to fix”, “What the FAQ”, “Where’s the fire?”, “Wipe the floor”, “Welcome to fun”, “Waste Treatment Facility”,
“What’s this foolishness”, “What the fruitcake”, . . . Pick a translation of your choice and make running this
command more joyful.

14.4. How to get help 259

https://poster.keepcalmandposters.com/default/5986752_keep_calm_and_read_the_error_message.png
https://images.app.goo.gl/GWQ82AAJnx1dWtWx6
https://images.app.goo.gl/GWQ82AAJnx1dWtWx6
https://images.app.goo.gl/ddxg4aowbji6XTrw7
https://imgs.xkcd.com/comics/code_quality_3.png

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

This lengthy output will report all information that might be relevant – from DataLad to GIT-
ANNEX or Python up to your operating system.

The second step, finding and reading the help page of the command in question, is important
in order to find out how the command that failed is used. Are arguments specified correctly?
Does the help list any caveats?

There are multiple ways to find help on DataLad commands. You could turn to the docu-
mentation314. Alternatively, to get help right inside the terminal, run any command with the
-h/--help option (also shown as an excerpt here):

$ datalad get --help
Usage: datalad get [-h] [-s LABEL] [-d PATH] [-r] [-R LEVELS] [-n]

[-D DESCRIPTION] [--reckless [auto|ephemeral|shared-...]]
[-J NJOBS]
[PATH ...]

Get any dataset content (files/directories/subdatasets).

This command only operates on dataset content. To obtain a new independent
dataset from some source use the CLONE command.

By default this command operates recursively within a dataset, but not
across potential subdatasets, i.e. if a directory is provided, all files in
the directory are obtained. Recursion into subdatasets is supported too. If
enabled, relevant subdatasets are detected and installed in order to
fulfill a request.

Known data locations for each requested file are evaluated and data are
obtained from some available location (according to git-annex configuration
and possibly assigned remote priorities), unless a specific source is
specified.

Getting subdatasets

Just as DataLad supports getting file content from more than one location,
the same is supported for subdatasets, including a ranking of individual
sources for prioritization.

NOTE
Power-user info: This command uses git annex get to fulfill
file handles.

Examples

Get a single file::

% datalad get <path/to/file>

Get contents of a directory::

% datalad get <path/to/dir/>

Get all contents of the current dataset and its subdatasets::

% datalad get . -r
(continues on next page)

314 http://docs.datalad.org/

260 Chapter 14. Help yourself

http://docs.datalad.org/
http://docs.datalad.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

Get (clone) a registered subdataset, but don't retrieve data::

% datalad get -n <path/to/subds>

Arguments
PATH path/name of the requested dataset component. The

component must already be known to a dataset. To add
new components to a dataset use the ADD command.
Constraints: value must be a string

Options
-h, --help, --help-np

show this help message. --help-np forcefully disables
the use of a pager for displaying the help message

-s LABEL, --source LABEL
label of the data source to be used to fulfill
requests. This can be the name of a dataset sibling or
another known source. Constraints: value must be a
string

This for example is the help page on datalad get (the same you would find in the documenta-
tion, but in your terminal, here - for brevity - slightly cut). It contains a command description, a
list of all the available options with a short explanation of them, and example commands. The
paragraph Options shows all optional flags, and all required parts of the command are listed in
the paragraph Arguments. One first thing to check for example is whether your command call
specified all of the required arguments.

Asking questions (right)

If nothing you do on your own helps to solve the problem, consider asking others. Check out
neurostars315 and search for your problem – likely, somebody already encountered the same
error before316 and fixed it, but if not, just ask a new question with a datalad tag.

Make sure your question is as informative as it can be for others. Include

• context – what did you want to do and why?

• the problem – paste the error message (all of it), and provide the steps necessary to repro-
duce it.

• technical details – what version of DataLad are you using, what version of git-annex,
and which git-annex repository type, what is your operating system and – if applicable
– Python version? datalad wtf is your friend to find all of this information.

The “submit a question link” on DataLad’s GitHub page317 page prefills a neurostars form with a
315 https://neurostars.org/
316 http://imgs.xkcd.com/comics/wisdom_of_the_ancients.png
317 https://neurostars.org/new-topic?body=-%20Please%20describe%20the%20problem.%0A-%20What%20step

s%20will%20reproduce%20the%20problem%3F%0A-%20What%20version%20of%20DataLad%20are%20yo
u%20using%20%28run%20%60datalad%20--version%60%29%3F%20On%20what%20operating%20system%
20%28consider%20running%20%60datalad%20plugin%20wtf%60%29%3F%0A-%20Please%20provide%20an
y%20additional%20information%20below.%0A-%20Have%20you%20had%20any%20luck%20using%20Data
Lad%20before%3F%20%28Sometimes%20we%20get%20tired%20of%20reading%20bug%20reports%20all%2
0day%20and%20a%20lil%27%20positive%20end%20note%20does%20wonders%29&tags=datalad

14.4. How to get help 261

docs.datalad.org
docs.datalad.org
https://neurostars.org/
http://imgs.xkcd.com/comics/wisdom_of_the_ancients.png
http://imgs.xkcd.com/comics/wisdom_of_the_ancients.png
https://neurostars.org/new-topic?body=-%20Please%20describe%20the%20problem.%0A-%20What%20steps%20will%20reproduce%20the%20problem%3F%0A-%20What%20version%20of%20DataLad%20are%20you%20using%20%28run%20%60datalad%20--version%60%29%3F%20On%20what%20operating%20system%20%28consider%20running%20%60datalad%20plugin%20wtf%60%29%3F%0A-%20Please%20provide%20any%20additional%20information%20below.%0A-%20Have%20you%20had%20any%20luck%20using%20DataLad%20before%3F%20%28Sometimes%20we%20get%20tired%20of%20reading%20bug%20reports%20all%20day%20and%20a%20lil%27%20positive%20end%20note%20does%20wonders%29&tags=datalad

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

template for a question for a good starting point if you want to have more guidance or encounter
writer’s block.

Debugging like a DataLad-developer

If you have read a command’s help from start to end, checked all software versions twice, even
asked colleagues to reproduce your problem (unsuccessfully)318, and you still don’t have any
clue what is going on, then welcome to the debugging section!

Fig. 14.1: It’s not as bad as this

It is not always straightforward to see why a particular DataLad command has failed. Given
that operations with DataLad can be quite complicated, and could involve complexities such
as different forms of authentication, different file systems, interactions with the environment,
configurations, and other software, and much more, there are what may feel like an infinite
amount of sources for the problem at hand. The resulting error message, however, may not
display the underlying cause correctly because the error message of whichever process failed is
not propagated into the final result report. Thus, you may end up with an uninformative Unable
to access these remotes error in the result summary, when the underlying issue is a certificate
error319.

In situations where there is no obvious reason for a command to fail, it can be helpful – either
for yourself or for further information to paste into GITHUB issues – to start debugging320, or
logging at a higher granularity than is the default. This allows you to gain more insights into the
actions DataLad and its underlying tools are taking, where exactly they fail, and to even play
around with the program at the state of the failure.

DEBUGGING and LOGGING are not as complex as these terms may sound if you have never
consciously debugged. Procedurally, it can be as easy as adding an additional flag to a command
call, and cognitively, it can be as easy as engaging your visual system in a visual search task for
the color red or the word “error”, or reading more DataLad output that you’re used to. The
paragraphs below start with the general concepts, and collect concrete debugging strategies for
different problems. If you have advice to add, please get in touch321.

318 https://xkcd.com/2083/
319 https://github.com/datalad/datalad/issues/4651#issuecomment-649180205
320 https://xkcd.com/1722/
321 https://github.com/datalad-handbook/book/issues

262 Chapter 14. Help yourself

https://xkcd.com/2083/
https://github.com/datalad/datalad/issues/4651#issuecomment-649180205
https://github.com/datalad/datalad/issues/4651#issuecomment-649180205
https://xkcd.com/1722/
https://github.com/datalad-handbook/book/issues

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Logging

In order to gain more insights into the steps performed by a program and capture as many
details as possible for troubleshooting an error, you can turn to LOGGING. Logging simply refers
to the fact that DataLad and its underlying tools tell you what they are doing: This information
can be coarse, such as a mere [INFO] Downloading <some_url> into <some_target>, or fine-
grained, such as [DEBUG] Resolved dataset for status reporting: <dataset>. The LOG

LEVEL in brackets at the beginning of the line indicates how many details DataLad shares with
you.

Note that LOGGING is not a sealed book, and happens automatically during the execution of any
DataLad command. While you were reading the handbook, you have seen a lot of log messages
already. Anything printed to your terminal preceded by [INFO], for example, is a log message
(in this case, on the info level). When you are consciously logging, you simply set the log-level
to the desired amount of information, or increase the amount of verbosity until the output gives
you a hint of what went wrong. Likewise, adjusting the log-level also works the other way
around, and lets you decrease the amount of information you receive in your terminal.

M14.8 Log levels

Log levels provide the means to adjust how much information you want, and are de-
scribed in human readable terms, ordered by the severity of the failures or problems
reported. The following log levels can be chosen from:

• critical: Only catastrophes are reported. Currently, there is nothing inside of Data-
Lad that would log at this level, so setting the log level to critical will result in
getting no details at all, not even about errors or failures.

• error: With this log level you will receive reports on any errors that occurred within
the program during command execution.

• warning: At this log level, the command execution will report on usual situations
and anything that might be a problem, in addition to report anything from the error
log level. .

• info: This log level will include reports by the program that indicate normal behav-
ior and serve to keep you up to date about the current state of things, in additions
to warning and error logging messages.

• debug: This log level is very useful to troubleshoot a problem, and results in Data-
Lad telling you a lot it possibly can.

Other than log levels, you can also adjust the amount of information provided with nu-
merical granularity. Instead of specifying a log level, provide an integer between 1 and
9, with lower values denoting more debugging information.
Raising the log level (e.g, to error, or 9) will decrease the amount of information and
output you will receive, while lowering it (e.g., to debug or 1) will increase it.

Setting a log level can be done in the form of an ENVIRONMENT VARIABLE, a configuration,
or with the -l/--log-level flag appended directly after the main datalad command. To get
extensive information on what datalad status does underneath the hood, your command could
look like this:

$ datalad --log-level debug status
[DEBUG] Command line args 1st pass for DataLad 0.14.0rc1.dev10-g1b221. Parsed:␣
→˓Namespace() Unparsed: ['status']
[DEBUG] Discovering plugins
[DEBUG] Building doc for <class 'datalad.core.local.status.Status'>

(continues on next page)

14.4. How to get help 263

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[DEBUG] Parsing known args among ['/home/adina/env/handbook2/bin/datalad', '--log-level',
→˓'debug', 'status']
[DEBUG] Async run ['git', '--git-dir=', 'config', '-z', '-l', '--show-origin']
[DEBUG] Launching process ['git', '--git-dir=', 'config', '-z', '-l', '--show-origin']
[DEBUG] Process 1207466 started
[DEBUG] Waiting for process 1207466 to complete
[DEBUG] Process 1207466 exited with return code 0
[DEBUG] Determined class of decorated function: <class 'datalad.core.local.status.Status'>
→˓

[DEBUG] Resolved dataset for status reporting: /home/me/dl-101/DataLad-101
[DEBUG] Async run ['git', 'config', '-z', '-l', '--show-origin']
[DEBUG] Launching process ['git', 'config', '-z', '-l', '--show-origin']
[DEBUG] Process 1207468 started
[DEBUG] Async run ['git', 'ls-files', '-z', '-m']
[DEBUG] Launching process ['git', 'ls-files', '-z', '-m']
[DEBUG] Process 1207491 started
[DEBUG] Waiting for process 1207491 to complete
[DEBUG] Process 1207491 exited with return code 0
[DEBUG] AnnexRepo(/home/me/dl-101/DataLad-101/midterm_project).get_content_info(...)
[DEBUG] Query repo: ['ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Async run ['git', 'ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Launching process ['git', 'ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Process 1207493 started
[DEBUG] Waiting for process 1207493 to complete
[DEBUG] Process 1207493 exited with return code 0
[DEBUG] Done query repo: ['ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Done AnnexRepo(/home/me/dl-101/DataLad-101/midterm_project).get_content_info(...)
[DEBUG] Async run ['git', 'config', '-z', '-l', '--show-origin']
[DEBUG] Launching process ['git', 'config', '-z', '-l', '--show-origin']
[DEBUG] Process 1207495 started
[DEBUG] Waiting for process 1207495 to complete
[DEBUG] Process 1207495 exited with return code 0
[DEBUG] Async run ['git', 'config', '-z', '-l', '--show-origin', '--file', '/home/me/dl-
→˓101/DataLad-101/midterm_project/input/.datalad/config']
[DEBUG] Launching process ['git', 'config', '-z', '-l', '--show-origin', '--file', '/home/
→˓me/dl-101/DataLad-101/midterm_project/input/.datalad/config']
[DEBUG] Process 1207497 started
[DEBUG] Waiting for process 1207497 to complete
[DEBUG] Process 1207497 exited with return code 0
[DEBUG] Async run ['git', 'symbolic-ref', 'HEAD']
[DEBUG] Launching process ['git', 'symbolic-ref', 'HEAD']
[DEBUG] Process 1207499 started
[DEBUG] Waiting for process 1207499 to complete
[DEBUG] Process 1207499 exited with return code 0
[DEBUG] Async run ['git', 'rev-parse', '--quiet', '--verify', 'HEAD^{commit}']
[DEBUG] Launching process ['git', 'rev-parse', '--quiet', '--verify', 'HEAD^{commit}']
[DEBUG] Process 1207501 started
[DEBUG] Waiting for process 1207501 to complete
[DEBUG] Process 1207501 exited with return code 0
[DEBUG] AnnexRepo(/home/me/dl-101/DataLad-101/midterm_project/input).get_content_info(...)
[DEBUG] Query repo: ['ls-files', '--stage', '-z', '--exclude-standard', '-o', '--directory
→˓', '--no-empty-directory']
[DEBUG] Async run ['git', 'ls-files', '--stage', '-z', '--exclude-standard', '-o', '--
→˓directory', '--no-empty-directory']
[DEBUG] Launching process ['git', 'ls-files', '--stage', '-z', '--exclude-standard', '-o',
→˓ '--directory', '--no-empty-directory']

(continues on next page)

264 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[DEBUG] Process 1207503 started
[DEBUG] Waiting for process 1207503 to complete
[DEBUG] Process 1207503 exited with return code 0
[DEBUG] Done query repo: ['ls-files', '--stage', '-z', '--exclude-standard', '-o', '--
→˓directory', '--no-empty-directory']
[DEBUG] Done AnnexRepo(/home/me/dl-101/DataLad-101/midterm_project/input).get_content_
→˓info(...)
[DEBUG] Async run ['git', 'ls-files', '-z', '-m']
[DEBUG] Launching process ['git', 'ls-files', '-z', '-m']
[DEBUG] Process 1207505 started
[DEBUG] Waiting for process 1207505 to complete
[DEBUG] Process 1207505 exited with return code 0
[DEBUG] AnnexRepo(/home/me/dl-101/DataLad-101/midterm_project/input).get_content_info(...)
[DEBUG] Query repo: ['ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Async run ['git', 'ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Launching process ['git', 'ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Process 1207507 started
[DEBUG] Waiting for process 1207507 to complete
[DEBUG] Process 1207507 exited with return code 0
[DEBUG] Done query repo: ['ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Done AnnexRepo(/home/me/dl-101/DataLad-101/midterm_project/input).get_content_
→˓info(...)
[DEBUG] Async run ['git', 'config', '-z', '-l', '--show-origin']
[DEBUG] Launching process ['git', 'config', '-z', '-l', '--show-origin']
[DEBUG] Process 1207509 started
[DEBUG] Waiting for process 1207509 to complete
[DEBUG] Process 1207509 exited with return code 0
[DEBUG] Async run ['git', 'config', '-z', '-l', '--show-origin', '--file', '/home/me/dl-
→˓101/DataLad-101/recordings/longnow/.datalad/config']
[DEBUG] Launching process ['git', 'config', '-z', '-l', '--show-origin', '--file', '/home/
→˓me/dl-101/DataLad-101/recordings/longnow/.datalad/config']
[DEBUG] Process 1207511 started
[DEBUG] Waiting for process 1207511 to complete
[DEBUG] Process 1207511 exited with return code 0
[DEBUG] Async run ['git', 'symbolic-ref', 'HEAD']
[DEBUG] Launching process ['git', 'symbolic-ref', 'HEAD']
[DEBUG] Process 1207513 started
[DEBUG] Waiting for process 1207513 to complete
[DEBUG] Process 1207513 exited with return code 0
[DEBUG] Async run ['git', 'rev-parse', '--quiet', '--verify', 'HEAD^{commit}']
[DEBUG] Launching process ['git', 'rev-parse', '--quiet', '--verify', 'HEAD^{commit}']
[DEBUG] Process 1207515 started
[DEBUG] Waiting for process 1207515 to complete
[DEBUG] Process 1207515 exited with return code 0
[DEBUG] AnnexRepo(/home/me/dl-101/DataLad-101/recordings/longnow).get_content_info(...)
[DEBUG] Query repo: ['ls-files', '--stage', '-z', '--exclude-standard', '-o', '--directory
→˓', '--no-empty-directory']
[DEBUG] Async run ['git', 'ls-files', '--stage', '-z', '--exclude-standard', '-o', '--
→˓directory', '--no-empty-directory']
[DEBUG] Launching process ['git', 'ls-files', '--stage', '-z', '--exclude-standard', '-o',
→˓ '--directory', '--no-empty-directory']
[DEBUG] Process 1207517 started
[DEBUG] Waiting for process 1207517 to complete
[DEBUG] Process 1207517 exited with return code 0
[DEBUG] Done query repo: ['ls-files', '--stage', '-z', '--exclude-standard', '-o', '--
→˓directory', '--no-empty-directory']

(continues on next page)

14.4. How to get help 265

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[DEBUG] Done AnnexRepo(/home/me/dl-101/DataLad-101/recordings/longnow).get_content_info(..
→˓.)
[DEBUG] Async run ['git', 'ls-files', '-z', '-m']
[DEBUG] Launching process ['git', 'ls-files', '-z', '-m']
[DEBUG] Process 1207519 started
[DEBUG] Waiting for process 1207519 to complete
[DEBUG] Process 1207519 exited with return code 0
[DEBUG] AnnexRepo(/home/me/dl-101/DataLad-101/recordings/longnow).get_content_info(...)
[DEBUG] Query repo: ['ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Async run ['git', 'ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Launching process ['git', 'ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Process 1207521 started
[DEBUG] Waiting for process 1207521 to complete
[DEBUG] Process 1207521 exited with return code 0
[DEBUG] Done query repo: ['ls-tree', 'HEAD', '-z', '-r', '--full-tree', '-l']
[DEBUG] Done AnnexRepo(/home/me/dl-101/DataLad-101/recordings/longnow).get_content_info(..
→˓.)
nothing to save, working tree clean

M14.9 . . . and how does it look when using environment variables or configura-
tions?

The log level can also be set (for different scopes) using the datalad.log.level configu-
ration variable, or the corresponding environment variable DATALAD_LOG_LEVEL.
To set the log level for a single command, for example, set it in front of the command:

$ DATALAD_LOG_LEVEL=debug datalad status

And to set the log level for the rest of the shell session, export it:

$ export DATALAD_LOG_LEVEL=debug
$ datalad status
$...

You can find out a bit more on environment variable in this Findoutmore (page 125).
The configuration variable can be used to set the log level on a user (global) or system-
wide level with the git config command:

$ git config --global datalad.log.level debug

This output is extensive and detailed, but it precisely shows the sequence of commands and
arguments that are run prior to a failure or crash, and all additional information that is reported
with the log levels info or debug can be very helpful to find out what is wrong. Even if the vast
amount of detail in output generated with debug logging appears overwhelming, it can make
sense to find out at which point an execution stalls, whether arguments, commands, or datasets
reported in the debug output are what you expect them to be, and to forward all information
into any potential GitHub issue you will be creating.

Finally, other than logging with a DataLad command, it sometimes can be useful to turn to GIT-
ANNEX or GIT for logging. For failing datalad get calls, it may be useful to retry the retrieval
using git annex get -d -v <file>, where -d (debug) and -v (verbose) increase the amount
of detail about the command execution and failure. In rare cases where you suspect something
might be wrong with Git, setting the environment variables GIT_TRACE and GIT_TRACE_SETUP to
2 prior to running a Git command will give you debugging output.

266 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Debugging

If the additional level of detail provided by logging messages is not enough, you can go further
with actual DEBUGGING. For this, add the --dbg or --idbg flag to the main datalad command,
as in datalad --dbg status. Adding this flag will enter a Python322 or IPython debugger323

when something unexpectedly crashes. This allows you to debug the program right when it
fails, inspect available variables and their values, or step back and forth through the source
code. Note that debugging experience is not a prerequisite when using DataLad – although it
is an exciting life skill324. The official Python docs325 provide a good overview on the available
debugger commands if you are interested in learning more about this.

Debugging examples

This section collects errors and their solutions from real GitHub issues. They may not be ap-
plicable for the problem you are currently facing, but seeing other’s troubleshooting strategies
may be helpful nevertheless. If you are interested in getting your error and solution described
here, please get in touch326.

datalad get: It is common for datalad get errors to originate in GIT-ANNEX, the software used
by DataLad to transfer data. Here are a few suggestions to debug them:

• Take a deep breath, or preferably a walk in a nice park :)

• Check that you are using a recent version of git-annex

– git-annex version returns the version of git-annex on the first line of its input,
and it is also reported in the output of datalad wtf.

– The version number contains the release date of the version in use. For instance,
git-annex version: 8.20200330-g971791563 was released on 30 March 2020.

– If the version that you are using is older than a few months, consider updating
using the instructions here327.

• Try to download the file using git-annex get -v -d <file_name>. If this doesn’t succeed,
the DataLad command may not succeed. Options -d/--debug and -v are here to provide
as much verbosity in error messages as possible

• Read the output of GIT-ANNEX, identify the error, breathe again, and solve the issue! Table
14.1 list a few common or tricky ones.

Table 14.1: Examples of possible git-annex issues.

322 https://docs.python.org/3/library/pdb.html
323 https://ipython.org/
324 https://www.monkeyuser.com/2017/step-by-step-debugging/
325 https://docs.python.org/3/library/pdb.html#debugger-commands
326 https://github.com/datalad-handbook/book/issues
327 http://handbook.datalad.org/en/latest/intro/installation.html

14.4. How to get help 267

https://docs.python.org/3/library/pdb.html
https://ipython.org/
https://www.monkeyuser.com/2017/step-by-step-debugging/
https://docs.python.org/3/library/pdb.html#debugger-commands
https://github.com/datalad-handbook/book/issues
http://handbook.datalad.org/en/latest/intro/installation.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

git-annex error A solution that worked once

Last exception was:
Could not find a suitable TLS CA
certificate bundle, invalid path:
/etc/pki/tls/certs/ca-bundle.crt
[adapters.py:cert_verify:227]

Unset environment variable CURL_CA_BUNDLE

Permission denied when writing file Download to a writeable file system
File retrieval from an Amazon S3 bucket
failed during a system call in a MATLAB ses-
sion:
>> system('datalad -C mytest \

get 100206/T1w/T1w_acpc_dc.nii.
→˓gz')
[...]
git-annex: get: 1 failed

MATLAB massively overrides the
LD_LIBRARY_PATH setting. This can lead
to a number of issues, among them SSL
certification errors. Prefixing the datalad
get command with

!LD_LIBRARY_PATH= datalad get [....]

can solve this.

Common warnings and errors

A lot of output you will see while working with DataLad originates from warnings or errors by
DataLad, git-annex, or Git. Some of these outputs can be wordy and not trivial to comprehend -
and even if everything works, some warnings can be hard to understand. This following section
will list some common git-annex warnings and errors and attempts to explain them. If you
encounter warnings or errors that you would like to see explained in this book, please let us
know by filing an issue328.

Output produced by Git

Unset Git identity

If you have not configured your Git identity, you will see warnings like this when running any
DataLad command:

[WARNING] It is highly recommended to configure git first (set both user.name and user.
→˓email) before using DataLad.

To set your Git identity, go back to section Initial configuration (page 20).

Rejected pushes

One error you can run into when publishing dataset contents is that your datalad push to a
sibling is rejected. One example is this:

$ datalad push --to public
[ERROR] refs/heads/master->public:refs/heads/master [rejected] (non-fast-forward)␣
→˓[publish(/home/me/dl-101/DataLad-101)]

This example is an attempt to push a local dataset to its sibling on GitHub. The push is rejected
because it is a non-fast-forward merge situation. Usually, this means that the sibling contains
328 https://github.com/datalad-handbook/book/issues/new

268 Chapter 14. Help yourself

https://github.com/datalad-handbook/book/issues/new

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

changes that your local dataset does not yet know about. It can be fixed by updating from the
sibling first with a datalad update --merge.

Here is a different push rejection:

$ datalad push --to roommate
publish(ok): . (dataset) [refs/heads/git-annex->roommate:refs/heads/git-annex 023a541..
→˓59a6f8d]
[ERROR] refs/heads/master->roommate:refs/heads/master [remote rejected] (branch is␣
→˓currently checked out) [publish(/home/me/dl-101/DataLad-101)]
publish(error): . (dataset) [refs/heads/master->roommate:refs/heads/master [remote␣
→˓rejected] (branch is currently checked out)]
action summary:
publish (error: 1, ok: 1)

As you can see, the GIT-ANNEX BRANCH was pushed successfully, but updating the master branch
was rejected: [remote rejected] (branch is currently checked out) [publish(/home/me/
dl-101/DataLad-101)]. In this particular case, this is because it was an attempt to push from
DataLad-101 to the roommate sibling that was created in chapter Collaboration (page 92). This
is a special case of pushing, because it – in technical terms – is a push to a non-bare repository.
Unlike BARE GIT REPOSITORIES, non-bare repositories can not be pushed to at all times. To fix
this, you either want to checkout another branch329 in the roommate sibling or push to a non-
checked out branch in the roommate sibling. Alternatively, you can configure roommate to receive
the push with Git’s receive.denyCurrentBranch configuration key. By default, this configura-
tion is set to refuse. Setting it to updateInstead with git config receive.denyCurrentBranch
updateInstead will allow updating the checked out branch. See git configs man page entry330

on receive.denyCurrentBranch for more.

Detached HEADs

One warning that you may encounter during an installation of a dataset is:

[INFO] Submodule HEAD got detached. Resetting branch master to point to 046713bb.␣
→˓Original location was 47e53498

Even though “detached HEAD” sounds slightly worrisome, this is merely an information and
does not require an action from your side. It is related to Git submodules331 (the underlying Git
concept for subdatasets), and informs you about the current state a subdataset is saved in the
superdataset you have just cloned.

Output produced by git-annex

Unusable annexes

Upon installation of a dataset, you may see:

[INFO] Remote origin not usable by git-annex; setting annex-ignore
[INFO] This could be a problem with the git-annex installation on the
remote. Please make sure that git-annex-shell is available in PATH when you
ssh into the remote. Once you have fixed the git-annex installation,
run: git annex enableremote origin

329 https://git-scm.com/docs/git-checkout
330 https://git-scm.com/docs/git-config#Documentation/git-config.txt-receivedenyCurrentBranch
331 https://git-scm.com/book/en/v2/Git-Tools-Submodules

14.4. How to get help 269

https://git-scm.com/docs/git-checkout
https://git-scm.com/docs/git-config#Documentation/git-config.txt-receivedenyCurrentBranch
https://git-scm.com/book/en/v2/Git-Tools-Submodules

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

This warning lets you know that git-annex will not attempt to download content from the
REMOTE “origin”. This can have many reasons, but as long as there are other remotes you can
access the data from, you are fine.

A similar warning message may appear when adding a sibling that is a pure Git REMOTE, for
example a repository on GitHub:

[INFO] Failed to enable annex remote github, could be a pure git or not
accessible
[WARNING] Failed to determine if github carries annex. Remote was marked by
annex as annex-ignore. Edit .git/config to reset if you think that was done
by mistake due to absent connection etc

These messages indicate that the sibling github does not carry an annex. Thus, annexed file
contents can not be pushed to this sibling. This happens if the sibling indeed does not have
an annex (which would be true, for example, for siblings on GITHUB, GITLAB, BITBUCKET, . . . ,
and would not require any further action or worry), or if the remote could not be reached,
e.g., due to a missing internet connection (in which case you could set the key annex-ignore in
.git/config to false).

Speaking of remotes that are not available, this will probably be one of the most commonly
occurring git-annex errors to see - failing datalad get calls because remotes are not available:

Other errors

Sometimes, registered subdatasets URLs have an SSH instead of HTTPS address, for ex-
ample git@github.com:datalad-datasets/longnow-podcasts.git instead of https://github.
com/datalad-datasets/longnow-podcasts.git. If one does not have an SSH key configured
for the required service (e.g., GitHub, or a server), installing or getting the subdataset and its
contents fails, with messages starting similar to this:

[INFO] Cloning https://github.com/psychoinformatics-de/paper-remodnav.git/remodnav [2␣
→˓other candidates] into '/home/homeGlobal/adina/paper-remodnav/remodnav'
Permission denied (publickey).

If you encounter these errors, make sure to create and/or upload an SSH key (see section Walk-
through: Dataset hosting on GIN (page 208) for an example) as necessary, or reconfigure/edit
the URL into a HTTPS URL.

git-annex as the default branch on GitHub

If you publish a dataset to GITHUB, but the resulting repository seems to consist of cryptic
directories instead of your actual file names and directories, GitHub may have made the GIT-
ANNEX BRANCH the default.

To find out more about this and how to fix it, please take a look at the corresponding FAQ
(page 487).

Windows adds whitespace line-endings to unchanged files

The type of line ending (a typically invisible character that indicates a line break) differs be-
tween operating system. While Linux and OSX use a line feed (LF), Windows uses carriage return
+ line feed (CRLF). When you only collaborate across operating systems of the same type, this
is a very boring fun fact at most. But if Windows- and Non-Windows users collaborate, or if you
are working with files across different operating systems, the different type of line ending that
Windows uses may show up as unintended modifications on other system. In most cases, this is

270 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

14.4. How to get help 271

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

prevented by a default cross-platform compatible line-ending configuration on Windows that is
set during installation:

To fix this behavior outside of the installation process and standardize line endings across oper-
ating systems, Windows users are advised to set the configuration core.autcrlf true with git
config --global core.autocrfl true.

asyncio errors at DataLad import

DataLad’s internal command runner uses asyncio332. This can lead to an error when DataLad
is used within a script or application that itself uses asyncio. To summarize the problem with
a quote from Python’s bug tracker333: “you can’t call async code from sync code that’s being
called from async code”.

Jupyter Notebooks are probably the most likely place that you’ll run into this error (ipykernel
issue 548334). When importing datalad, you’ll see this:

RuntimeError: Cannot run the event loop while another loop is running

The nest-asyncio335 package provides a workaround:

>>> import nest_asyncio
>>> nest_asyncio.apply()

>>> import datalad

332 https://docs.python.org/3/library/asyncio.html
333 https://bugs.python.org/issue33523#msg349561
334 https://github.com/ipython/ipykernel/issues/548
335 https://pypi.org/project/nest-asyncio/

272 Chapter 14. Help yourself

https://docs.python.org/3/library/asyncio.html
https://bugs.python.org/issue33523#msg349561
https://github.com/ipython/ipykernel/issues/548
https://github.com/ipython/ipykernel/issues/548
https://pypi.org/project/nest-asyncio/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

14.5 Gists

The more complex and larger your DataLad project, the more difficult it is to do efficient house-
keeping. This section is a selection of code snippets tuned to perform specific, non-trivial tasks
in datasets. Often, they are not limited to single commands of the version control tools you
know, but combine helpful other command line tools and general Unix command line magic.
Just like GitHub gists337, its a collection of lightweight and easily accessible tips and tricks. For
a more basic command overview, take a look at the DataLad cheat sheet (page 496). The tips
collection of git-annex338 is also a very valuable resource.

If there are tips you want to share, or if there is a question you would like to see answered here,
please get in touch339.

Parallelize subdataset processing

DataLad can not yet parallelize processes that are performed independently over a large number
of subdatasets. Pushing across a dataset hierarchy or creating RIA siblings for all subdatasets
of a superdataset, for example, is performed one after the other. Unix however, has a few tools
such as xargs340 or the parallel tool of moreutils341 that can assist.

Here is an example of pushing all subdatasets (and their respective subdatasets) recursively to
their (identically named) siblings:

$ datalad -f '{path}' subdatasets | xargs -n 1 -P 10 datalad push -r --to <sibling-name> -
→˓d

datalad -f '{path}' subdatasets discovers the paths of all subdatasets, and xargs hands
them individually (-n 1) to a (recursive) datalad push, but performs 10 of these operations in
parallel (-P 10), thus achieving parallelization.

Here is an example of cross-dataset download parallelization:

$ datalad -f '{path}' subdatasets | xargs -n 1 -P 10 datalad get -d

337 https://gist.github.com/
338 https://git-annex.branchable.com/tips/
339 https://github.com/datalad-handbook/book/issues/new
340 https://en.wikipedia.org/wiki/Xargs
341 https://joeyh.name/code/moreutils/

14.5. Gists 273

https://gist.github.com/
https://git-annex.branchable.com/tips/
https://git-annex.branchable.com/tips/
https://github.com/datalad-handbook/book/issues/new
../usecases/datastore_for_institutions.html
https://en.wikipedia.org/wiki/Xargs
https://joeyh.name/code/moreutils/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Operations like this can safely be attempted for all commands that are independent across
subdatasets.

Check whether all file content is present locally

In order to check if all the files in a dataset have their file contents locally available, you can ask
git-annex:

$ git annex find --not --in=here

Any file that does not have its contents locally available will be listed. If there are subdatasets
you want to recurse into, use the following command

$ git submodule foreach --quiet --recursive \
'git annex find --not --in=here --format=$displaypath/$\\{file\\}\\n'

Alternatively, to get very comprehensive output, you can use

$ datalad -f json status --recursive --annex availability

The output will be returned as json, and the key has_content indicates local content availability
(true or false). To filter through it, the command line tool jq342 works well:

$ datalad -f json status --recursive --annex all | jq '. | select(.has_content == true).
→˓path'

Drop annexed files from all past commits

If there is annexed file content that is not used anymore (i.e., data in the annex that no files in
any branch point to anymore such as corrupt files), you can find out about it and remove this
file content out of your dataset (i.e., completely and irrecoverably delete it) with git-annex’s
commands git annex unused and git annex dropunused`.

Find out which file contents are unused (not referenced by any current branch):

$ git annex unused
unused . (checking for unused data...)

Some annexed data is no longer used by any files in the repository.
NUMBER KEY
1 SHA256-s86050597--

→˓6ae2688bc533437766a48aa19f2c06be14d1bab9c70b468af445d4f07b65f41e
2 SHA1-s14--f1358ec1873d57350e3dc62054dc232bc93c2bd1

(To see where data was previously used, try: git log --stat -S'KEY')
(To remove unwanted data: git-annex dropunused NUMBER)

ok

Remove a single unused file by specifying its number in the listing above:

$ git annex dropunused 1
dropunused 1 ok

Or a range of unused data with
342 https://stedolan.github.io/jq/

274 Chapter 14. Help yourself

https://stedolan.github.io/jq/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ git annex dropunused 1-1000

Or all

$ git annex dropunused all

Getting single file sizes prior to downloading from the Python API and the CLI

For a single file, datalad status --annex -- myfile will report on the size of the file prior to
a datalad get.

If you want to do it in Python, try this approach:

import datalad.api as dl

ds = dl.Dataset("/path/to/some/dataset")
results = ds.status(path=<path or list of paths>, annex="basic", result_renderer=None)

Check whether a dataset contains an annex

Datasets can be either GitRepos (i.e., sole Git repositories; this happens when they are created
with the --no-annex flag, for example), or AnnexRepos (i.e., datasets that contain an annex).
Information on what kind of repository it is is stored in the dataset report of datalad wtf under
the key repo. Here is a one-liner to get this info:

$ datalad -f'{infos[dataset][repo]}' wtf

Backing-up datasets

In order to back-up datasets you can publish them to a REMOTE INDEXED ARCHIVE (RIA) STORE

or to a sibling dataset. The former solution does not require Git, git-annex, or DataLad to be
installed on the machine that the back-up is pushed to, the latter does require them.

To find out more about RIA stores, checkout the section Remote Indexed Archives for dataset
storage and backup (page 294). A sketch of how to implement a sibling for backups is below:

create a back up sibling
datalad create-sibling --annex-wanted anything -r myserver:/path/to/backup
publish a full backup of the current branch
datalad publish --to=myserver -r
subsequently, publish updates to be backed up with
datalad publish --to=myserver -r --since= --missing=inherit

In order to push not only the current branch, but refs, add the option --publish-by-default
"refs/*" to the create-sibling call. Should you want to back up all annexed data, even past
versions of files, use git annex sync to push to the sibling:

$ git annex sync --all --content <sibling-name>

14.5. Gists 275

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

For an in-depth explanation and example take a look at the GitHub issue that raised this ques-
tion343.

Retrieve partial content from a hierarchy of (uninstalled) datasets

In order to get dataset content across a range of subdatasets, a bit of UNIX command line foo
can increase the efficiency of your command.

Example: consider retrieving all ribbon.nii.gz files for all subjects in the HCP open access
dataset344 (a dataset with about 4500 subdatasets – read on more about it in Scaling up: Man-
aging 80TB and 15 million files from the HCP release (page 433)). If all subject-subdatasets
are installed (e.g., with datalad get -n -r for a recursive installation without file retrieval),
GLOBBING with the shell works fine:

$ datalad get HCP1200/*/T1W/ribbon.nii.gz

The Gist Parallelize subdataset processing (page 273) can show you how to parallelize this. If the
subdatasets are not yet installed, globbing will not work, because the shell can’t expand non-
existent paths. As an alternative, you can pipe the output of an (arbitrarily complex) datalad
search command into datalad get:

$ datalad -f '{path}' -c datalad.search.index-egrep-documenttype=all search 'path:.*T1w.
→˓*\.nii.gz' | xargs -n 100 datalad get

However, if you know the file locations within the dataset hierarchy and they are predictably
named and consistent, you can create a file containing all paths to be retrieved and pipe that
into get as well:

create file with all file paths
$ for sub in HCP1200/*; do echo ${sub}/T1w/ribbons.nii.gz; done > toget.txt
pipe it into datalad get
$ cat toget.txt | xargs -n 100 datalad get

Speed up status reports in large datasets

In datasets with deep dataset hierarchies or large numbers of files, datalad status calls can
be expensive. Handily, the command provides options that can boost performance by limiting
what is being tested and reported. In order to speed up subdataset state state evaluation, -e/
--eval-subdataset-state can be set commit or no. Instead of checking recursively for uncom-
mitted modifications in subdatasets, this would lead status to only compare the most recent
commit SHASUM in the subdataset against the recorded subdataset state in the superdataset
(commit), or skip subdataset state evaluation completely (no). In order to speed up file type
evaluation, the option -t/--report-filetype can be set to raw. This skips an evaluation on
whether symlinks are pointers to annexed file (upon which, if true, the symlink would be re-
ported as type “file”). Instead, all symlinks will be reported as being of type “symlink”.

343 https://github.com/datalad/datalad/issues/4369
344 https://github.com/datalad-datasets/human-connectome-project-openaccess

276 Chapter 14. Help yourself

https://github.com/datalad/datalad/issues/4369
https://github.com/datalad/datalad/issues/4369
https://github.com/datalad-datasets/human-connectome-project-openaccess
https://github.com/datalad-datasets/human-connectome-project-openaccess

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Squashing git-annex history

A large number of commits in the GIT-ANNEX BRANCH (think: thousands rather than hundreds)
can inflate your repository and increase the size of the .git directory, which can lead to slower
cloning operations. There are, however, ways to shrink the commit history in the annex branch.

In order to SQUASH the entire git-annex history into a single commit, run

$ git annex forget --drop-dead --force

Afterwards, if your dataset has a sibling, the branch needs to be FORCE-PUSHed. If you attempt
an operation to shrink your git-annex history, also checkout this thread345 for more information
on shrinking git-annex’s history and helpful safeguards and potential caveats.

345 https://git-annex.branchable.com/forum/safely_dropping_git-annex_history/

14.5. Gists 277

https://git-annex.branchable.com/forum/safely_dropping_git-annex_history/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M14.5 Changing the commit messages of not-the-most-recent commits

The git commit --amend command will let you rewrite the commit message of the most
recent commit. If you however need to rewrite commit messages of older commits, you
can do so during a so-called “interactive rebase”307. The command for this is

$ git rebase -i HEAD~N

where N specifies how far back you want to rewrite commits. git rebase -i HEAD~3 for
example lets you apply changes to the any number of commit messages within the last
three commits.
Be aware that an interactive rebase lets you rewrite history. This can lead to confusion
or worse if the history you are rewriting is shared with others, e.g., in a collaborative
project. Be also aware that rewriting history that is pushed/published (e.g., to GitHub)
will require a force-push!
Running this command gives you a list of the N most recent commits in your text editor
(which may be VIM!), sorted with the most recent commit on the bottom. This is how it
may look like:

pick 8503f26 Add note on adding siblings
pick 23f0a52 add note on configurations and git config
pick c42cba4 add note on DataLad's procedures

Rebase b259ce8..c42cba4 onto b259ce8 (3 commands)
#
Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending
s, squash <commit> = use commit, but meld into previous commit
f, fixup <commit> = like "squash", but discard this commit's log message
x, exec <command> = run command (the rest of the line) using shell
b, break = stop here (continue rebase later with 'git rebase --continue')
d, drop <commit> = remove commit
l, label <label> = label current HEAD with a name

An interactive rebase allows to apply various modifying actions to any number of commits
in the list. Below the list are descriptions of these different actions. Among them is
“reword”, which lets you “edit the commit message”. To apply this action and reword
the top-most commit message in this list (8503f26 Add note on adding siblings, three
commits back in the history), exchange the word pick in the beginning of the line with
the word reword or simply r like this:

r 8503f26 Add note on adding siblings

If you want to reword more than one commit message, exchange several picks. Any
commit with the word pick at the beginning of the line will be kept as is. Once you are
done, save and close the editor. This will sequentially open up a new editor for each
commit you want to reword. In it, you will be able to change the commit message. Save
to proceed to the next commit message until the rebase is complete. But be careful not
to delete any lines in the above editor view – An interactive rebase can be dangerous,
and if you remove a line, this commit will be lost!308

307 Note though that rewriting history can be dangerous, and you should be aware of what you are doing. For
example, rewriting parts of the dataset’s history that have been published (e.g., to a GitHub repository)

278 Chapter 14. Help yourself

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

already or that other people have copies of, is not advised.
308 When in need to interactively rebase, please consult further documentation and tutorials. It is out of the

scope of this handbook to be a complete guide on rebasing, and not all interactive rebasing operations
are complication-free. However, you can always undo mistakes that occur during rebasing with the help
of the reflog309.

14.5. Gists 279

https://git-scm.com/docs/git-reflog

Part III

Advanced

280

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

There is more to DataLad than the Basics. Equipped with the fundamental building blocks
and broad DataLad expertise, you can continue to this advanced section to read more on how
DataLad can be used, from special case applications to data management at scale.

This part of the book will abandon the DataLad-101 narrative. Consider yourself graduated.
There is no need to read the chapters of this book sequentially. Rather, find chapters that match
your interest and usecase, and read its sections and associated usecases.

281

CHAPTER

FIFTEEN

ADVANCED OPTIONS

15.1 How to hide content from DataLad

You have progressed quite far in the DataLad-101 course, and by now, you have gotten a good
overview on the basics and not-so-basic-anymores of DataLad. You know how to add, modify,
and save files, even completely reproducibly, and how to share your work with others.

By now, the datalad save command is probably the most often used command in this dataset.
This means that you have seen some of its peculiarities. The most striking was that it by default
will save the complete datasets status if one does not provide a path to a file change. This would
result in all content that is either modified or untracked being saved in a single commit.

In principle, a general recommendation may be to keep your DataLad dataset clean. This assists
a structured way of working and prevents clutter, and it also nicely records provenance inside
your dataset. If you have content in your dataset that has been untracked for 9 months it will
be hard to remember where this content came from, whether it is relevant, and if it is relevant,
for what. Adding content to your dataset will thus usually not do harm – certainly not for your
dataset. However, there may be valid reasons to keep content out of DataLad’s version con-
trol and tracking. Maybe you hide your secret my-little-pony-themesongs/ collection within
Deathmetal/ and do not want a record of this in your history or the directory being shared
together with the rest of the dataset. Who knows? We would not judge in any way.

In principle, you already know a few tricks on how to be “messy” and have untracked files. For
datalad save, you know that precise file paths allow you to save only those modifications you
want to change. For datalad run you know that one can specify the --explicit option to only
save those modifications that are specified in the --output argument.

Beyond these tricks, there are two ways to leave untracked content unaffected by a datalad
save. One is the -u/--updated option of datalad save:

282

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad save -m "my commit message here" -u/--updated

will only save dataset modifications to previously tracked paths. If
my-little-pony-themesongs/ is not yet tracked, a datalad save -u will leave it untouched,
and its existence or content is not written to the history of your dataset.

A second way of hiding content from DataLad is a .gitignore file. As the name suggests, it is a
GIT related solution, but it works just as well for DataLad.

A .gitignore file is a file that specifies which files should be ignored by the version control tool.
To use a .gitignore file, simply create a file with this name in the root of your dataset (be mind-
ful: remember the leading .!). You can use one of thousands of publicly shared examples346, or
create your own one.

To specify dataset content to be git-ignored, you can either write a full file name, e.g.
playlists/my-little-pony-themesongs/Friendship-is-magic.mp3 into this file, or paths or
patterns that make use of globbing, such as playlists/my-little-pony-themesongs/*. The
hidden section at the end of this page contains some general rules for patterns in .gitignore
files. Afterwards, you just need to save the file once to your dataset so that it is version con-
trolled. If you have new content you do not want to track, you can add new paths or patterns
to the file, and save these modifications.

Let’s try this with a very basic example: Let’s git-ignore all content in a tmp/ directory in the
DataLad-101 dataset:

$ cat << EOT > .gitignore

tmp/*
EOT

$ datalad status
untracked: .gitignore (file)

$ datalad save -m "add something to ignore" .gitignore
add(ok): .gitignore (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

This .gitignore file is very minimalistic, but its sufficient to show how it works. If you now
create a tmp/ directory, all of its contents would be ignored by your datasets version control.
Let’s do so, and add a file into it that we do not (yet?) want to save to the dataset’s history.

$ mkdir tmp
$ echo "this is just noise" > tmp/a_random_ignored_file

$ datalad status
nothing to save, working tree clean

As expected, the file does not show up as untracked – it is being ignored! Therefore, a .
gitignore file can give you a space inside of your dataset to be messy, if you want to be.
346 https://github.com/github/gitignore

15.1. How to hide content from DataLad 283

https://github.com/github/gitignore

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M15.1 Rules for .gitignore files

Here are some general rules for the patterns you can put into a .gitignore file, taken
from the book Pro Git347 :

• Blank lines or lines starting with # are ignored
• Standard GLOBBING patterns work. The line

*.[oa]

lets all files ending in .o or .a be ignored. Importantly, these patterns will be
applied recursively through your dataset, so that a file matching this rule will be
ignored, even if it is in a subdirectory of your dataset. If you want to ignore specific
files in the directory your .gitignore file lies in, but not any subdirectories, start
the pattern with a forward slash (/), as in /TODO.

• To specify directories, you can end patterns with a forward slash (/), for example
build/.

• You can negate a pattern by starting it with an exclamation point (!), such as !lib.
a. This would track the file lib.a, even if you would be ignoring all other files with
.a extension.

The manpage of gitignore has an extensive and well explained overview. To read it,
simply type man gitignore into your terminal.
You can have a single .gitignore file in the root of your dataset, and its rules apply
recursively to the entire hierarchy of the dataset (but not subdatasets!). Alternatively,
you can have additional .gitignore files in subdirectories of your dataset. The rules in
these nested .gitignore files only apply to the files under the directory where they are
located.
347 https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring

Implications of git-ignored outputs for re-running

Note one caveat: If a command creates an output that is git-ignored, (e.g. anything
inside of tmp/ in our dataset), a subsequent command that requires it as an undisclosed
input will only succeed if both commands a ran in succession. The second command will
fail if re-ran on its own, however.

M15.2 Globally ignoring files

Its not only possible to define files or patterns for files to ignore inside of individual
datasets, but to also set global specifications to have every single dataset you own ignore
certain files or file types.
This can be useful, for example, for unwanted files that your operating system or certain
software creates, such as lock files348, .swp files349, .DS_Store files350, Thumbs.DB351, or
others.
To set rules to ignore files for all of your datasets, you need to create a global .gitignore
file. The only difference between a repository-specific and a global .gitignore file is its
location on your file system. You can put it either in its default location ~/.config/git/
ignore (you may need to create the ~/.config/git directory first), or place it into any
other location and point Git to it. If you create a file at ~/.gitignore_global and run

$ git config --global core.excludesfile ~/.gitignore_global

Git – and consequently DataLad – will not bother you about any of the files or file types

284 Chapter 15. Advanced options

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring
https://fileinfo.com/extension/lock
https://www.networkworld.com/article/2931534/what-are-unix-swap-swp-files.html
https://en.wikipedia.org/wiki/.DS_Store
https://en.wikipedia.org/wiki/Windows_thumbnail_cache#Thumbs.db

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

you have specified.
348 https://fileinfo.com/extension/lock
349 https://www.networkworld.com/article/2931534/what-are-unix-swap-swp-files.html
350 https://en.wikipedia.org/wiki/.DS_Store
351 https://en.wikipedia.org/wiki/Windows_thumbnail_cache#Thumbs.db

15.2 DataLad extensions

DataLad’s commands cover a broad range of domain-agnostic use cases. However, there are
extension packages that can add specialized functionality with additional commands. Table
15.1 lists a number of such extensions.

DataLad extensions are shipped as separate Python packages, and are not included in DataLad
itself. Instead, users needing a particular extension can install the extension package – either
on top of DataLad, if already installed, or on its own. In the latter case, the extension will then
pull in DataLad core automatically, with no need to first or simultaneously install DataLad itself
explicitly. The installation is done with standard Python package managers, such as PIP, and
beyond installation of the package, no additional setup is required.

DataLad extensions listed here are of various maturity levels. Check out their documentation
and the sections or chapters associated with an extension to find out more about them.

Table 15.1: Selection of available DataLad extensions. A more up-to-date list can be found on
PyPi352

15.2. DataLad extensions 285

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Name Description
container353 Equips DataLad’s run/rerun functionality with the ability to transparently

execute commands in containerized computational environments. The
section Computational reproducibility with software containers (page 166)
demonstrates how this extension can be used, as well as the usecase
An automatically and computationally reproducible neuroimaging analysis
from scratch (page 420).

crawler354 One of the initial goals behind DataLad was to provide access to already
existing data resources. With crawl-init/crawl commands, this exten-
sion allows to automate creation of DataLad datasets from resources avail-
able online, and efficiently keep them up-to-date. The majority of datasets
in THE DATALAD SUPERDATASET /// on datasets.datalad.org355 are created
and updated using this extension functionality.

hirni356 A neuroimaging specific extension to allow reproducible DICOM to BIDS
conversion of (f)MRI data. The chapter . . . introduces this extension.

htcondor357 Enhances DataLad with the ability for remote execution via the job sched-
uler HTCondor358.

metalad359 Equips DataLad with an alternative command suite and advanced tooling
for metadata handling (extraction, aggregation, reporting).

mihextras360 Special-interest commands and previews for future DataLad additions.
neuroimaging361 Metadata extraction support for a range of standards common to neu-

roimaging data. The usecase An automatically and computationally repro-
ducible neuroimaging analysis from scratch (page 420) demonstrates how
this extension can be used.

osf362 Enables DataLad to interface and work with the Open Science Frame-
work363. Use it to publish your dataset’s data to an OSF project, thus
utilizing the OSF for dataset storage and sharing.

rclone-
remote364

Enables DataLad to push and pull to all third party providers with no
native Git support that are supported by rclone365.

ukbiobank366 Equips DataLad with a set of commands to obtain and monitor imaging
data releases of the UKBiobank367. An introduction can be found in chap-
ter

xnat368 Equips DataLad with a set of commands to track XNAT369 projects. An
alternative, more basic method to retrieve data from an XNAT server is
outlined in section Configure custom data access (page 290).

286 Chapter 15. Advanced options

http://docs.datalad.org/projects/container
http://docs.datalad.org/projects/crawler
http://datasets.datalad.org/
http://docs.datalad.org/projects/hirni
https://github.com/datalad/datalad-htcondor
https://research.cs.wisc.edu/htcondor/
http://docs.datalad.org/projects/metalad
https://datalad-mihextras.readthedocs.io
https://datalad-neuroimaging.readthedocs.io
http://docs.datalad.org/projects/osf
https://osf.io/
https://osf.io/
https://github.com/datalad/git-remote-rclone
https://github.com/datalad/git-remote-rclone
https://rclone.org/
https://github.com/datalad/datalad-ukbiobank
https://www.ukbiobank.ac.uk//
https://github.com/datalad/datalad-xnat
https://www.xnat.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

To install a DataLad extension, use

$ pip install <extension-name>

such as in

$ pip install datalad-container

Afterwards, the new DataLad functionality the extension provides is readily available.

Some extensions could also be available from the software distribution (e.g., NeuroDebian or
conda) you used to install DataLad itself. Visit github.com/datalad/datalad-extensions/371 to
review available versions and their status.

15.3 DataLad’s result hooks

If you are particularly keen on automating tasks in your datasets, you may be interested in
running DataLad commands automatically as soon as previous commands are executed and
resulted in particular outcomes or states. For example, you may want to automatically unlock
all dataset contents right after an installation in one go. However, you’d also want to make sure
that the install command was successful before attempting an unlock. Therefore, you would
like to automatically run the datalad unlock . command right after the datalad install
command, but only if the previous install command was successful.

Such automation allows for flexible and yet automatic responses to the results of DataLad com-
mands, and can be done with DataLad’s result hooks. Generally speaking, hooks372 intercept
function calls or events and allow to extend the functionality of a program. DataLad’s result
hooks are calls to other DataLad commands after the command resulted in a specified result –
such as a successful install.

To understand how hooks can be used and defined, we have to briefly mention DataLad’s com-
mand result evaluations. Whenever a DataLad command is executed, an internal evaluation
generates a report on the status and result of the command. To get a glimpse into such an
evaluation, you can call any DataLad command with the datalad option -f/--output-format

352 https://pypi.org/search/?q=datalad
353 http://docs.datalad.org/projects/container
354 http://docs.datalad.org/projects/crawler
355 http://datasets.datalad.org/
356 http://docs.datalad.org/projects/hirni
357 https://github.com/datalad/datalad-htcondor
358 https://research.cs.wisc.edu/htcondor/
359 http://docs.datalad.org/projects/metalad
360 https://datalad-mihextras.readthedocs.io
361 https://datalad-neuroimaging.readthedocs.io
362 http://docs.datalad.org/projects/osf
363 https://osf.io/
364 https://github.com/datalad/git-remote-rclone
365 https://rclone.org/
366 https://github.com/datalad/datalad-ukbiobank
367 https://www.ukbiobank.ac.uk//
368 https://github.com/datalad/datalad-xnat
369 https://www.xnat.org/
371 https://github.com/datalad/datalad-extensions/
372 https://en.wikipedia.org/wiki/Hooking

15.3. DataLad’s result hooks 287

https://github.com/datalad/datalad-extensions/
https://en.wikipedia.org/wiki/Hooking

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

<default, json, json_pp, tailored, '<template>'> to return the command result evalua-
tions with a specific formatting. Here is how this can look like for a datalad create:

$ datalad -f json_pp create somedataset
[INFO] Creating a new annex repo at /tmp/somedataset
{
"action": "create",
"path": "/tmp/somedataset",
"refds": null,
"status": "ok",
"type": "dataset"

}

Internally, this is useful for final result rendering, error detection, and logging. However, by
using hooks, you can utilize these evaluations for your own purposes and “hook” in more com-
mands whenever an evaluation fulfills your criteria.

To be able to specify matching criteria, you need to be aware of the potential criteria you can
match against. The evaluation report is a dictionary with key:value pairs. Table 15.2 provides
an overview on some of the available keys and their possible values.

Table 15.2: Common result keys and their values. This is only a selection of available key-value
pairs. The actual set of possible key-value pairs is potentially unlimited, as any third-party
extension could introduce new keys, for example. If in doubt, use the -f/--output-format
option with the command of your choice to explore how your matching criteria may look like.

Key name Values
action get, install, drop, status, . . . (any command’s name)
type file, dataset, symlink, directory
status ok, notneeded, impossible, error
path The path the previous command operated on

These key-value pairs provide the basis to define matching rules that – once met – can trig-
ger the execution of custom hooks. To define a hook based on certain command results, two
configuration variables need to be set:

datalad.result-hook.<name>.match-json

and

datalad.result-hook.<name>.call-json

Here is what you need to know about these variables:

• The <name> part of the configurations is the same for both variables, and can be an arbi-
trarily373 chosen name that serves as an identifier for the hook you are defining.

• The first configuration variable, datalad.result-hook.<name>.match-json, defines the
requirements that a result evaluation needs to match in order to trigger the hook.

• The second configuration variable, datalad.result-hook.<name>.call-json, defines
what the hook execution comprises. It can be any DataLad command of your choice.

And here is how to set the values for these variables:
373 It only needs to be compatible with git config. This means that it for example should not contain any dots (.).

288 Chapter 15. Advanced options

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• When set via the git config command, the value for datalad.result-hook.<name>.
match-json needs to be specified as a JSON-encoded dictionary with any number of keys,
such as

{"type": "file", "action": "get", "status": "notneeded"}

This translates to: “Match a “not-needed” after datalad get of a file.” If all specified values
in the keys in this dictionary match the values of the same keys in the result evaluation,
the hook is executed. Apart from == evaluations, in, not in, and != are supported. To
make use of such operations, the test value needs to be wrapped into a list, with the first
item being the operation, and the second value the test value, such as

{"type": ["in", ["file", "directory"]], "action": "get", "status": "notneeded"}

This translates to: “Match a “not-needed” after datalad get of a file or directory.” Another
example is

{"type":"dataset","action":"install","status":["eq", "ok"]}

which translates to: “Match a successful installation of a dataset”.

• The value for datalad.result-hook.<name>.call-json is specified in its Python notation,
and its options – when set via the git config command – are specified as a JSON-encoded
dictionary with keyword arguments. Conveniently, a number of string substitutions are
supported: a dsarg argument expands to the dataset given to the initial command the
hook operates on, and any key from the result evaluation can be expanded to the respec-
tive value in the result dictionary. Curly braces need to be escaped by doubling them. This
is not the easiest specification there is, but its also not as hard as it may sound. Here is
how this could look like for a datalad unlock:

$ unlock {{"dataset": "{dsarg}", "path": "{path}"}}

This translates to “unlock the path the previous command operated on, in the dataset the
previous command operated on”. Another example is this run command:

$ run {{"cmd": "cp ~/Templates/standard-readme.txt {path}/README", "dataset": "
→˓{dsarg}", "explicit": true}}

This translate to “execute a run command in the dataset the previous command op-
erated on. In this run command, copy a README template file from ~/Templates/
standard-readme.txt and place it into the newly created dataset.” A final example is
this:

$ run_procedure {{"dataset":"{path}","spec":"cfg_metadatatypes bids"}}

This hook will run the procedure cfg_metadatatypes with the argument bids and thus
set the standard metadata extractor to be bids.

As these variables are configuration variables, they can be set via git config – either for the
dataset (--local), or the user (--global)374:
374 To re-read about the git config command and other configurations of DataLad and its underlying tools, go

back to the chapter on Configurations, starting with DIY configurations (page 112). Note that hooks are only
read from Git’s config files, not .datalad/config! Else, this would pose a severe security risk, as it would allow
installed datasets to alter DataLad commands to perform arbitrary executions on a system.

15.3. DataLad’s result hooks 289

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ git config --global --add datalad.result-hook.readme.call-json 'run {{"cmd":"cp ~/
→˓Templates/standard-readme.txt {path}/README", "outputs":["{path}/README"], "dataset":"
→˓{path}","explicit":true}}'
$ git config --global --add datalad.result-hook.readme.match-json '{"type": "dataset",
→˓"action":"create","status":"ok"}'

Here is what this writes to the ~/.gitconfig file:

[datalad "result-hook.readme"]
call-json = run {{\"cmd\":\"cp ~/Templates/standard-readme.txt {path}/README\", \

→˓"outputs\":[\"{path}/READ>
match-json = {\"type\": \"dataset\",\"action\":\"create\",\"status\":\"ok\"}

Note how characters such as quotation marks are automatically escaped via backslashes. If
you want to set the variables “by hand” with an editor instead of using git config, pay close
attention to escape them as well.

Given this configuration in the global ~/.gitconfig file, the “readme” hook would be executed
whenever you successfully create a new dataset with datalad create. The “readme” hook would
then automatically copy a file, ~/Templates/standard-readme.txt (this could be a standard
README template you defined), into the new dataset.

15.4 Configure custom data access

DataLad can download files via the http, https, ftp, and s3 protocol from various data storage
solutions via its downloading commands (datalad download-url, datalad addurls, datalad
get). If data retrieval from a storage solution requires authentication, for example via a user-
name and password combination, DataLad provides an interface to query, request, and store
the most common type of credentials that are necessary to authenticate, for a range of authen-
tication types. There are a number of natively supported types of authentication and out-of-the
box access to a broad range of access providers, from common solutions such as S3375 to spe-
cial purpose solutions, such as LORIS376. However, beyond natively supported services, custom
data access can be configured as long as the required authentication and credential type are
supported. This makes DataLad even more flexible for retrieving data.

Basic process

For any supported access type that requires authentication, the procedure is always the same:
Upon first access via any downloading command, users will be prompted for their credentials
from the command line. Subsequent downloads handle authentication in the background as
long as the credentials stay valid. An example of this credential management is shown in the
usecase Scaling up: Managing 80TB and 15 million files from the HCP release (page 433): Data
is stored in S3 buckets that require authentication with AWS credentials. The first datalad
get to retrieve any of the data will prompt for the credentials from the terminal. If the given
credentials are valid, the requested data will be downloaded, and all subsequent retrievals via
get will authenticate automatically, without user input, as long as the entered credentials stay
valid.
375 https://aws.amazon.com/s3/?nc1=h_ls
376 https://loris.ca/

290 Chapter 15. Advanced options

https://aws.amazon.com/s3/?nc1=h_ls
https://loris.ca/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M15.3 How does the authentication work?

Passwords, user names, tokens, or any other login information is stored in your system’s
(encrypted) keyring377. It is a built-in credential store, used in all major operating sys-
tems, and can store credentials securely. DataLad uses the Python keyring378 package to
access the keyring. In addition to a standard interface to the keyring, this library also has
useful special purpose backends that come in handy in corner cases such as HPC/cluster
computing, where no interactive sessions are available.
377 https://en.wikipedia.org/wiki/GNOME_Keyring
378 https://keyring.readthedocs.io/en/latest/

If a particular storage solution requires authentication but it is not known to DataLad yet, the
download will fail. Here is how this looks like if data is retrieved from a server that requires
HTTP authentication, but DataLad – or the dataset – lacks a configuration for data access about
this server:

$ datalad download-url \
https://example.com/myuser/protected/path/to/file
[INFO] Downloading 'https://example.com/myuser/protected/path/to/file' into 'local/

→˓path/'
Authenticated access to https://example.com/myuser/protected/path/to/file has failed.
Would you like to setup a new provider configuration to access url? (choices: [yes],␣

→˓no): yes

However, data access can be configured by the user if the required authentication and credential
type are supported by DataLad (a list is given in the hidden section below). With a data access
configuration in place, commands such as datalad download-url or datalad addurls can work
with urls the point to the location of the data to be retrieved, and datalad get is enabled to
retrieve file contents from these sources.

The configuration can either be done in the terminal upon a prompt from the command line
when a download fails due to a missing provider configuration as shown above, or by placing a
configuration file for the required data access into .datalad/providers/<provider-name>.cfg.
The following information is needed:

• An arbitrary name that the data access is identified with,

• a regular expression that can match a url one would want to download from,

• an authentication type, and

• a credential type.

The example below sheds some light one this.

M15.4 Which authentication and credential types are possible?

When configuring custom data access, credential and authentication type are required
information. Below, we list the most common choices for these fields.
Among the most common credential types, 'user_password', 'aws-s3', and 'token'
authentication is supported. For a full list, including some less common authentication
types, please see the technical documentation of DataLad.
For authentication, the most common supported solutions are 'html_form', 'http_auth'
(http and html form-based authentication379), 'http_basic_auth' (http basic access380),
'http_digest_auth' (digest access authentication381), 'bearer_token' (http bearer to-

15.4. Configure custom data access 291

https://en.wikipedia.org/wiki/GNOME_Keyring
https://keyring.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/HTTP%2BHTML_form-based_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Digest_access_authentication
https://tools.ietf.org/html/rfc6750

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

ken authentication382) and 'aws-s3'. A full list can be found in the technical docs.
379 https://en.wikipedia.org/wiki/HTTP%2BHTML_form-based_authentication
380 https://en.wikipedia.org/wiki/Basic_access_authentication
381 https://en.wikipedia.org/wiki/Digest_access_authentication
382 https://tools.ietf.org/html/rfc6750

Example: Data access to a server that requires basic HTTP authentication

Consider a private Apache web server383 with an .htaccess file that configures a range of
allowed users to access a certain protected directory on this server via basic HTTP authentica-
tion384. If opened in a browser, such a setup would prompt visitors of this directory on the web
server for their username and password, and only grant access if valid credentials are entered.
Unauthenticated requests cause 401 Unauthorized Status responses.

By default, when DataLad attempts to retrieve files from this protected directory, the authenti-
cation and credential type that are required are unknown to DataLad and authentication fails.
An attempt to download or get a file from this directory with DataLad can only succeed if
a “provider configuration”, i.e., a configuration how to access the data, for this specific web
server with information on how to authenticate exists.

“Provider configurations” are small text files that either exist on a per-dataset level in .datalad/
providers/<name>.cfg, or on a user-level in ~/.config/datalad/providers/<name>.cfg. They
can be created and saved by hand, or configured “on the fly” from the command line upon
unsuccessful download attempts. A configuration file follows a similar structure as the example
below:

[provider:my-webserver]
url_re = https://example.com/~myuser/protected/.*
credential = my-webserver
authentication_type = http_basic_auth

[credential:my-webserver]
type = user_password

For a local385, i.e., dataset-specific, configuration, place the file into .datalad/providers/
my-webserver.cfg. Subsequently, in the dataset that this file was placed into, downloading
commands that point to https://example.com/~myuser/protected/<path> will ask (once) for
the user’s user name and password, and subsequently store these credentials. In order to make
it a global configuration, i.e., enable downloads from the web server from within all datasets
of the user, place the file into the users home directory under ~/.config/datalad/providers/
my-webserver.cfg.

If the file is generated “on the fly” from the terminal, it will prompt for exactly the same in-
formation as specified in the example above and write the required .cfg based on the given
information. Note that this will configure data access globally, i.e., it will place the file under
~/.config/datalad/providers/<name>.cfg. Here is how that would look like:

383 https://httpd.apache.org/
384 https://en.wikipedia.org/wiki/Basic_access_authentication
385 To re-read on configurations and their scope, check out chapter Tuning datasets to your needs (page 112) again.

292 Chapter 15. Advanced options

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://httpd.apache.org/
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad download-url https://example.com/~myuser/protected/my_protected_file
[INFO] Downloading 'https://example.com/~myuser/protected/my_protected_file' into '/
→˓tmp/ds/'
Authenticated access to https://example.com/~myuser/protected/my_protected_file has␣
→˓failed.
Would you like to setup a new provider configuration to access url? (choices: [yes],␣
→˓no): yes

New provider name
Unique name to identify 'provider' for https://example.com/~myuser/protected/my_
→˓protected_file [https://example.com]:
my-webserver

New provider regular expression
A (Python) regular expression to specify for which URLs this provider
should be used [https://example\.com/\~myuser/protected/my_protected_file]:
https://example.com/~myuser/protected/.*

Authentication type
What authentication type to use (choices: aws-s3, bearer_token, html_form,
http_auth, http_basic_auth, http_digest_auth, loris-token, nda-s3, none, xnat):
http_basic_auth

Credential
What type of credential should be used? (choices: aws-s3, loris-token, nda-s3,
token, [user_password]):
user_password

Save provider configuration file
Following configuration will be written to /home/me/.config/datalad/providers/my-
→˓webserver.cfg:
Provider configuration file created to initially access
https://example.com/~myuser/protected/my_protected_file

[provider:my-webserver]
url_re = https://example.com/~myuser/protected/.*
authentication_type = http_basic_auth
Note that you might need to specify additional fields specific to the
authenticator. Fow now "look into the docs/source" of <class 'datalad.downloaders.
→˓http.HTTPBasicAuthAuthenticator'>
http_basic_auth_
credential = my-webserver

[credential:my-webserver]
If known, specify URL or email to how/where to request credentials
url = ???
type = user_password
(choices: [yes], no):

yes

You need to authenticate with 'my-webserver' credentials.
user: <user name>

password: <password>
password (repeat): <password>
[INFO] http session: Authenticating into session for https://example.com/~myuser/
→˓protected/my_protected_file

(continues on next page)

15.4. Configure custom data access 293

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

https://example.com/~myuser/protected/my_protected_file: 0%| | 0.00/611k
download_url(ok): /https://example.com/~myuser/protected/my_protected_file (file)
add(ok): my_protected_file (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

Subsequently, all downloads from https://example.com/~myuser/protected/* by the user will
succeed. If something went wrong during this interactive configuration, delete or edit the file
at ~/.config/datalad/providers/<name>.cfg.

15.5 Remote Indexed Archives for dataset storage and backup

If DataLad datasets should be backed-up, made available for collaborations with others, or
stored or managed in a central location, REMOTE INDEXED ARCHIVE (RIA) STOREs, dataset stor-
age locations that allow for access to and collaboration on DataLad datasets, may be a suitable
solution. They are flat, flexible, file-system based repository representations of any number of
datasets, and they can exist on all standard computing infrastructure, be it personal computers,
servers or compute clusters, or even super computing infrastructure – even on machines that
do not have DataLad installed.

RIA availability

Setting up and interacting with RIA stores requires DataLad version 0.13.0 or higher. In
order to understand this section, some knowledge on Git-internals and overcoming any
fear of how checksums and UUIDs look can be helpful.

Technical details

RIA stores can be created or extended with a single command from within any dataset. DataLad
datasets can subsequently be published into the datastore as a means of backing up a dataset
or creating a dataset sibling to collaborate on with others. Alternatively, datasets can be cloned
and updated from a RIA store just as from any other dataset location. The subsection RIA store
workflows (page 298) a few paragraphs down will demonstrate RIA-store related functionality.
But prior to introducing the user-facing commands, this section starts by explaining the layout
and general concept of a RIA store.

Layout

RIA stores store DataLad datasets. Both the layout of the RIA store and the layout of the datasets
in the RIA store are different from typical dataset layouts, though. If one were to take a look
inside of a RIA store as it is set up by default, one would see a directory that contains a flat
subdirectory tree with datasets represented as BARE GIT REPOSITORIES and an annex. Usually,
looking inside of RIA stores is not necessary for RIA-related workflows, but it can help to grasp
the concept of these stores.

294 Chapter 15. Advanced options

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The first level of subdirectories in this RIA store tree consists of the first three characters of the
DATASET IDs of the datasets that lie in the store, and the second level of subdatasets contains
the remaining characters of the dataset IDs. Thus, the first two levels of subdirectories in the
tree are split dataset IDs of the datasets that are stored in them398. The code block below
illustrates how a single DataLad dataset looks like in a RIA store, and the dataset ID of the
dataset (946e8cac-432b-11ea-aac8-f0d5bf7b5561) is highlighted:

/path/to/my_riastore
946

e8cac-432b-11ea-aac8-f0d5bf7b5561
annex

objects
6q

mZ
MD5E-s93567133--7c93fc5d0b5f197ae8a02e5a89954bc8.nii.gz

MD5E-s93567133--7c93fc5d0b5f197ae8a02e5a89954bc8.nii.gz
6v

zK
MD5E-s2043924480--47718be3b53037499a325cf1d402b2be.nii.gz

MD5E-s2043924480--47718be3b53037499a325cf1d402b2be.nii.gz
[...]
[...]

archives
archive.7z

branches
config
description
HEAD
hooks

applypatch-msg.sample
[...]
update.sample

info
exclude

objects
05

3d25959223e8173497fa7f747442b72c31671c
0b

8d0edbf8b042998dfeb185fa2236d25dd80cf9
[...]

[...]
info
pack

refs
heads

git-annex
master

tags
ria-layout-version
ria-remote-ebce196a-b057-4c96-81dc-7656ea876234

transfer
error_logs
ria-layout-version

If a second dataset gets published to the RIA store, it will be represented in a similar tree
398 The two-level structure (3 ID characters as one subdirectory, the remaining ID characters as the next subdirectory)

exists to avoid exhausting file system limits on the number of files/folders within a directory.

15.5. Remote Indexed Archives for dataset storage and backup 295

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

structure underneath its individual dataset ID. If subdatasets of a dataset are published into
a RIA store, they are not represented underneath their superdataset, but are stored on the
same hierarchy level as any other dataset. Thus, the dataset representation in a RIA store is
completely flat399. With this hierarchy-free setup, the location of a particular dataset in the RIA
store is only dependent on its DATASET ID. As the dataset ID is universally unique, gets assigned
to a dataset at the time of creation, and does not change across the life time of a dataset, no
two different datasets could have the same location in a RIA store.

The directory underneath the two dataset-ID-based subdirectories contains a bare git repository
(highlighted above as well) that is a CLONE of the dataset.

M15.5 What is a bare Git repository?

A bare Git repository is a repository that contains the contents of the .git directory
of regular DataLad datasets or Git repositories, but no worktree or checkout. This has
advantages: The repository is leaner, it is easier for administrators to perform garbage
collections, and it is required if you want to push to it at all times. You can find out more
on what bare repositories are and how to use them here386.
Note that bare Git repositories can be cloned, and the clone of a bare Git repository will
have a checkout and a worktree, thus resuming the shape that you are familiar with.

386 https://git-scm.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server

Inside of the bare GIT repository, the annex directory – just as in any standard dataset or repos-
itory – contains the dataset’s keystore (object tree) under annex/objects401. In conjunction,
keystore and bare Git repository are the original dataset – just differently represented, with no
working tree, i.e., directory hierarchy that exists in the original dataset, and without the name
it was created under, but stored under its dataset ID instead.

If necessary, the keystores (annex) can be (compressed) 7zipped387 archives (archives/), either
for compression gains, or for use on HPC-systems with inode388 limitations403. Despite being
7zipped, those archives can be indexed and support relatively fast random read access. Thus,
the entire key store can be put into an archive, re-using the exact same directory structure, and
remains fully accessible while only using a handful of inodes, regardless of file number and size.
If the dataset contains only annexed files, a complete dataset can be represented in about 25
inodes.

Taking all of the above information together, on an infrastructural level, a RIA store is fully self-
contained, and is a plain file system storage, not a database. Everything inside of a RIA store
is either a file, a directory, or a zipped archive. It can thus be set up on any infrastructure that
399 Beyond datasets, the RIA store only contains the directory error_logs for error logging and the file

ria-layout-version for a specification of the dataset tree layout in the store (last two lines in the code
block above). The ria-layout-version is important because it identifies whether the keystore uses git-annex’s
hashdirlower (git-annex’s default for bare repositories) or hashdirmixed layout (which is necessary to allow sym-
linked annexes, relevant for EPHEMERAL CLONEs). To read more about hashing in the key store, take a look at the
docs400.

400 https://git-annex.branchable.com/internals/hashing/
401 To re-read about how git-annex’s object tree works, check out section Data integrity (page 85), and pay close

attention to the hidden section. Additionally, you can find a lot of background information in git-annex’s docu-
mentation402.

402 https://git-annex.branchable.com/internals/
387 https://www.7-zip.org/
388 https://en.wikipedia.org/wiki/Inode
403 The usecase

shows how this feature can come in handy.

296 Chapter 15. Advanced options

https://git-scm.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
https://www.7-zip.org/
https://en.wikipedia.org/wiki/Inode
https://git-annex.branchable.com/internals/hashing/
https://git-annex.branchable.com/internals/hashing/
https://git-annex.branchable.com/internals/
https://git-annex.branchable.com/internals/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

has a file system with directory and file representation, and has barely any additional software
requirements (see below). Access to datasets in the store can be managed by using file system
PERMISSIONS. With these attributes, a RIA store is a suitable solution for a number of usecases
(back-up, single or multi-user dataset storage, central point for collaborative workflows, . . .),
be that on private workstations, web servers, compute clusters, or other IT infrastructure.

M15.6 Software Requirements

On the RIA store hosting infrastructure, only 7z is to be installed, if the archive feature
is desired. Specifically, no GIT, no GIT-ANNEX, and no otherwise running daemons are
necessary. If the RIA store is set up remotely, the server needs to be SSH-accessible.
On the client side, you need DataLad version 0.13.0 or later. Starting with this version,
DataLad has the create-sibling-ria command and the git-annex ora-remote special
remote that is required to get annexed dataset contents into a RIA store.

git-annex ORA-remote special remotes

On a technical level, beyond being a directory tree of datasets, a RIA store is by default a GIT-
ANNEX ORA-remote (optional remote access) special remote of a dataset. This allows to not
only store the history of a dataset, but also all annexed contents.

M15.7 What is a special remote?

A special-remote389 is an extension to Git’s concept of remotes, and can enable git-annex
to transfer data to and from places that are not Git repositories (e.g., cloud services or
external machines such as an HPC system). Don’t envision a special-remote as a physical
place or location – a special-remote is just a protocol that defines the underlying transport
of your files to and from a specific location.
389 https://git-annex.branchable.com/special_remotes/

The git-annex ora-remote special remote is referred to as a “storage sibling” of the original
dataset. It is similar to git-annex’s built-in directory390 special remote (but works remotely and
uses the hashdir_mixed399 keystore layout). Thanks to the git-annex ora-remote, RIA stores can
have regular git-annex key storage and retrieval of keys from (compressed) 7z archives in the
RIA store works. Put simple, annexed contents of datasets can only be pushed into RIA stores if
they have a git-annex ora-remote.

Certain applications will not require special remote features. The usecase Scaling up: Managing
80TB and 15 million files from the HCP release (page 433) shows an example where git-annex
key storage is explicitly not wanted. Other applications may require only the special remote,
such as cases where Git isn’t installed on the RIA store hosting infrastructure. For most storage
or back-up scenarios, special remote capabilities are useful, though, and thus the default.

By default, the datalad create-sibling-ria command will automatically create a dataset rep-
resentation in a RIA store (and set up the RIA store, if it does not exist), and configure a sibling
to allow publishing to the RIA store and updating from it. With special remote capabilities
enabled, the command will automatically create the special remote as a storage-sibling and
link it to the RIA-sibling. With the sibling and special remote set up, upon an invocation of
390 https://git-annex.branchable.com/special_remotes/directory/

15.5. Remote Indexed Archives for dataset storage and backup 297

https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/special_remotes/directory/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

datalad push --to <sibling>, the complete dataset contents, including annexed contents, will
be published to the RIA store, with no further setup or configuration required404.

To disable the storage sibling completely, invoke datalad create-sibling-ria with the ar-
gument --storage-sibling=off. Note that DataLad versions <0.14 need to use the flag
--no-storage-sibling, which is deprecated starting with DataLad 0.14.0. To create a RIA
store with only special remote storage, starting from DataLad version 0.14.0 you can invoke
datalad create-sibling-ria with the argument --storage-sibling=only.

Advantages of RIA stores

Storing datasets in RIA stores has a number of advantages that align well with the demands of
central dataset management on shared compute infrastructure, but are also well suited for most
back-up and storage applications. In a RIA store layout, the first two levels of subdirectories
can host any number of keystores and bare repositories. As datasets are identified via ID and
stored next to each other underneath the top-level RIA store directory, the store is completely
flexible and extendable, and regardless of the number or nature of datasets inside of the store, a
RIA store keeps a homogeneous directory structure. This aids the handling of large numbers of
repositories, because unique locations are derived from dataset/repository properties (their ID)
rather than a dataset name or a location in a complex dataset hierarchy. Because the dataset
representation in the RIA store is a bare repository, “house-keeping” as well as query tasks can
be automated or performed by data management personnel with no domain-specific knowledge
about dataset contents. Short maintenance scripts can be used to automate basically any task
that is of interest and possible in a dataset, but across the full RIA store. A few examples are:

• Copy or move annex objects into a 7z archive.

• Find dataset dependencies across all stored datasets by returning the dataset IDs of sub-
datasets recorded in each dataset.

• Automatically return the number of commits in each repository.

• Automatically return the author and time of the last dataset update.

• Find all datasets associated with specific authors.

• Clean up unnecessary files and minimize a (or all) repository with GITs garbage collection
(gc)391 command.

The usecase Building a scalable data storage for scientific computing (page 443) demonstrates
the advantages of this in a large scientific institute with central data management. Due to the
git-annex ora-remote special remote, datasets can be exported and stored as archives to save
disk space.

RIA store workflows

The user facing commands for interactions with a RIA store are barely different from standard
DataLad workflows. The paragraphs below detail how to create and populate a RIA store,
how to clone datasets and retrieve data from it, and also how to handle permissions or hide
technicalities.
404 To re-read about publication dependencies and why this is relevant to annexed contents in the dataset, checkout

section Beyond shared infrastructure (page 177).
391 https://git-scm.com/docs/git-gc

298 Chapter 15. Advanced options

https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Creating or publishing to RIA stores

A dataset can be added into an existing or not yet existing RIA store by running the datalad
create-sibling-ria command (datalad-create-sibling-ria manual), and subsequently pub-
lished into the store using datalad push. Just like the datalad siblings add command, for
datalad create-sibling-ria, an arbitrary sibling name (with the -s/--name option) and a URL
to the location of the store (as a positional argument) need to be specified. In the case of RIA
stores, the URL takes the form of a ria+ URL, and the looks of this URL are dependent on where
the RIA store (should) exists, or rather, which file transfer protocol (SSH or file) is used:

• A URL to an SSH-accessible server has a ria+ssh:// prefix, followed by user and host-
name specification and an absolute path: ria+ssh://[user@]hostname:/absolute/path/
to/ria-store

• A URL to a store on a local file system has a ria+file:// prefix, followed by an absolute
path: ria+file:///absolute/path/to/ria-store

Note that it is always required to specify an ABSOLUTE PATH in the URL!

If you code along, make sure to check the next findoutmore!

The upcoming demonstration of RIA stores uses the DataLad-101 dataset the was created
throughout the Basics of this handbook. If you want to execute these code snippets on
a DataLad-101 dataset you created, the modification described in the findoutmore below
needs to be done first.

M15.8 If necessary, adjust the submodule path!

Back in Subdataset publishing (page 212), in order to appropriately reference and link
subdatasets on hostings sites such as GITHUB, we adjusted the submodule path of the
subdataset in .gitmodules to point to a published subdataset on GitHub:

in DataLad-101
$ cat .gitmodules
[submodule "recordings/longnow"]

path = recordings/longnow
url = https://github.com/datalad-datasets/longnow-podcasts.git
datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e
datalad-url = https://github.com/datalad-datasets/longnow-podcasts.git

[submodule "midterm_project"]
path = midterm_project
url = https://github.com/adswa/midtermproject
datalad-id = fea0e9c7-7932-41d5-8d57-97ac9ac6755a

Later in this demonstration we would like to publish the subdataset to a RIA store and re-
trieve it automatically from this store – retrieval is only attempted from a store, however,
if no other working source is known. Therefore, we will remove the reference to the pub-
lished dataset prior to this demonstration and replace it with the path it was originally
referenced under.

in DataLad-101
$ datalad subdatasets --contains midterm_project --set-property url ./midterm_
→˓project
subdataset(ok): midterm_project (dataset)

15.5. Remote Indexed Archives for dataset storage and backup 299

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

To demonstrate the basic process, we will create a RIA store on a local file system to publish the
DataLad-101 dataset from the handbook’s “Basics” section to. In the example below, the RIA
sibling gets the name ria-backup. The URL uses the file protocol and points with an absolute
path to the not yet existing directory myriastore.

inside of the dataset DataLad-101
$ datalad create-sibling-ria -s ria-backup ria+file:///home/me/myriastore
[INFO] Start checking pre-existing sibling configuration Dataset(/home/me/dl-101/DataLad-
→˓101)
[INFO] Discovered sibling here in dataset at /home/me/dl-101/DataLad-101
[INFO] Discovered sibling roommate in dataset at /home/me/dl-101/DataLad-101
[INFO] Discovered sibling gin in dataset at /home/me/dl-101/DataLad-101
[INFO] Finished checking pre-existing sibling configuration Dataset(/home/me/dl-101/
→˓DataLad-101)
[INFO] create siblings 'ria-backup' and 'ria-backup-storage' ...
[INFO] Fetching updates for Dataset(/home/me/dl-101/DataLad-101)
[INFO] Configure additional publication dependency on "ria-backup-storage"
create-sibling-ria(ok): /home/me/dl-101/DataLad-101 (dataset)

Afterwards, the dataset has two additional siblings: ria-backup, and ria-backup-storage.

$ datalad siblings
.: here(+) [git]
.: roommate(+) [../mock_user/DataLad-101 (git)]
.: gin(+) [/home/me/pushes/DataLad-101 (git)]
.: ria-backup-storage(+) [ora]
.: ria-backup(-) [/home/me/myriastore/8e0/4afb0-af85-4070-be29-858d30d85017 (git)]

The storage sibling is the git-annex ora-remote and is set up automatically – unless
create-sibling-ria is run with --storage-sibling=off (in DataLad versions >0.14.) or
--no-storage-sibling (in versions <0.14). By default, it has the name of the RIA sibling,
suffixed with -storage, but alternative names can be supplied with the --storage-name option.

M15.9 Take a look into the store

Right after running this command, a RIA store has been created in the specified location:

300 Chapter 15. Advanced options

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ tree /home/me/myriastore
/home/me/myriastore

8e0
4afb0-af85-4070-be29-858d30d85017

annex
objects

archives
branches
config
config.dataladlock
description
HEAD
hooks

applypatch-msg.sample
commit-msg.sample
fsmonitor-watchman.sample
post-update.sample
pre-applypatch.sample
pre-commit.sample
pre-merge-commit.sample
prepare-commit-msg.sample
pre-push.sample
pre-rebase.sample
pre-receive.sample
push-to-checkout.sample
update.sample

info
exclude

objects
info
pack

refs
heads
tags

ria-layout-version
error_logs
ria-layout-version

15 directories, 20 files

Note that there is one dataset represented in the RIA store. The two-directory structure
it is represented under corresponds to the dataset ID of DataLad-101:

The dataset ID is stored in .datalad/config
$ cat .datalad/config
[datalad "dataset"]

id = 8e04afb0-af85-4070-be29-858d30d85017

In order to publish the dataset’s history and all its contents into the RIA store, a single datalad
push to the RIA sibling suffices:

$ datalad push --to ria-backup
[INFO] Determine push target
[INFO] Push refspecs
[INFO] Determine push target
[INFO] Push refspecs

(continues on next page)

15.5. Remote Indexed Archives for dataset storage and backup 301

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[INFO] Transfer data
copy(ok): books/TLCL.pdf (file) [to ria-backup-storage...]
copy(ok): books/bash_guide.pdf (file) [to ria-backup-storage...]
copy(ok): books/byte-of-python.pdf (file) [to ria-backup-storage...]
copy(ok): books/progit.pdf (file) [to ria-backup-storage...]
[INFO] Transfer data
[INFO] Update availability information
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start resolving deltas
publish(ok): . (dataset) [refs/heads/master->ria-backup:refs/heads/master [new branch]]
publish(ok): . (dataset) [refs/heads/git-annex->ria-backup:refs/heads/git-annex [new␣
→˓branch]]
[INFO] Finished push of Dataset(/home/me/dl-101/DataLad-101)
[INFO] Finished push of Dataset(/home/me/dl-101/DataLad-101)

M15.10 Take another look into the store

Now that dataset contents have been pushed to the RIA store, the bare repository con-
tains them, although their representation is not human-readable. But worry not – this
representation only exists in the RIA store. When cloning this dataset from the RIA store,
the clone will be in its standard human-readable format.

302 Chapter 15. Advanced options

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ tree /home/me/myriastore
/home/me/myriastore

8e0
4afb0-af85-4070-be29-858d30d85017

annex
objects

G6
Gj

MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf
MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf

jf
3M

MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

WF
Gq

MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf

z1
Q8

MD5E-s4208954--ab3a8c2f6b76b18b43c5949e0661e266.pdf
MD5E-s4208954--ab3a8c2f6b76b18b43c5949e0661e266.pdf

archives
branches
config

pre-push.sample
pre-rebase.sample
pre-receive.sample
push-to-checkout.sample
update.sample

info
exclude

objects
info
pack

pack-f90d1d8e11495d22cc738734c458771c99287a61.idx
pack-f90d1d8e11495d22cc738734c458771c99287a61.pack

ora-remote-7f049ef9-351d-4df5-974a-63e992128c31
transfer

refs
heads

git-annex
master

tags
ria-layout-version

error_logs
ria-layout-version

29 directories, 28 files

A second dataset can be added and published to the store in the very same way. As a demon-
stration, we’ll do it for the midterm_project subdataset:

$ cd midterm_project
$ datalad create-sibling-ria -s ria-backup ria+file:///home/me/myriastore

(continues on next page)

15.5. Remote Indexed Archives for dataset storage and backup 303

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[INFO] Start checking pre-existing sibling configuration Dataset(/home/me/dl-101/DataLad-
→˓101/midterm_project)
[INFO] Discovered sibling here in dataset at /home/me/dl-101/DataLad-101/midterm_project
[INFO] Discovered sibling datalad in dataset at /home/me/dl-101/DataLad-101/midterm_
→˓project
[INFO] Discovered sibling github in dataset at /home/me/dl-101/DataLad-101/midterm_
→˓project
[INFO] Finished checking pre-existing sibling configuration Dataset(/home/me/dl-101/
→˓DataLad-101/midterm_project)
[INFO] create siblings 'ria-backup' and 'ria-backup-storage' ...
[INFO] Fetching updates for Dataset(/home/me/dl-101/DataLad-101/midterm_project)
[INFO] Configure additional publication dependency on "ria-backup-storage"
create-sibling-ria(ok): /home/me/dl-101/DataLad-101/midterm_project (dataset)

$ datalad push --to ria-backup
[INFO] Determine push target
[INFO] Push refspecs
[INFO] Determine push target
[INFO] Push refspecs
[INFO] Transfer data
copy(ok): .datalad/environments/midterm-software/image (file) [to ria-backup-storage...]
copy(ok): pairwise_relationships.png (file) [to ria-backup-storage...]
copy(ok): prediction_report.csv (file) [to ria-backup-storage...]
[INFO] Transfer data
[INFO] Update availability information
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start resolving deltas
publish(ok): . (dataset) [refs/heads/master->ria-backup:refs/heads/master [new branch]]
publish(ok): . (dataset) [refs/heads/git-annex->ria-backup:refs/heads/git-annex [new␣
→˓branch]]
[INFO] Finished push of Dataset(/home/me/dl-101/DataLad-101/midterm_project)
[INFO] Finished push of Dataset(/home/me/dl-101/DataLad-101/midterm_project)

M15.11 Take a look into the RIA store after a second dataset has been added

With creating a RIA sibling to the RIA store and publishing the contents of the
midterm_project subdataset to the store, a second dataset has been added to the data-
store. Note how it is represented on the same hierarchy level as the previous dataset,
underneath its dataset ID (note that the output is cut off for readability):

$ cat .datalad/config
[datalad "dataset"]

id = fea0e9c7-7932-41d5-8d57-97ac9ac6755a
[datalad "containers.midterm-software"]

image = .datalad/environments/midterm-software/image
cmdexec = singularity exec {img} {cmd}

304 Chapter 15. Advanced options

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ tree /home/me/myriastore
/home/me/myriastore

8e0
4afb0-af85-4070-be29-858d30d85017

annex
objects

G6
Gj

MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf
MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf

jf
3M

MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

WF
Gq

MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf

z1
Q8

MD5E-s4208954--ab3a8c2f6b76b18b43c5949e0661e266.pdf
MD5E-s4208954--ab3a8c2f6b76b18b43c5949e0661e266.pdf

archives
branches
config

pre-push.sample
pre-rebase.sample
pre-receive.sample
push-to-checkout.sample
update.sample

info
exclude

objects
info
pack

pack-f90d1d8e11495d22cc738734c458771c99287a61.idx
pack-f90d1d8e11495d22cc738734c458771c99287a61.pack

ora-remote-7f049ef9-351d-4df5-974a-63e992128c31
transfer

refs
heads

git-annex
master

tags
ria-layout-version

error_logs

Thus, in order to create and populate RIA stores, only the commands datalad
create-sibling-ria and datalad push are required.

Cloning and updating from RIA stores

Cloning from RIA stores is done via datalad clone from a ria+ URL, suffixed with a dataset
identifier. Depending on the protocol being used, the URLs are composed similarly to during

15.5. Remote Indexed Archives for dataset storage and backup 305

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

sibling creation:

• A URL to a RIA store on an SSH-accessible server takes the same format as before:
ria+ssh://[user@]hostname:/absolute/path/to/ria-store

• A URL to a RIA store on a local file system also looks like during sibling creation:
ria+file:///absolute/path/to/ria-store

• A URL for read (without annex) access to a store via HTTP (e.g., to a RIA store
like store.datalad.org392, through which the HCP dataset is published) looks like this:
ria+http://store.datalad.org:/absolute/path/to/ria-store

The appropriate ria+ URL needs to be suffixed with a # sign and a dataset identifier. One way
this can be done is via the dataset ID. Here is how to clone the DataLad-101 dataset from the
RIA store using its dataset ID:

$ datalad clone ria+file:///home/me/myriastore#8e04afb0-af85-4070-be29-858d30d85017␣
→˓myclone
[INFO] Cloning dataset to Dataset(/home/me/dl-101/myclone)
[INFO] Attempting to clone from file:///home/me/myriastore/8e0/4afb0-af85-4070-be29-
→˓858d30d85017 to /home/me/dl-101/myclone
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/myclone)
[INFO] scanning for unlocked files (this may take some time)
[INFO] Configure additional publication dependency on "ria-backup-storage"
configure-sibling(ok): . (sibling)
install(ok): /home/me/dl-101/myclone (dataset)
action summary:
configure-sibling (ok: 1)
install (ok: 1)

There are two downsides to this method: For one, it is hard to type, remember, and know the
dataset ID of a desired dataset. Secondly, if no additional path is given to datalad clone, the
resulting dataset clone would be named after its ID. An alternative, therefore, is to use an alias
for the dataset. This is an alternative dataset identifier that a dataset in a RIA store can be
configured with.

M15.12 Configure an alias for a dataset

In order to define an alias for an individual dataset in a store, one needs to create an
alias/ directory in the root of the datastore and place a SYMLINK of the desired name to
the dataset inside of it. Here is how it is done, for the midterm project dataset:
First, create an alias/ directory in the store:

$ mkdir /home/me/myriastore/alias

Afterwards, place a SYMLINK with a name of your choice to the dataset inside of it. Here,
we create a symlink called midterm_project:

$ ln -s /home/me/myriastore/fea/0e9c7-7932-41d5-8d57-97ac9ac6755a /home/me/
→˓myriastore/alias/midterm_project

Here is how it looks like inside of this directory:

392 http://store.datalad.org/

306 Chapter 15. Advanced options

http://store.datalad.org/
../usecases/HCP_dataset.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ tree /home/me/myriastore/alias
/home/me/myriastore/alias

midterm_project -> /home/me/myriastore/fea/0e9c7-7932-41d5-8d57-97ac9ac6755a

1 directory, 0 files

Afterwards, the alias name, prefixed with a ~, can be used as a dataset identifier:

datalad clone ria+file:///home/me/myriastore#~midterm_project
[INFO] Cloning dataset to Dataset(/home/me/dl-101/midterm_project)
[INFO] Attempting to clone from file:///home/me/myriastore/alias/midterm_project to␣
→˓/home/me/dl-101/midterm_project
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/midterm_project)
[INFO] scanning for unlocked files (this may take some time)
[INFO] Configure additional publication dependency on "ria-backup-storage"
configure-sibling(ok): . (sibling)
install(ok): /home/me/dl-101/midterm_project (dataset)
action summary:
configure-sibling (ok: 1)
install (ok: 1)

This makes it easier for others to clone the dataset and will provide a sensible default
name for the clone if no additional path is provided in the command.
Note that it is even possible to create “aliases of an aliases” – symlinking an existing
alias-symlink (in the example above midterm_project) under another name in the alias/
directory is no problem. This could be useful if the same dataset needs to be accessible
via several aliases, or to safeguard against common spelling errors in alias names.

The dataset clone is just like any other dataset clone. Contents stored in GIT are present right
after cloning, while the contents of annexed files is not yet retrieved from the store and can be
obtained with a datalad get.

$ cd myclone
$ tree
.

books
bash_guide.pdf -> ../.git/annex/objects/WF/Gq/MD5E-s1198170--

→˓0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
byte-of-python.pdf -> ../.git/annex/objects/z1/Q8/MD5E-s4208954--

→˓ab3a8c2f6b76b18b43c5949e0661e266.pdf/MD5E-s4208954--ab3a8c2f6b76b18b43c5949e0661e266.pdf
progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-s12465653--

→˓05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.
→˓pdf

TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

code
list_titles.sh
nested_repos.sh

Gitjoke2.txt
midterm_project
notes.txt
recordings

interval_logo_small.jpg
longnow
podcasts.tsv
salt_logo_small.jpg

(continues on next page)

15.5. Remote Indexed Archives for dataset storage and backup 307

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

5 directories, 11 files

To demonstrate file retrieval from the store, let’s get an annexed file:

$ datalad get books/progit.pdf
get(ok): books/progit.pdf (file) [from ria-backup-storage...]

M15.13 What about creating RIA stores and cloning from RIA stores with different
protocols

Consider setting up and populating a RIA store on a server via the file protocol, but
cloning a dataset from that store to a local computer via SSH protocol. Will this be a
problem for file content retrieval? No, in all standard situations, DataLad will adapt to
this. Upon cloning the dataset with a different URL than it was created under, enabling
the special remote will initially fail, but DataLad will adaptive try out other URLs (in-
cluding changes in hostname, path, or protocol) to enable the ora-remote and retrieve
file contents.

Just as expected, the subdatasets are not pre-installed. How will subdataset installation work
for datasets that exist in a RIA store as well, like midterm_project? Just as with any other sub-
dataset! DataLad cleverly handles subdataset installations from RIA stores in the background:
The location of the subdataset in the RIA store is discovered and used automatically:

$ datalad get -n midterm_project
[INFO] Cloning dataset to Dataset(/home/me/dl-101/myclone/midterm_project)
[INFO] Attempting to clone from file:///home/me/myriastore/fea/0e9c7-7932-41d5-8d57-
→˓97ac9ac6755a to /home/me/dl-101/myclone/midterm_project
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/myclone/midterm_project)
[INFO] scanning for unlocked files (this may take some time)
[INFO] Configure additional publication dependency on "ria-backup-storage"
install(ok): /home/me/dl-101/myclone/midterm_project (dataset) [Installed subdataset in␣
→˓order to get /home/me/dl-101/myclone/midterm_project]

More technical insights into the automatic ria+ URL generation are outlined in the findoutmore
below:

M15.14 On cloning datasets with subdatasets from RIA stores

The usecase Scaling up: Managing 80TB and 15 million files from the HCP release
(page 433) details a RIA-store based publication of a large dataset, split into a nested
dataset hierarchy with about 4500 subdatasets in total. But how can links to subdatasets
work, if datasets in a RIA store are stored in a flat hierarchy, with no nesting?
The key to this lies in flexibly regenerating subdataset’s URLs based on their ID and a
path to the RIA store. The datalad get command is capable of generating RIA URLs to
subdatasets on its own, if the higher level dataset contains a datalad get configuration
on subdataset-source-candidate-origin that points to the RIA store the subdataset is
published in. Here is how the .datalad/config configuration looks like for the top-level
dataset of the HCP dataset393:

[datalad "get"]
subdataset-source-candidate-origin = "ria+http://store.datalad.org#{id}"

308 Chapter 15. Advanced options

https://github.com/datalad-datasets/human-connectome-project-openaccess

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

With this configuration, a datalad get can use the URL and insert the dataset ID in
question into the {id} placeholder to clone directly from the RIA store.
This configuration is automatically added to a dataset that is cloned from a RIA store,
but it can also be done by hand with a git config command405.
393 https://github.com/datalad-datasets/human-connectome-project-openaccess
405 To re-read on configuring datasets with the git config, go back to sections DIY configurations (page 112)

and More on DIY configurations (page 117).

Beyond straightforward access to datasets, RIA stores also allow very fine-grained cloning op-
erations: Datasets in RIA stores can be cloned in specific versions.

M15.15 Cloning specific dataset versions

Optionally, datasets can be cloned in a specific version, such as a TAG or BRANCH by
appending @<version-identifier> after the dataset ID or the dataset alias. Here is how
to clone the BIDS394 version of the structural preprocessed subset of the HCP dataset395

that exists on the branch bids of this dataset:

$ datalad clone ria+http://store.datalad.org#~hcp-structural-preprocessed@bids

If you are interested in finding out how this dataset came into existence, checkout the
use case Scaling up: Managing 80TB and 15 million files from the HCP release (page 433).
394 https://bids.neuroimaging.io/
395 https://github.com/datalad-datasets/hcp-structural-preprocessed

Updating datasets works with the datalad update and datalad update --merge commands
introduced in chapter Collaboration (page 92). And because a RIA store hosts BARE GIT REPOS-
ITORIES, collaborating becomes easy. Anyone with access can clone the dataset from the store,
add changes, and push them back – this is the same workflow as for datasets hosted on sites
such as GITHUB, GITLAB, or GIN.

Permission management

In order to limit access or give access to datasets in datastores, permissions can be set at the
time of RIA sibling creation with the --shared option. If it is given, this option configures the
permissions in the RIA store for multi-users access. Possible values for this option are identical
to those of git init --shared and are described in its documentation396. In order for the
dataset to be accessible to everyone, for example, --shared all could be specified. If access
should be limited to a particular Unix group397 (--shared group), the group name needs to be
specified with the --group option.

Configurations and tricks to hide technical layers

In setups with a central, DataLad-centric data management, in order to spare users knowing
about RIA stores, custom configurations can be distributed via DataLad’s run-procedures to
simplify workflows further and hide the technical layers of the RIA setup. For example, custom

396 https://git-scm.com/docs/git-init#Documentation/git-init.txt---sharedfalsetrueumaskgroupallworldeverybody
0xxx

397 https://en.wikipedia.org/wiki/File_system_permissions#Traditional_Unix_permissions

15.5. Remote Indexed Archives for dataset storage and backup 309

https://bids.neuroimaging.io/
https://github.com/datalad-datasets/hcp-structural-preprocessed
https://git-scm.com/docs/git-init#Documentation/git-init.txt---sharedfalsetrueumaskgroupallworldeverybody0xxx
https://en.wikipedia.org/wiki/File_system_permissions#Traditional_Unix_permissions

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

procedures provided at dataset creation could automatically perform a sibling setup in a RIA
store, and also create an associated GitLab repository with a publication dependency to the RIA
store to ease publishing data or cloning the dataset. The usecase Building a scalable data storage
for scientific computing (page 443) details the setup of RIA stores in a scientific institute and
demonstrates this example.

To simplify repository access beyond using aliases, the datasets stored in a RIA store can be in-
stalled under human-readable names in a single superdataset. Cloning the superdataset exposes
the underlying datasets under a non-dataset-ID name. Users can thus get data from datasets
hosted in a datastore without any knowledge about the dataset IDs or the need to construct
ria+ URLs, just as it was done in the usecases Scaling up: Managing 80TB and 15 million files
from the HCP release (page 433) and Building a scalable data storage for scientific computing
(page 443). From a user’s perspective, the RIA store would thus stay completely hidden.

Standard maintenance tasks by data stewards with knowledge about RIA stores and access to it
can be performed easily or even in an automated fashion. The usecase Building a scalable data
storage for scientific computing (page 443) showcases some examples of those operations.

Summary

RIA stores are useful, lean, and undemanding storage locations for DataLad datasets. Their
properties make them suitable solutions to back-up, central data management, or collaboration
use cases. They can be set up with minimal effort, and the few technical details a user may face
such as cloning from DATASET IDs can be hidden with minimal configurations of the store like
aliases or custom procedures.

15.6 Prioritizing subdataset clone locations

When obtaining a superdataset, the subdatasets it contains can have multiple sources. De-
pending on the use case and precise context, different sources, sometimes referred to as “clone
candidates”, are more or less “useful”. By attaching costs to subdataset clone candidates, one
can gain precise control over the locations from which subdatasets are retrieved, and the or-
der in which retrieval is attempted. This can create a more flawless and less error-prone user
experience as well as speedier dataset installations.

Super
Sub

310 Chapter 15. Advanced options

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Clone candidates

Let’s first exemplify how a dataset can have several clone candidate locations. Consider the case
of the midterm_project subdataset that was created during the “Basics” part of the handbook:
Initially, as this dataset was created as a subdataset of DataLad-101, its submodule entry in
DataLad-101/.gitmodules407 was a relative path (./midterm_project). After it was published
to GITHUB in the section on YODA-compliant data analysis projects (page 143), this dataset had
a second clone candidate location: A URL to its GitHub repository. A third location, finally, was
created when publishing the dataset to the RIA store in the previous section Remote Indexed
Archives for dataset storage and backup (page 294). This makes three locations from where the
midterm_project subdataset could potentially be obtained from.

Each of these locations can be encoded in the superdataset’s .gitmodules file, but .gitmodules
can encode only a single clone candidate. Many use cases, however, benefit from or even require
access to several clone candidates. Consider the problem highlighted in Subdataset publishing
(page 212):

When the DataLad-101 dataset was published to GIN in section Walk-through: Dataset hosting
on GIN (page 208), the .gitmodules entry of the midtermproject subdataset was still a rela-
tive path (./midterm_project). While this relative path resolves locally on the same machine
DataLad-101 was created on, it does not resolve on GIN. Cloning DataLad-101 recursively with
midterm_project thus works when cloned locally from a path, but not when cloned from Gin.

Back in section Walk-through: Dataset hosting on GIN (page 208), this problem was fixed by
replacing the relative path in .gitmodules with the URL to the dataset sibling on GitHub. But
a more convenient solution would be to have several known locations for subdatasets that are
attempted in succession – if cloning from a local path fails, try the GitHub URL, and then the
RIA store, and so forth. Therefore, other than the .gitmodules entry, a dataset can encode other
clone candidate sources with a configuration variable as well. Here is an overview on where
subdataset clone candidates can be found:

1. Without any additional configuration, a subdataset is either registered underneath its
superdataset with a relative path (if it was originally created in this dataset), or from the
path or URL it was originally installed from. This is recorded in the .gitmodules file of
the superdataset.

2. Alternatively, subdataset source candidates can be configured under the configuration
variable datalad.get.subdataset-source-candidate-<name>, where <name> is an arbi-
trary identifier, within either .datalad/config (if the configuration should stick with the
dataset) or .git/config (if it should only apply to the dataset, but not its SIBLINGs or
clones).

A concrete example of a clone candidate configuration as well as further details can be found
in the next paragraph.

Clone candidate priority

We have established that subdatasets can come from several sources. Let’s now motivate why it
might be useful to prioritize one subdataset clone location over another one.
407 To re-read about .gitmodules files and their contents, please go back to section More on DIY configurations

(page 117).

15.6. Prioritizing subdataset clone locations 311

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Consider a hierarchy of datasets that exist in several locations, for example one REMOTE IN-
DEXED ARCHIVE (RIA) STORE with a storage special remote408, and one without a special re-
mote. The topmost superdataset is published to a human-readable and accessible location such
as GITHUB or GITLAB, and should be configured to always clone subdatasets from the RIA store
with the storage special remote, even if it was originally created with subdatasets from the RIA
store with no storage sibling. In order to be able to retrieve subdataset data from the subdatasets
after cloning the hierarchy of datasets, the RIA store with the storage special remote needs to
be configured as a clone candidate. Importantly, it should not only be configured as one alter-
native, but it should be configured as the first location to try to clone from – else, cloning from
the wrong RIA store could succeed and prevent any configured second clone candidate location
from being tried.

Use case for clone priorities

The most likely use case for such a scenario is in the case of centrally managed data with
data administrators that provide and manage the data for their users.

The priority of subdataset clone locations is configured by attaching a cost to a source candidate
<name>. The cost is a three digit value (range 000-999), and the lower the cost of a candidate,
the higher its priority, i.e., the candidate with the lowest cost is attempted first. In order to
prefer any particular RIA store for subdataset cloning, one could configure the superdataset
with the following command409:

$ git config -f .datalad/config datalad.get.subdataset-source-candidate-
→˓000mypreferredRIAstore ria+http://store.datalad.org#{id}

where mypreferredRIAstore is the (arbitrary) <name> of the source candidate, and the 000
prefix is the (lowest possible) cost. Such a configuration will ensure that the first location any
subdataset is attempted to be installed from is the RIA store at store.datalad.org. Only if the
dataset is not found in there under its ID, other sources are tried. Note that in the case where
no cost is provided together with the candidate name, a default cost of 700 is used.

M15.16 What are the “default” costs for preexisting clone candidates?

The following list provides and overview of which locations are attempted for cloning
and their associated costs:

• 500 for the superdatasets’ remote URL + submodule path
• 600 for the configured submodule URL in .gitmodules
• 700 for any unprioritized datalad.get.subdataset-source-candidate config
• 900 for the local subdataset path

With the datalad.get.subdataset-source-candidate configuration any number of (differently
named) clone candidates can be set and prioritized. This allows precise access control over
subdataset clone locations, and can – depending on how many subdataset locations are known
and functional – speed up dataset installation.

408 To re-read about RIA stores and their ORA special remote storage siblings, please take a look at the section
Remote Indexed Archives for dataset storage and backup (page 294).

409 If you are unsure how the git config command works, please check out section DIY configurations (page 112).

312 Chapter 15. Advanced options

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Placeholders

Instead of adding configurations with precise URLs you can also make use of templates
with placeholders to configure clone locations more flexibly. A placeholder takes the form
{placeholdername} and can reference any property that can be inferred from the parent
dataset’s knowledge about the target superset, specifically any subdataset information that ex-
ists as a key-value pair within .gitmodules. For convenience, an existing datalad-id record is
made available under the shortened name id. In all likelihood, the list of available placeholders
will be expanded in the future. Do you have a usecase and need a specific placeholder? Reach
out to us406, we may be able to add the placeholders you need!

When could this be useful? For an example, consider how the clone candidate configuration
above did not specify a concrete dataset in the RIA store, but used the {id} placeholder, which
will expand to the subdataset’s DATASET ID upon cloning. This ensures that the clone locations
point to the same RIA store, but stay flexible and dataset-specific. You could configure a specific
path or URL as a clone location, but this configuration is applied to all subdatasets. Thus,
whenever more than one subdataset exists in a superdataset, make sure to not provide a clone
candidate configuration to a single, particular subdataset, as this could jeopardize the clone
location of any other subdataset.

15.7 Subsample datasets using datalad copy-file

If there is a need for a dataset that contains only a subset of files of one or more other dataset,
it can be helpful to create subsamples special-purpose datasets with the datalad copy-file
command (datalad-copy-file manual). This command is capable of transferring files from
different datasets or locations outside of a dataset into a new dataset, unlocking them if nec-
essary, and preserving and copying their availability information. As such, the command is a
superior, albeit more technical alternative to copying dereferenced files out of datasets (page 486).

Version requirement for datalad copy-file

datalad copy-file requires DataLad version 0.13.0 or higher.

This section demonstrates the command based on a published data, a subset of the Human
Connectome Project dataset that is subsampled for structural connectivity analysis. This dataset
can be found on GitHub at github.com/datalad-datasets/hcp-structural-connectivity410.

Copy-file in action with the HCP dataset

Consider a real-life example: A large number of scientists use the human connectome project
(HCP) dataset411 for structural connectivity analyses412. This dataset contains data from more
than 1000 subjects, and exceeds 80 million files. As such, as explained in more detail in the
chapter Go big or go home (page 323), it is split up into a hierarchy of roughly 4500 sub-
datasets415. The installation of all subdatasets takes around 90 minutes, if parallelized, and a

406 https://github.com/datalad/datalad/issues/new
410 https://github.com/datalad-datasets/hcp-structural-connectivity
411 https://github.com/datalad-datasets/human-connectome-project-openaccess
412 https://en.wikipedia.org/wiki/Brain_connectivity_estimators
415 You can read about the human connectome dataset in the usecase Scaling up: Managing 80TB and 15 million files

from the HCP release (page 433).

15.7. Subsample datasets using datalad copy-file 313

https://github.com/datalad/datalad/issues/new
https://github.com/datalad/datalad/issues/new
https://github.com/datalad-datasets/hcp-structural-connectivity
https://github.com/datalad-datasets/human-connectome-project-openaccess
https://github.com/datalad-datasets/human-connectome-project-openaccess
https://en.wikipedia.org/wiki/Brain_connectivity_estimators

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

complete night if performed serially. However, for a structural connectivity analysis, only eleven
files per subject are relevant:

- <sub>/T1w/Diffusion/nodif_brain_mask.nii.gz
- <sub>/T1w/Diffusion/bvecs
- <sub>/T1w/Diffusion/bvals
- <sub>/T1w/Diffusion/data.nii.gz
- <sub>/T1w/Diffusion/grad_dev.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_BIAS_32CH.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_AFI.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_BIAS_BC.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_FieldMap_Magnitude.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_FieldMap_Phase.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_T1w_MPR1.nii.gz

In order to spare others the time and effort to install thousands of subdatasets, a one-time effort
can create and publish a subsampled, single dataset of those files using the datalad copy-file
command.

datalad copy-file is able to copy files with their availability metadata into other datasets.
The content of the files does not need to be retrieved in order to do this. Because the subset
of relevant files is small, all structural connectivity related files can be copied into a single
dataset. This speeds up the installation time significantly, and reduces the confusion that the
concept of subdatasets can bring to DataLad novices. The result is a dataset with a subset of
files (following the original directory structure of the HCP dataset), created reproducibly with
complete provenance capture. Access to the files inside of the subsampled dataset works via
valid AWS credentials just as it does for the full dataset415.

The Basics of copy-file

This short demonstration gives an overview of the functionality of datalad copy-file - Feel
free to follow along by copy-pasting the commands into your terminal. Let’s start by cloning a
dataset to work with:

$ datalad clone https://github.com/datalad-datasets/human-connectome-project-openaccess.
→˓git hcp
[INFO] Cloning dataset to Dataset(/home/me/dl-101/HPC/hcp)
[INFO] Attempting to clone from https://github.com/datalad-datasets/human-connectome-
→˓project-openaccess.git to /home/me/dl-101/HPC/hcp
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/HPC/hcp)
install(ok): /home/me/dl-101/HPC/hcp (dataset)

In order to use copy-file, we need to install a few subdatasets, and thus install 9 subject
subdatasets recursively. Note that we don’t retrieve any data, using -n/--no-data. (The output
of this command is omitted – it is quite lengthy as 36 subdatasets are being installed)

$ cd hcp
$ datalad get -n -r HCP1200/130*
[INFO] Cloning dataset to Dataset(/home/me/dl-101/HPC/hcp/HCP1200/130013)

314 Chapter 15. Advanced options

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Afterwards, we can create a new dataset to copy any files into. This dataset will later hold the
relevant subset of the data in the HCP dataset.

$ cd ..
$ datalad create dataset-to-copy-to
[INFO] Creating a new annex repo at /home/me/dl-101/HPC/dataset-to-copy-to
[INFO] scanning for unlocked files (this may take some time)
create(ok): /home/me/dl-101/HPC/dataset-to-copy-to (dataset)

With the prerequisites set up, we can start to copy files. The command datalad copy-file works
as follows: By providing a path to a file to be copied (which can be annex’ed, not annex’ed, or
not version-controlled at all) and either a second path (the destination path), a target directory
inside of a dataset, or a dataset specification, datalad copy-file copies the file and all of its
availability metadata into the specified dataset. Let’s copy a single file (hcp/HCP1200/130013/
T1w/Diffusion/bvals) from the hcp dataset into dataset-to-copy-to:

$ datalad copy-file \
hcp/HCP1200/130013/T1w/Diffusion/bvals \
-d dataset-to-copy-to

copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130013/T1w/Diffusion/bvals [/home/me/dl-
→˓101/HPC/dataset-to-copy-to/bvals]
save(ok): . (dataset)
action summary:
copy_file (ok: 1)
save (ok: 1)

When the -d/--dataset argument is provided instead of a target directory or a destination
path, the copied file will be saved in the new dataset. If a target directory or a destination path
is given for a file, however, the copied file will be not be saved:

$ datalad copy-file \
hcp/HCP1200/130013/T1w/Diffusion/bvecs \
-t dataset-to-copy-to

copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130013/T1w/Diffusion/bvecs [/home/me/dl-
→˓101/HPC/dataset-to-copy-to/bvecs]

Note that instead of a as dataset, we specify it as a target path, and how the file is added, but
not saved afterwards:

$ cd dataset-to-copy-to
$ datalad status

added: bvecs (file)

Providing a second path as a destination path allows one to copy the file under a different name,
but it will also not save the new file in the destination dataset unless -d/--dataset is specified
as well:

$ datalad copy-file \
hcp/HCP1200/130013/T1w/Diffusion/bvecs \
dataset-to-copy-to/anothercopyofbvecs

copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130013/T1w/Diffusion/bvecs [/home/me/dl-
→˓101/HPC/dataset-to-copy-to/anothercopyofbvecs]

$ cd dataset-to-copy-to
$ datalad status

(continues on next page)

15.7. Subsample datasets using datalad copy-file 315

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

added: anothercopyofbvecs (file)
added: bvecs (file)

Those were the minimal basics of the command syntax - the original location, a specification
where the file should be copied to, and an indication if the file should be saved or not. Let’s
save those two unsaved files:

$ datalad save
save(ok): . (dataset)

With the -r/--recursive flag enabled, the command can copy complete subdirectory (not sub-
dataset!) hierarchies – Let’s copy a complete directory, and save it in its target dataset:

$ cd ..
$ datalad copy-file hcp/HCP1200/130114/T1w/Diffusion/* \
-r \
-d dataset-to-copy-to \
-t dataset-to-copy-to/130114/T1w/Diffusion
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/bvals [/home/me/dl-
→˓101/HPC/dataset-to-copy-to/130114/T1w/Diffusion/bvals]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/bvecs [/home/me/dl-
→˓101/HPC/dataset-to-copy-to/130114/T1w/Diffusion/bvecs]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/data.nii.gz [/home/me/
→˓dl-101/HPC/dataset-to-copy-to/130114/T1w/Diffusion/data.nii.gz]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/eddylogs/eddy_
→˓unwarped_images.eddy_parameters [/home/me/dl-101/HPC/dataset-to-copy-to/130114/T1w/
→˓Diffusion/eddylogs/eddy_unwarped_images.eddy_parameters]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/eddylogs/eddy_
→˓unwarped_images.eddy_outlier_n_stdev_map [/home/me/dl-101/HPC/dataset-to-copy-to/130114/
→˓T1w/Diffusion/eddylogs/eddy_unwarped_images.eddy_outlier_n_stdev_map]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/eddylogs/eddy_
→˓unwarped_images.eddy_outlier_map [/home/me/dl-101/HPC/dataset-to-copy-to/130114/T1w/
→˓Diffusion/eddylogs/eddy_unwarped_images.eddy_outlier_map]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/eddylogs/eddy_
→˓unwarped_images.eddy_outlier_n_sqr_stdev_map [/home/me/dl-101/HPC/dataset-to-copy-to/
→˓130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.eddy_outlier_n_sqr_stdev_map]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/eddylogs/eddy_
→˓unwarped_images.eddy_post_eddy_shell_alignment_parameters [/home/me/dl-101/HPC/dataset-
→˓to-copy-to/130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.eddy_post_eddy_shell_
→˓alignment_parameters]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/eddylogs/eddy_
→˓unwarped_images.eddy_outlier_report [/home/me/dl-101/HPC/dataset-to-copy-to/130114/T1w/
→˓Diffusion/eddylogs/eddy_unwarped_images.eddy_outlier_report]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/eddylogs/eddy_
→˓unwarped_images.eddy_movement_rms [/home/me/dl-101/HPC/dataset-to-copy-to/130114/T1w/
→˓Diffusion/eddylogs/eddy_unwarped_images.eddy_movement_rms]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/eddylogs/eddy_
→˓unwarped_images.eddy_restricted_movement_rms [/home/me/dl-101/HPC/dataset-to-copy-to/
→˓130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.eddy_restricted_movement_rms]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/grad_dev.nii.gz [/
→˓home/me/dl-101/HPC/dataset-to-copy-to/130114/T1w/Diffusion/grad_dev.nii.gz]
copy_file(ok): /home/me/dl-101/HPC/hcp/HCP1200/130114/T1w/Diffusion/nodif_brain_mask.nii.
→˓gz [/home/me/dl-101/HPC/dataset-to-copy-to/130114/T1w/Diffusion/nodif_brain_mask.nii.gz]
save(ok): . (dataset)
action summary:

(continues on next page)

316 Chapter 15. Advanced options

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

copy_file (ok: 13)
save (ok: 1)

Here is how the dataset that we copied files into looks like at the moment:

$ tree dataset-to-copy-to
dataset-to-copy-to

130114
T1w

Diffusion
bvals -> ../../../.git/annex/objects/w8/VX/MD5E-s1344--

→˓4c9ca43cc986f388bcf716b4ba7321cc/MD5E-s1344--4c9ca43cc986f388bcf716b4ba7321cc
bvecs -> ../../../.git/annex/objects/61/80/MD5E-s9507--

→˓24793fb936e9e18419325af9b6152458/MD5E-s9507--24793fb936e9e18419325af9b6152458
data.nii.gz -> ../../../.git/annex/objects/K0/mJ/MD5E-s1468805393--

→˓f8077751ddc2802a853d1199ff762a00.nii.gz/MD5E-s1468805393--
→˓f8077751ddc2802a853d1199ff762a00.nii.gz

eddylogs
eddy_unwarped_images.eddy_movement_rms -> ../../../../.git/annex/

→˓objects/xX/GF/MD5E-s15991--287c3e06ece5b883a862f79c478b7b69/MD5E-s15991--
→˓287c3e06ece5b883a862f79c478b7b69

eddy_unwarped_images.eddy_outlier_map -> ../../../../.git/annex/
→˓objects/87/Xx/MD5E-s127363--919aed21eb51a77ca499cdc0a5560592/MD5E-s127363--
→˓919aed21eb51a77ca499cdc0a5560592

eddy_unwarped_images.eddy_outlier_n_sqr_stdev_map -> ../../../../.git/
→˓annex/objects/PP/GX/MD5E-s523738--1bd90e1e7a86b35695d8039599835435/MD5E-s523738--
→˓1bd90e1e7a86b35695d8039599835435

eddy_unwarped_images.eddy_outlier_n_stdev_map -> ../../../../.git/
→˓annex/objects/qv/0F/MD5E-s520714--f995a46ec8ddaa5c7b33d71635844609/MD5E-s520714--
→˓f995a46ec8ddaa5c7b33d71635844609

eddy_unwarped_images.eddy_outlier_report -> ../../../../.git/annex/
→˓objects/Xq/xV/MD5E-s10177--2934d2c7b316b86cde6d6d938bb3da37/MD5E-s10177--
→˓2934d2c7b316b86cde6d6d938bb3da37

eddy_unwarped_images.eddy_parameters -> ../../../../.git/annex/
→˓objects/60/gf/MD5E-s141201--9a94e9fa805446ddb5ff8f76207fc1d2/MD5E-s141201--
→˓9a94e9fa805446ddb5ff8f76207fc1d2

eddy_unwarped_images.eddy_post_eddy_shell_alignment_parameters -> ../.
→˓./../../.git/annex/objects/kJ/0W/MD5E-s2171--c2e0deca2a5e84d119002032d87cd762/MD5E-
→˓s2171--c2e0deca2a5e84d119002032d87cd762

eddy_unwarped_images.eddy_restricted_movement_rms -> ../../../../.git/
→˓annex/objects/6K/X6/MD5E-s16134--5321d11df307f8452c8a5e92647ec73a/MD5E-s16134--
→˓5321d11df307f8452c8a5e92647ec73a

grad_dev.nii.gz -> ../../../.git/annex/objects/zz/51/MD5E-s46820650--
→˓13be960cd99e48e21e25635d1390c1c5.nii.gz/MD5E-s46820650--
→˓13be960cd99e48e21e25635d1390c1c5.nii.gz

nodif_brain_mask.nii.gz -> ../../../.git/annex/objects/0Q/Kk/MD5E-s67280--
→˓9042713a11d557df58307ba85d51285a.nii.gz/MD5E-s67280--9042713a11d557df58307ba85d51285a.
→˓nii.gz

anothercopyofbvecs -> .git/annex/objects/X0/Vg/MD5E-s9507--
→˓f4cf263de8c3fb11f739467bf15e80ec/MD5E-s9507--f4cf263de8c3fb11f739467bf15e80ec

bvals -> .git/annex/objects/Fj/Wg/MD5E-s1344--843688799692be0ab485fe746e0f9241/MD5E-
→˓s1344--843688799692be0ab485fe746e0f9241

bvecs -> .git/annex/objects/X0/Vg/MD5E-s9507--f4cf263de8c3fb11f739467bf15e80ec/MD5E-
→˓s9507--f4cf263de8c3fb11f739467bf15e80ec

4 directories, 16 files

15.7. Subsample datasets using datalad copy-file 317

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Importantly, all of the copied files had yet unretrieved contents. The copy-file process, however,
also copied the files’ availability metadata to their new location. Retrieving file contents works
just as it would in the full HCP dataset via datalad get (the authentication step is omitted in
the output below):

$ cd dataset-to-copy-to
$ datalad get bvals anothercopyofbvecs 130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.
→˓eddy_parameters
get(ok): bvals (file) [from datalad...]
get(ok): anothercopyofbvecs (file) [from datalad...]
get(ok): 130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.eddy_parameters (file) [from␣
→˓datalad...]
action summary:
get (ok: 3)

What’s especially helpful for automation of this operation is that copy-file can take source and
(optionally) destination paths from a file or from STDIN with the option --specs-from <source>.
In the case of specifications from a file, <source> is a path to this file.

In order to use stdin for specification, such as the output of a find command that is piped
into datalad copy-file with a Unix pipe (|)413, <source> needs to be a dash (-). Below is an
example find command:

$ cd hcp
$ find HCP1200/130013/T1w/ -maxdepth 1 -name T1w*.nii.gz
HCP1200/130013/T1w/T1w_acpc_dc.nii.gz
HCP1200/130013/T1w/T1w_acpc_dc_restore_1.25.nii.gz
HCP1200/130013/T1w/T1wDividedByT2w.nii.gz
HCP1200/130013/T1w/T1wDividedByT2w_ribbon.nii.gz
HCP1200/130013/T1w/T1w_acpc_dc_restore_brain.nii.gz
HCP1200/130013/T1w/T1w_acpc_dc_restore.nii.gz

This uses find to get a list of all files matching the specified pattern in the specified directory.
And here is how the outputted paths can be given as source paths to datalad copy-file, copying
all of the found files into a new dataset:

inside of hcp
$ find HCP1200/130013/T1w/ -maxdepth 1 -name T1w*.nii.gz \

| datalad copy-file -d ../dataset-to-copy-to --specs-from -
copy_file(ok): HCP1200/130013/T1w/T1w_acpc_dc.nii.gz [/home/me/dl-101/HPC/dataset-to-copy-
→˓to/T1w_acpc_dc.nii.gz]
copy_file(ok): HCP1200/130013/T1w/T1w_acpc_dc_restore_1.25.nii.gz [/home/me/dl-101/HPC/
→˓dataset-to-copy-to/T1w_acpc_dc_restore_1.25.nii.gz]
copy_file(ok): HCP1200/130013/T1w/T1wDividedByT2w.nii.gz [/home/me/dl-101/HPC/dataset-to-
→˓copy-to/T1wDividedByT2w.nii.gz]
copy_file(ok): HCP1200/130013/T1w/T1wDividedByT2w_ribbon.nii.gz [/home/me/dl-101/HPC/
→˓dataset-to-copy-to/T1wDividedByT2w_ribbon.nii.gz]
copy_file(ok): HCP1200/130013/T1w/T1w_acpc_dc_restore_brain.nii.gz [/home/me/dl-101/HPC/
→˓dataset-to-copy-to/T1w_acpc_dc_restore_brain.nii.gz]
copy_file(ok): HCP1200/130013/T1w/T1w_acpc_dc_restore.nii.gz [/home/me/dl-101/HPC/dataset-
→˓to-copy-to/T1w_acpc_dc_restore.nii.gz]
save(ok): . (dataset)
action summary:
copy_file (ok: 6)
save (ok: 1)

413 https://en.wikipedia.org/wiki/Pipeline_(Unix)

318 Chapter 15. Advanced options

https://en.wikipedia.org/wiki/Pipeline_(Unix)

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

To preserve the directory structure, a target directory (-t ../dataset-to-copy-to/130013/T1w/
) or a destination path could be given, because the above command copied all files into the root
of dataset-to-copy-to:

$ ls ../dataset-to-copy-to
130114
anothercopyofbvecs
bvals
bvecs
T1w_acpc_dc.nii.gz
T1w_acpc_dc_restore_1.25.nii.gz
T1w_acpc_dc_restore_brain.nii.gz
T1w_acpc_dc_restore.nii.gz
T1wDividedByT2w.nii.gz
T1wDividedByT2w_ribbon.nii.gz

With this trick, you can use simple search commands to assemble a list of files as a <source>
for copy-file: simply create a file or a command like find that specifies tho relevant files or
directories line-wise. --specs-from can take information on both <source> and <destination>,
though.

Specify files with source AND destination paths for –specs-from

Specifying source and destination paths comes with a twist: Source and destination paths need
to go into the same line, but need to be separated by a nullbyte414. This is not a straightforward
concept, but trying it out and seeing it in action will help.

One way it can be done is by using the stream editor SED. Here is how to pipe source AND
destination paths into datalad copy-file:

$ find HCP1200/130518/T1w/ -maxdepth 1 -name T1w*.nii.gz \
| sed -e 's#\(HCP1200\)\(.*\)#\1\2\x0../dataset-to-copy-to\2#' \
| datalad copy-file -d ../dataset-to-clone-to -r --specs-from -

As always, the regular expressions used for sed are a bit hard to grasp upon first sight. Here is
what this command does:

• In general, SED’s s (substitute) command will take a string specified between the first set
of #’s (\(HCP1200\)\(.*\)) and replace it with what is between the second and third #
(\1\2\x0\2).

• The first part splits the paths find returns (such as HCP1200/130518/T1w/T1w_acpc_dc.
nii.gz) into two groups:

– The start of the path (HCP1200), and

– the remaining path (/130518/T1w/T1w_acpc_dc.nii.gz).

– The second part then prints the first and the second group (\1\2, the source path),
a nullbyte (\x0), and a relative path to the destination dataset together with the
second group only (../dataset-to-copy-to\2, the destination path).

Here is how an output of find piped into sed looks like:

$ find HCP1200/130518/T1w -maxdepth 1 -name T1w*.nii.gz \

414 https://en.wikipedia.org/wiki/Null_character

15.7. Subsample datasets using datalad copy-file 319

https://en.wikipedia.org/wiki/Null_character

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

| sed -e 's#\(HCP1200\)\(.*\)#\1\2\x0../dataset-to-copy-to\2#'
HCP1200/130518/T1w/T1w_acpc_dc.nii.gz../dataset-to-copy-to/130518/T1w/T1w_acpc_dc.
→˓nii.gz
HCP1200/130518/T1w/T1w_acpc_dc_restore_1.25.nii.gz../dataset-to-copy-to/130518/
→˓T1w/T1w_acpc_dc_restore_1.25.nii.gz
HCP1200/130518/T1w/T1wDividedByT2w.nii.gz../dataset-to-copy-to/130518/T1w/
→˓T1wDividedByT2w.nii.gz
HCP1200/130518/T1w/T1wDividedByT2w_ribbon.nii.gz../dataset-to-copy-to/130518/T1w/
→˓T1wDividedByT2w_ribbon.nii.gz
HCP1200/130518/T1w/T1w_acpc_dc_restore_brain.nii.gz../dataset-to-copy-to/130518/
→˓T1w/T1w_acpc_dc_restore_brain.nii.gz
HCP1200/130518/T1w/T1w_acpc_dc_restore.nii.gz../dataset-to-copy-to/130518/T1w/T1w_
→˓acpc_dc_restore.nii.gz
HCP1200/130518/T1w/T1w_acpc_dc_restore_1.05.nii.gz../dataset-to-copy-to/130518/
→˓T1w/T1w_acpc_dc_restore_1.05.nii.gz

Note how the nullbyte is not visible to the naked eye in the output. To visualize it, you could
redirect this output into a file and open it with an editor like VIM. Let’s now see a copy-file
from STDIN in action:

$ find HCP1200/130518/T1w -maxdepth 1 -name T1w*.nii.gz \
| sed -e 's#\(HCP1200\)\(.*\)#\1\2\x0../dataset-to-copy-to\2#' \
| datalad copy-file -d ../dataset-to-copy-to -r --specs-from -
copy_file(ok): HCP1200/130518/T1w/T1w_acpc_dc.nii.gz [/home/me/dl-101/HPC/dataset-to-copy-
→˓to/130518/T1w/T1w_acpc_dc.nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1w_acpc_dc_restore_1.25.nii.gz [/home/me/dl-101/HPC/
→˓dataset-to-copy-to/130518/T1w/T1w_acpc_dc_restore_1.25.nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1wDividedByT2w.nii.gz [/home/me/dl-101/HPC/dataset-to-
→˓copy-to/130518/T1w/T1wDividedByT2w.nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1wDividedByT2w_ribbon.nii.gz [/home/me/dl-101/HPC/
→˓dataset-to-copy-to/130518/T1w/T1wDividedByT2w_ribbon.nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1w_acpc_dc_restore_brain.nii.gz [/home/me/dl-101/HPC/
→˓dataset-to-copy-to/130518/T1w/T1w_acpc_dc_restore_brain.nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1w_acpc_dc_restore.nii.gz [/home/me/dl-101/HPC/dataset-
→˓to-copy-to/130518/T1w/T1w_acpc_dc_restore.nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1w_acpc_dc_restore_1.05.nii.gz [/home/me/dl-101/HPC/
→˓dataset-to-copy-to/130518/T1w/T1w_acpc_dc_restore_1.05.nii.gz]
save(ok): . (dataset)
action summary:
copy_file (ok: 7)
save (ok: 1)

Done! A complex looking command with regular expressions and unix pipes, but it does pow-
erful things in only a single line.

Copying reproducibly

To capture the provenance of subsampled dataset creation, the copy-file command can be
wrapped into a datalad run call. Here is a sketch how it was done in the structural connectivity
subdataset:

Step 1: Create a dataset

320 Chapter 15. Advanced options

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad create hcp-structural-connectivity

Step 2: Install the full dataset as a subdataset

$ datalad clone -d . \
https://github.com/datalad-datasets/human-connectome-project-openaccess.git \
.hcp

Step 3: Install all subdataset of the full dataset with datalad get -n -r

Step 4: Inside of the new dataset, draft a find command that returns all 11 desired files, and a
subsequent sed substitution command that returns a nullbyte separated source and destination
path. For this subsampled dataset, this one would work:

$ find .hcp/HCP1200 -maxdepth 5 -path '*/unprocessed/3T/T1w_MPR1/*' -name '*' \
-o -path '*/T1w/Diffusion/*' -name 'b*' \
-o -path '*/T1w/Diffusion/*' -name '*.nii.gz' \
| sed -e 's#\(\.hcp/HCP1200\)\(.*\)#\1\2\x00.\2#' \

Step 5: Pipe the results into datalad copy-file, and wrap everything into a datalad run. Note
that -d/--dataset is not specified for copy-file – this way, datalad run will save everything
in one go at the end.

$ datalad run \
-m "Assemble HCP dataset subset for structural connectivity data. \

Specifically, these are the files:

- T1w/Diffusion/nodif_brain_mask.nii.gz
- T1w/Diffusion/bvecs
- T1w/Diffusion/bvals
- T1w/Diffusion/data.nii.gz
- T1w/Diffusion/grad_dev.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_BIAS_32CH.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_AFI.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_BIAS_BC.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_FieldMap_Magnitude.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_FieldMap_Phase.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_T1w_MPR1.nii.gz

for each participant. The structure of the directory tree and file names
are kept identical to the full HCP dataset." \
"find .hcp/HCP1200 -maxdepth 5 -path '*/unprocessed/3T/T1w_MPR1/*' -name '*' \
-o -path '*/T1w/Diffusion/*' -name 'b*' \
-o -path '*/T1w/Diffusion/*' -name '*.nii.gz' \

| sed -e 's#\(\.hcp/HCP1200\)\(.*\)#\1\2\x00.\2#' \
| datalad copy-file -r --specs-from -"

Step 6: Publish the dataset to GITHUB or similar hosting services to allow others to clone it
easily and get fast access to a relevant subset of files.

Afterwards, the slimmed down structural connectivity dataset can be installed completely within
seconds. Because of the reduced amount of files it contains, it is easier to transform the data into
BIDS format. Such a conversion can be done on a different BRANCH of the dataset. If you have
published your subsampled dataset into a RIA store, as it was done with this specific subset, a
single command can clone a BIDS-ified, slimmed down HCP dataset for structural connectivity

15.7. Subsample datasets using datalad copy-file 321

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

analyses because RIA stores allow cloning of datasets in specific versions (such as a branch or
tag as an identifier):

$ datalad clone ria+http://store.datalad.org#~hcp-structural-connectivity@bids

Summary

datalad copy-file is a useful command to create datasets from content of other datasets.
Although it requires some Unix-y command line magic, it can be automated for larger tasks,
and, when combined with a datalad run, produce suitable provenance records of where files
have been copied from.

322 Chapter 15. Advanced options

CHAPTER

SIXTEEN

GO BIG OR GO HOME

16.1 Going big with DataLad

All chapters throughout the Basics demonstrated “household quantity” examples. Version con-
trolling or analyzing data in datasets with a total size of up to a few hundred GB, with some
tens of thousands of files at maximum? Usually, this should work fine. If you want to go beyond
this scale, however, you should read this section to learn how to properly scale up. As a general
rule, consider this section relevant once you have a usecase in which you would go substantially
beyond 100k files in a single dataset.

The contents of this chapter exist thanks to some pioneers that took a leap and deep-dived into
gigantic data management challenges. You can read up on some of them in the usecases Scaling
up: Managing 80TB and 15 million files from the HCP release (page 433) and Building a scalable
data storage for scientific computing (page 443). Based on what we have learned so far from
these endeavors, this chapter encompasses principles, advice, and points of reference.

The introduction in this section illustrates the basic caveats when scaling up, and points to
benchmarks, rules of thumb, and general solutions. Upcoming sections demonstrate how one
can attempt large-scale analyses with DataLad, and how to fix things up when dataset sizes
got out of hand. The upcoming chapter Computing on clusters (page 331), finally, extends this
chapter with advice and examples from large scale analyses on computational clusters.

323

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Why scaling up Git repos can become difficult

You already know that GIT does not scale well with large files. As a Git repository stores every
version of every file that is added to it, large files that undergo regular modifications can inflate
the size of a·project significantly. Depending on how many large files are added to a pure Git
repository, this can not only have a devastating impact on the time it takes to clone, fetch, or pull
(from) a repository, but also on regular within-repository operations, such as checking the state
of the repository or switching branches. Using GIT-ANNEX (either directly, or by using DataLad)
can eliminate this issue, but there is a second factor that can prevent scaling up with Git: The
number of files. One reason for this is that Git performs a large amount of stat system calls416

(used in git add and git commit). Repositories can thus suffer greatly if they are swamped
with files424.

Given that DataLad builds up on Git, having datasets with large amounts of files can lead to
painfully slow operations417. As a general rule of thumb, we will consider single datasets with
100k files or more as “big” for the rest of this chapter. Starting at about this size we can begin to
see performance issues in datasets. Bench marking in DataLad datasets with varying, but large
amounts of tiny files on different file systems and different git-annex repository versions show
that a mere datalad save or datalad status command can take from 15 minutes up to several
hours. Its neither fun nor feasible to work with performance drops like this – so how can this
be avoided?

General advice: Use several subdatasets

The general set-up for publishing or version controlling data in a scalable way is to make use
of subdatasets. Instead of a single dataset with 1 million files, have 20, for example, with
50.000 files each, and link them as subdataset. This will split the amount of files that need to
be handled across several datasets, and, at the same time, it also alleviates strain on the file
system that would arise if large amounts of files are kept in single directories.

How would that look like for a large scale dataset? In the use case Scaling up: Managing
80TB and 15 million files from the HCP release (page 433), 80 million files with neuroscientific
data from about 1200 participants are split into roughly 4500 subdatasets based on directory
structure. Each participant directory is a subdataset, and it contains several more subdatasets,
depending on how much data modalities are available. A similar approach was chosen for the
Datalad UKbiobank extension418 that can enable to obtain and version control imaging releases
of the up to 100000 participants of the UKbiobank project419.

“But why use DataLad for this?” In principle, using many instead of a single repository/dataset
for large amounts of files is a measure that can be implemented with any of the tools involved,
be it Git, git-annex, or DataLad. What makes using DataLad well-suited for such a scaling
approach and distinguishes it from Git and git-annex, is that it is way easier to link datasets and

416 https://en.wikipedia.org/wiki/Stat_(system_call)
424 For example: A Git repository with more than a million (albeit tiny) files takes hours and hours to merely

create425, if standard Git workflows are used. This post426 contains an entertaining description of what happens
if one attempts to create a Git repository with 6.5 million files – up to the point when some Git commands stop
working.

425 https://www.monperrus.net/martin/one-million-files-on-git-and-github
426 https://breckyunits.com/building-a-treebase-with-6-point-5-million-files.html
417 https://github.com/datalad/datalad/issues/3869
418 https://github.com/datalad/datalad-ukbiobank
419 https://www.ukbiobank.ac.uk/

324 Chapter 16. Go big or go home

https://en.wikipedia.org/wiki/Stat_(system_call)
https://github.com/datalad/datalad/issues/3869
https://github.com/datalad/datalad-ukbiobank
https://www.ukbiobank.ac.uk/
https://www.monperrus.net/martin/one-million-files-on-git-and-github
https://www.monperrus.net/martin/one-million-files-on-git-and-github
https://breckyunits.com/building-a-treebase-with-6-point-5-million-files.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

to operate across subdataset boundaries recursively with the nesting capabilities427 of DataLad.
Git provides functionality for nested repositories (so-called submodules, also used by DataLad
underneath the hood), but the workflows are by far not as smooth. For a direct comparison
between working with nested datasets and nested Git repositories, take a look at this demo420.

How far does this scale? In preparation for assembling a complete UKBiobank dataset, simu-
lations of datasets with 40k and 100k subdatasets ran successfully.

M16.1 How do simulations like this work?

With shell scripts such as this:

#!/bin/bash
set -x

build a dummy subdataset to be referenced 40k times:
datalad create dummy_sub
echo "whatever" > dummy_sub/some_file
datalad save -d dummy_sub

sub_id=$(datalad -f "{infos[dataset][id]}" wtf -d dummy_sub)
sub_commit=$(git -C dummy_sub show --no-patch --format=%H)

the actual super dataset and use some config procedure to get
an initial history
datalad create -c yoda dummy_super_40k

cd dummy_super_40k

for ((i=1;i<=100000;i++)); do
git config -f .gitmodules "submodule.sub$i.path" "sub$i";
git config -f .gitmodules "submodule.sub$i.url" ../dummy_sub;
git config -f .gitmodules "submodule.sub$i.datalad-id" "$sub_id";
git update-index --add --replace --cacheinfo 160000 "$sub_commit" "sub$i";

done;

git add .gitmodules
git commit -m "Add submodules"

Note that this way of simulating subdatasets is speedier and simplified, because instead
of cloning subdatasets, it makes use of Git’s update-index421 command and records the
subdatasets by committing manual changes to .gitmodules.
421 https://git-scm.com/docs/git-update-index

Do note, however, that these numbers of subdatasets may well exhaust your file system’s subdi-
rectory limit (commonly at 64k).

427 To reread on nesting DataLad datasets, check out sections Dataset nesting (page 53) and More on Dataset nesting
(page 164)

420 https://youtu.be/Yrg6DgOcbPE?t=350

16.1. Going big with DataLad 325

https://youtu.be/Yrg6DgOcbPE?t=350
https://git-scm.com/docs/git-update-index

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Tool-specific and smaller advice

• If you are interested in up-to-date performance benchmarks, take a look at
www.datalad.org/test_fs_analysis.html422. This can help to set expectations and give use-
ful comparisons of file systems or software versions.

• git-annex offers a range of tricks to further improve performance in large datasets. For
example, it may be useful to not use a standalone git-annex build, but a native git-annex
binary (see this comment423)

• Status reports in datasets with large amounts of files and/or subdatasets can be expensive.
Check out the Gist Speed up status reports in large datasets (page 276) for solutions.

16.2 Calculate in greater numbers

When creating and populating datasets yourself it may be easy to monitor the overall size of
the dataset and its file number, and introduce subdatasets whenever and where ever necessary.
It may not be as straightforward when you are not populating datasets yourself, but when
software or analyses scripts suddenly dump vast amounts of output. Certain analysis software
can create myriads of files. A standard FEAT analysis428,431in FSL429, for example, can easily
output several dozens of directories and up to thousands of result files per subject. Maybe your
own custom scripts are writing out many files as outputs, too. Regardless of why a lot of files
are produced by an analyses, if the analysis or software in question runs on a substantially sized
input dataset, the results may overwhelm the capacities of a single dataset.

This section demonstrates some tips on how to prevent swamping your datasets with files. If you
already accidentally got stuck with an overflowing dataset, checkout section Fixing up too-large
datasets (page 328) first.

Solution: Subdatasets

To stick to the example of FEAT, here is a quick overview on what this software does: It is
modeling neuroimaging data based on general linear modeling (GLM), and creates web page
analyses reports, color activation images, time-course plots of data and model, preprocessed
intermediate data, images with filtered data, statistical output images, color rendered output
images, log files, and many more – in short: A LOT of files. Plenty of these outputs are text-
based, but there are also many sizable files. Depending on the type of analysis, not all types of
outputs will be relevant. At the end of the analysis, one usually has session-, subject-specific, or
aggregated “group” directories with many subdirectories filled with log files, intermediate and
preprocessed files, and results for all levels of the analysis.

In such a setup, the output directories (be it on a session/run, subject, or group level) are
predictably named, or custom nameable. In order to not flood a single dataset, therefore, one
can pre-create appropriate subdatasets of the necessary granularity and have them filled by
their analyses. This approach is by no means limited to analyses with certain software, and
can be automated. For scripting languages other than Python or shell, standard system calls
422 https://www.datalad.org/test_fs_analysis.html
423 https://github.com/datalad/datalad/issues/3869#issuecomment-557598390
428 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide
431 FEAT is a software tool for model-based fMRI data analysis and part of of FSL432.
432 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
429 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

326 Chapter 16. Go big or go home

https://www.datalad.org/test_fs_analysis.html
https://github.com/datalad/datalad/issues/3869#issuecomment-557598390
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

can create output directories as DataLad subdatasets right away, Python scripts can even use
DataLad’s Python API433. Thus, you can create scripts that take care of subdataset creation, or,
if you write analysis scripts yourself, you can take care of subdataset creation right in the scripts
that are computing and saving your results.

As it is easy to link datasets and operate (e.g., save, clone) across dataset hierarchies, splitting
datasets into a hierarchy of datasets does not have many downsides. One substantial disadvan-
tage, though, is that on their own, results in subdirectories don’t have meaningful provenance
attached. The information about what script or software created them is attached to the su-
perdataset. Should only the subdataset be cloned or inspected, the information on how it was
generated is not found.

Solutions without creating subdatasets

It is also possible to scale up without going through the complexities of creating several sub-
datasets, or tuning your scaling beyond the creation of subdatasets. It involves more thought,
or compromising, though. The following section highlights a few caveats to bear in mind if
you attempt a big analyses in single-level datasets, and outlines solutions that may not need to
involve subdatasets. If you have something to add, please get in touch430.

Too many files

Caveat: Drown a dataset with too many files.

Examples: The FSL FEAT analysis mentioned in the introduction produces several 100k files,
but not all of these files are important. tsplot/, for example, is a directory that contains time
series plots for various data and results, and may be of little interested for many analyses once
general quality control is done.

Solutions:

• Don’t put irrelevant files under version control at all: Consider creating a .gitignore file
with patterns that match files or directories that are of no relevance to you. These files
will not be version controlled or saved to your dataset. Section How to hide content from
DataLad (page 282) can tell you more about this. Be mindful, though: Having too many
files in a single directory can still be problematic for your file system. A concrete exam-
ple: Consider your analyses create log files that are not precious enough to be version
controlled. Adding logs/* to your .gitignore file and saving this change will keep these
files out of version control.

• Similarly, you can instruct datalad run to save only specific directories or files by specify-
ing them with the --output option and executing the command with the --explicit flag.
This may be more suitable an approach if you know what you want to keep rather than
what is irrelevant.

Too many files in Git

Caveat: Drown Git because of configurations.
433 Read more about DataLad’s Python API in the first hidden section in YODA-compliant data analysis projects

(page 143).
430 https://github.com/datalad-handbook/book/issues/new/

16.2. Calculate in greater numbers 327

https://github.com/datalad-handbook/book/issues/new/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Example: If your dataset is configured with a configuration such as text2git or if you have
modified your .gitattributes file434 to store files below a certain size of certain types in GIT

instead of GIT-ANNEX, an excess of sudden text files can still be overwhelming in terms of total
file size. Several thousand, or tens of thousand, text files may still add up to several GB in size
even if they are each small in size.

Solutions:

• Add files to git-annex instead of Git: Consider creating custom largefile rules for di-
rectories that you generate these files in or for patterns that match file names that do
not need to be in Git. This way, these files will be put under git-annex’s version control.
A concrete example: Consider that your analyses output a few thousand text files into
all sub-*/correlations/ directories in your dataset. Appending sub-*/correlations/*
annex.largefiles=anything to .gitattributes and saving this change will store all of in
the dataset’s annex instead of in Git.

• Don’t put irrelevant files under version control at all: Consider creating a .gitignore file
with patterns that match files or directories that are of no relevance to you. These files
will not be version controlled or saved to your dataset. Section How to hide content from
DataLad (page 282) can tell you more about this. Be mindful, though: Having too many
files in a single directory can still be problematic for your file system. A concrete exam-
ple: Consider your analyses create log files that are not precious enough to be version
controlled. Adding logs/* to your .gitignore file and saving this change will keep these
files out of version control.

16.3 Fixing up too-large datasets

The previous section highlighted problems of too large monorepos and advised strategies to
them prevent them. This section introduces some strategies to clean and fix up datasets that
got out of hand size-wise. If there are use cases you would want to see discussed here or propose
solutions for, please get in touch435.

Getting contents out of Git

Let’s say you did a datalad run with an analysis that put too many files under version control
by Git, and you want to see them gone. Sticking to the FSL FEAT analysis example from earlier,
you may, for example, want to get rid of every tsplot directory, as it contains results that are
irrelevant for you.

Note that there is no way to drop the files as they are in Git instead of git-annex. Removing the
files with plain file system (rm, git rm) operation also does not shrink your dataset. The files are
snapshot and even though they don’t exist in the current state of your dataset anymore, they still
exist – and thus clutter – your datasets history. In order to really get committed files out of Git,
you need to rewrite history. And for this you need heavy machinery: git-filter-repo436,439. It is
a powerful and potentially dangerous tool to rewrite Git history. Treat this tool like a chainsaw.
434 Read up on these configurations in the chapter Tuning datasets to your needs (page 112).
435 https://github.com/datalad-handbook/book/issues/new/
436 https://github.com/newren/git-filter-repo
439 Wait, what about git filter-branch? Beyond better performance of git-filter-repo, Git also discourages the

use of filter-branch for safety reasons and points to git-filter-repo as an alternative. For more background
info, see this thread440.

440 https://lore.kernel.org/git/CABPp-BEr8LVM+yWTbi76hAq7Moe1hyp2xqxXfgVV4_teh_9skA@mail.gmail.com/

328 Chapter 16. Go big or go home

https://github.com/datalad-handbook/book/issues/new/
https://github.com/newren/git-filter-repo
https://lore.kernel.org/git/CABPp-BEr8LVM+yWTbi76hAq7Moe1hyp2xqxXfgVV4_teh_9skA@mail.gmail.com/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Very helpful for heavy duty tasks, but also life-threatening. The command git-filter-repo
<path-specification> --force will “filter-out”, i.e., remove all files but the ones specified in
<path-specification> from the datasets history. Before you use it, please make sure to read its
help page thoroughly.

M16.2 Installing git-filter-repo

git-filter-repo is not part of Git but needs to be installed separately. Its GitHub repos-
itory437 contains more and more detailed instructions, but it is possible to install via
PIP (pip install git-filter-repo), and available via standard package managers for
MacOS and some Linux distributions (mostly rpm-based ones).
437 https://github.com/newren/git-filter-repo

The general procedure you should follow is the following:

1. datalad clone the repository. This is a safeguard to protect your dataset should something
go wrong. The clone you are creating will be your new, cleaned up dataset.

2. datalad get all the dataset contents by running datalad get . in the clone.

3. git-filter-repo what you don’t want anymore (see below)

4. Run git annex unused and a subsequent git annex dropunused all to remove stale file
contents that are not referenced anymore.

5. Finally, do some aggressive garbage collection438 with git gc --aggressive

In order to get a hang on the git-filter-repo step, consider a directory structure similar to
this exemplary run-wise FEAT analysis output structure:

$ tree
sub-*/run-*_<task>-<level>.feat

custom_timing_files
logs
reg
reg_standard

reg
stats

stats
tsplot

Each of such sub-* directories contains about 3000 files, and the majority of them are irrelevant
text files in tsplot/. In order to remove them for all subjects and runs from the dataset history,
the following command can be used:

$ git-filter-repo --path-regex '^sub-[0-9]{2}/run-[0-9]{1}*.feat/tsplot/.*$' --invert-
→˓paths --force

The --path-regex and the regex expression '^sub-[0-9]{2}/run-[0-9]{1}*.feat/tsplot/.
*$'441match all file paths inside of the tsplot/ directories of all subjects and runs. The option
438 https://git-scm.com/docs/git-gc
441 Regular expressions can be a pain to comprehend if you’re not used to reading them. This one matches paths

that start with (^) sub- followed by exactly two ({2}) numbers that can be between 0 and 9 ([0-9]), followed by
/run- with exactly one ({1}) digit between 0 and 9 ([0-9]), followed by zero or more other characters (*) until
.feat/tsplot/, and ending ($) with any amount of any character (.*). Not exactly easy, but effective. One way
to practice reading regular expressions, if you’re interested in that, is by playing regex crossword442.

442 https://regexcrossword.com/

16.3. Fixing up too-large datasets 329

https://github.com/newren/git-filter-repo
https://github.com/newren/git-filter-repo
https://git-scm.com/docs/git-gc
https://regexcrossword.com/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

--invert-paths then inverts this path specification, and leads to only the files in tsplot/ to be
filtered out. Note that there are also non-regex based path specifications possible, for example
with the option --path-match or path-glob, or with a specification placed in a file. Please see
the manual of git-filter-repo for more information.

16.4 Summary

If you want to go big, DataLad is a suitable tool and can overcome shortcomings of Git and git-
annex, if used correctly. Scaling up involves some thought, and in some instances compromise,
though.

• The general mechanism that allows scaling up is nesting datasets. This process can be
done by hand or programmatically. Recursive operations ease working across a hierarchy
of datasets and create a monorepo-like experience

• Beware of accidentally placing to many (even small) files into Git’s version control in a sin-
gle dataset! .gitignore files can keep irrelevant files out of version control, the explicit
option datalad run may be helpful, and custom largefile rules in .gitattributes may be
necessary to override dataset configurations such as text2git.

• Don’t consider only the limits of version control software, but also the limits of your file
system. Too many files in single directories can become problematic even without version
control.

• If things go wrong, it’s not all lost. There are ways to clean up your dataset if it ever gets
clogged, although they are the software equivalent of a blowtorch and should be handled
with care.

Now what can I do with it?

Go big, if you want to. Distribute 80TB of files or more443, or version control large analyses
with minimized performance loss of your version control tools.

443 https://github.com/datalad/datalad-ukbiobank

330 Chapter 16. Go big or go home

../usecases/HCP_dataset.html
https://github.com/datalad/datalad-ukbiobank

CHAPTER

SEVENTEEN

COMPUTING ON CLUSTERS

17.1 DataLad on High Throughput or High Performance Compute Clus-
ters

For efficient computing of large analysis, to comply to best computing practices, or to fulfil the
requirements that responsible system administrators444 impose, users may turn to computa-
tional clusters such as HIGH-PERFORMANCE COMPUTING (HPC) or HIGH-THROUGHPUT COMPUT-
ING (HTC) infrastructure for data analysis, back-up, or storage.

This chapter is a collection of useful resources and examples that aims to help you get started
with DataLad-centric workflows on clusters. We hope to grow this chapter further, so please get
in touch445 if you want to share your use case or seek more advice.

Pointers to content in other chapters

To find out more about centralized storage solutions, you may want to checkout the usecase
Building a scalable data storage for scientific computing (page 443) or the section Remote Indexed
Archives for dataset storage and backup (page 294).
444 https://xkcd.com/705/
445 https://github.com/datalad-handbook/book/issues/new/

331

https://xkcd.com/705/
https://github.com/datalad-handbook/book/issues/new/
https://github.com/datalad-handbook/book/issues/new/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

DataLad installation on a cluster

Users of a compute cluster generally do not have administrative privileges (sudo rights) and
thus can not install software as easily as on their own, private machine. In order to get DataLad
and its underlying tools installed, you can either bribe (kindly ask) your system administra-
tor446,447or install everything for your own user only following the instructions in the para-
graph Linux-machines with no root access (e.g. HPC systems) (page 19) of the installation page
(page 10).

17.2 DataLad-centric analysis with job scheduling and parallel comput-
ing

This workflow has an update!

The workflow below is valid and working, but over many months and a few
very large scale projects we have improved it with a more flexible and scal-
able setup. Currently, this work can be found as a comprehensive tutorial and
bootstrapping script on GitHub (github.com/psychoinformatics-de/fairly-big-processing-
workflow449), and a corresponding show case implementation with fMRIprep
(github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial450). Also,
there is an accompanying preprint with more high-level descriptions of the workflow at
www.biorxiv.org/content/10.1101/2021.10.12.464122v1451. Its main advantages over
the workflow below lie in a distributed (and thus independent) setup of all involved
dataset locations; built-in support for two kinds of job schedulers (HTCondor, SLURM);
enhanced scalability (tested on 42k datasets of the UK Biobank dataset452; and use of
REMOTE INDEXED ARCHIVE (RIA) STOREs that provide support for additional security or
technical features. Its advised to use the updated workflow over the one below. In the
future, this chapter will be updated with an implementation of the updated workflow.
449 https://github.com/psychoinformatics-de/fairly-big-processing-workflow
450 https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
451 https://www.biorxiv.org/content/10.1101/2021.10.12.464122v1
452 https://www.ukbiobank.ac.uk/

There are data analyses that consist of running a handful of scripts on a handful of files. Those
analyses can be done in a couple of minutes or hours on your private computer. But there are
also analyses that are so large – either in terms of computations, or with regard to the amount of
data that they are run on – that it would takes days or even weeks to complete them. The latter
type of analyses typically requires a compute cluster, a job scheduler, and parallelization. The
question is: How can they become as reproducible and provenance tracked as the simplistic,
singular analysis that were showcased in the handbook so far, and that comfortably fitted on a
private computer?

Reading prerequisite for distributed computing

It is advised to read the previous chapter Go big or go home (page 323) prior to this one

446 https://hsto.org/getpro/habr/post_images/02e/e3b/369/02ee3b369a0326760a160004aca631dc.jpg
447 You may not need to bribe your system administrator if you are kind to them. Consider frequent gestures of

appreciation, or send a geeky T-Shirt for SysAdminDay448 (the last Friday in July) – Sysadmins do amazing work!
448 https://en.wikipedia.org/wiki/System_Administrator_Appreciation_Day

332 Chapter 17. Computing on clusters

https://hsto.org/getpro/habr/post_images/02e/e3b/369/02ee3b369a0326760a160004aca631dc.jpg
https://hsto.org/getpro/habr/post_images/02e/e3b/369/02ee3b369a0326760a160004aca631dc.jpg
https://github.com/psychoinformatics-de/fairly-big-processing-workflow
https://github.com/psychoinformatics-de/fairly-big-processing-workflow
https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
https://www.biorxiv.org/content/10.1101/2021.10.12.464122v1
https://www.ukbiobank.ac.uk/
https://en.wikipedia.org/wiki/System_Administrator_Appreciation_Day

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

This section is a write-up of how DataLad can be used on a scientific computational cluster
with a job scheduler for reproducible and FAIR data analyses at scale. It showcases the general
principles behind parallel processing of DataLad-centric workflows with containerized pipelines.
While this chapter demonstrates specific containerized pipelines and job schedulers, the general
setup is generic and could be used with any containerized pipeline and any job scheduling
system.

This section lays the groundwork to the next section, a walk-through through a real life example
of containerized fMRIprep453 preprocessing on the eNKI454 neuroimaging dataset, scheduled
with HTCondor455.

Why job scheduling?

On scientific compute clusters, job scheduling systems such as HTCondor456 or slurm457 are
used to distribute computational jobs across the available computing infrastructure and manage
the overall workload of the cluster. This allows for efficient and fair use of available resources
across a group of users, and it brings the potential for highly parallelized computations of jobs
and thus vastly faster analyses.

Consider one common way to use a job scheduler: processing all subjects of a dataset indepen-
dently and as parallel as the current workload of the compute cluster allows – instead of serially
“one after the other”. In such a setup, each subject-specific analysis becomes a single job, and
the job scheduler fits as many jobs as it can on available COMPUTE NODEs. If a large analysis can
be split into many independent jobs, using a job scheduler to run them in parallel thus yields
great performance advantages in addition to fair compute resource distribution across all users.

M17.1 How is a job scheduler used?

Depending on the job scheduler your system is using, the looks of your typical job
scheduling differ, but the general principle is the same.
Typically, a job scheduler is used non-interactively, and a job (i.e., any command or series
of commands you want run) is submitted to the scheduler. This submission starts with a
“submit” command of the given job scheduler (such as condor_submit for HTCondor or
sbatch for slurm) followed by a command, script, or batch/submit-file that contains job
definitions and (potentially) compute resource requirements.
The job scheduler takes the submitted jobs, queues them up in a central queue, and
monitors the available compute resources (i.e., COMPUTE NODEs) of the cluster. As soon
as a computational resource is free, it matches a job from the queue to the available
resource and computes the job on this node. Usually, a single submission queues up
multiple (dozens, hundreds, or thousands of) jobs. If you are interested in a tutorial for
HTCondor, checkout the INM-7 HTCondor Tutorial458.
458 https://jugit.fz-juelich.de/inm7/training/htcondor

453 https://fmriprep.readthedocs.io/
454 http://fcon_1000.projects.nitrc.org/indi/enhanced/
455 https://research.cs.wisc.edu/htcondor/
456 https://research.cs.wisc.edu/htcondor/
457 https://slurm.schedmd.com/overview.html

17.2. DataLad-centric analysis with job scheduling and parallel computing 333

https://fmriprep.readthedocs.io/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
https://research.cs.wisc.edu/htcondor/
https://research.cs.wisc.edu/htcondor/
https://slurm.schedmd.com/overview.html
https://jugit.fz-juelich.de/inm7/training/htcondor

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Where are the difficulties in parallel computing with DataLad?

In order to capture as much provenance as possible, analyses are best ran with a datalad run
or datalad containers-run command, as these commands can capture and link all relevant
components of an analysis, starting from code and results to input data and computational
environment. Tip: Make use of datalad run’s --dry-run option to craft your run-command
(see Dry-running your run call (page 78))!

But in order to compute parallel jobs with provenance capture, each individual job needs to
be wrapped in a run command, not only the submission of the jobs to the job scheduler. This
requires multiple parallel run commands on the same dataset. But: Multiple simultaneous
datalad (containers-)run invocations in the same dataset are problematic.

• Operations carried out during one run command can lead to modifications that prevent a
second, slightly later run command from being started

• The datalad save command at the end of datalad run could save modifications that
originate from a different job, leading to mis-associated provenance

• A number of concurrency issues, unwanted interactions of processes when they run simul-
taneously, can arise and lead to internal command failures

Some of these problems can be averted by invoking the (containers-)run command with the
--explicit466 flag. This doesn’t solve all of the above problems, though, and may not be
applicable to the computation at hand – for example because all jobs write to a similar file or
the result files are not known beforehand. Below, you can find a complete, largely platform
and scheduling-system agnostic containerized analysis workflow that addressed the outlined
problems.

Processing FAIRly and in parallel – General workflow

FAIR and parallel: more than one way to do it

FAIR and parallel processing requires out-of-the-box thinking, and many creative ap-
proaches can lead to success. Here is one approach that leads to a provenance-tracked,
computationally reproducible, and parallel preprocessing workflow, but many more can
work. We are eager to hear about yours459.
459 https://github.com/datalad-handbook/book/issues/new/

General setup: The overall setup consists of a data analysis with a containerized pipeline (i.e.,
a software container that performs a single or a set of analyses). Results will be aggregated into
a top-level analysis dataset while the input dataset and a “pipeline” dataset (with a configured
software container) exist as subdatasets. The analysis is carried out on a computational cluster
that uses a job scheduling system to distribute compute jobs.

The “creative” bits involved in this parallelized processing workflow boil down to the following
tricks:

• Individual jobs (for example subject-specific analyses) are computed in throw-away
dataset clones to avoid unwanted interactions between parallel jobs.

466 To re-read about datalad run’s --explicit option, take a look into the section Clean desk (page 78).

334 Chapter 17. Computing on clusters

https://github.com/datalad-handbook/book/issues/new/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• Beyond computing in job-specific, temporary locations, individual job results are also
saved into uniquely identified BRANCHes to enable simple pushing back of the results
into the target dataset.

• The jobs constitute a complete DataLad-centric workflow in the form of a simple bash
script, including dataset build-up and tear-down routines in a throw-away location, result
computation, and result publication back to the target dataset. Thus, instead of submitting
a datalad run command to the job scheduler, the job submission is a single script, and
this submission is easily adapted to various job scheduling call formats.

• Right after successful completion of all jobs, the target dataset contains as many BRANCHes
as jobs, with each branch containing the results of one job. A manual MERGE aggregates
all results into the MASTER branch of the dataset.

The keys to the success of this workflow lie in

• creating it completely job-scheduling and platform agnostic, such that the workflow can be
deployed as a subject/. . . -specific job anywhere, with any job scheduling system, and . . .

• instead of computing job results in the same dataset over all jobs, temporary clones are
created to hold individual, job-specific results, and those results are pushed back into the
target dataset in the end . . .

• while all dataset components (input data, containerized pipeline) are reusable and the
results completely provenance-tracked.

Step-by-Step

To get an idea of the general setup of parallel provenance-tracked computations, consider a
YODA-compliant (page 136) data analysis dataset. . .

$ datalad create parallel_analysis
[INFO] Creating a new annex repo at /tmp/parallel_analysis
[INFO] Scanning for unlocked files (this may take some time)
create(ok): /tmp/parallel_analysis (dataset)
$ cd parallel_analysis

. . . with input data as a subdataset . . .

$ datalad clone -d . /path/to/my/rawdata
[INFO] Scanning for unlocked files (this may take some time)
install(ok): /tmp/parallel_analysis/rawdata (dataset)
add(ok): /tmp/parallel_analysis/rawdata (file)
add(ok): /tmp/parallel_analysis/.gitmodules (file)
save(ok): /tmp/parallel_analysis (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

. . . and a dataset with a containerized pipeline (for example from the ReproNim container-
collection460,467) as another subdataset:
460 https://github.com/repronim/containers
467 The ReproNim container-collection468 is a DataLad dataset that contains a range of preconfigured containers for

neuroimaging.
468 https://github.com/repronim/containers

17.2. DataLad-centric analysis with job scheduling and parallel computing 335

https://github.com/repronim/containers
https://github.com/repronim/containers
https://github.com/repronim/containers

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad clone -d . https://github.com/ReproNim/containers.git
[INFO] Scanning for unlocked files (this may take some time)
install(ok): /tmp/parallel_analysis/containers (dataset)
add(ok): /tmp/parallel_analysis/containers (file)
add(ok): /tmp/parallel_analysis/.gitmodules (file)
save(ok): /tmp/parallel_analysis (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

M17.2 Why do I add the pipeline as a subdataset?

You could also add and configure the container using datalad containers-add to the top-
most dataset. This solution makes the container less usable, though. If you have more
than one application for a container, keeping it as a standalone dataset can guarantee
easier reuse. For an example on how to create such a dataset yourself, please checkout
the Findoutmore in Starting point: Datasets for software and input data (page 343) in the
real-life walk-through in the next section.

The analysis aims to process the rawdata with a pipeline from containers and collect the
outcomes in the toplevel parallel_analysis dataset – FAIRly and in parallel, using datalad
containers-run.

One way to conceptualize the workflow is by taking the perspective of a single compute job.
This job consists of whatever you may want to parallelize over. For an arbitrary example, say
your raw data contains continuous moisture measurements in the Arctic, taken over the course
of 10 years. Each file in your dataset contains the data of a single day. You are interested in
a daily aggregate, and are therefore parallelizing across files – each compute job will run an
analysis pipeline on one datafile.

M17.3 What are common analysis types to parallelize over?

The key to using a job scheduler and parallelization is to break down an analysis into
smaller, loosely coupled computing tasks that can be distributed across a compute cluster.
Among common analysis setups that are suitable for parallelization are computations that
can be split into several analysis that each run on one subset of the data – such as one
(or some) out of many subjects, acquisitions, or files. The large computation “preprocess
200 subjects” can be split into 200 times the job “preprocess 1 subject”, for example. In
simulation studies, a commonly parallelized task concerns analyses that need to be ran
with a range of different parameters, where each parameter configuration can constitute
one job.

What you will submit as a job with a job scheduler is not a datalad containers-run call, but a
shell script that contains all relevant data analysis steps. Using shell461 as the language for this
script is a straight-forward choice as it allows you to script the DataLad workflow just as you
would type it into your terminal. Other languages (e.g., using DataLad’s Python API (page 158)
or system calls in languages such as Matlab) would work as well, though.

Building the job:

datalad (containers-)run does not support concurrent execution in the same dataset clone.

461 https://en.wikipedia.org/wiki/Shell_script

336 Chapter 17. Computing on clusters

https://en.wikipedia.org/wiki/Shell_script

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The solution is as easy as it is stubborn: We simply create one throw-away dataset clone for
each job.

M17.4 how does one create throw-away clones?

One way to do this are EPHEMERAL CLONEs, an alternative is to make GIT-ANNEX disregard
the datasets annex completely using git annex dead here. The latter is more appropriate
for this context – we could use an ephemeral clone, but that might deposit data of failed
jobs at the origin location, if the job runs on a shared filesystem.

Using throw-away clones involves a build-up, result-push, and tear-down routine for each job. It
sounds complex and tedious, but this actually works well since datasets are by nature made for
such decentralized, collaborative workflows. We treat cluster compute nodes like contributors
to the analyses: They clone the analysis dataset hierarchy into a temporary location, run the
computation, push the results, and remove their temporary dataset again469. The complete
routine is done in a single script, which will be submitted as a job. Here, we build the general
structure of this script, piece by piece.

The compute job clones the dataset to a unique place, so that it can run a containers-run
command inside it without interfering with any other job. The first part of the script is therefore
to navigate to a unique location, and clone the analysis dataset to it.

M17.5 How can I get a unique location?

On common HTCondor setups, /tmp directories in individual jobs are a job-specific local
Filesystem that are not shared between jobs – i.e., unique locations! An alternative is to
create a unique temporary directory, e.g., with the mktemp -d command on Unix systems.

go into unique location
$ cd /tmp
clone the analysis dataset
$ datalad clone /path/to/parallel_analysis ds
$ cd ds

This dataset clone is temporary: It will exist over the course of one analysis/job only, but before
it is being purged, all of the results it computed will be pushed to the original dataset. This
requires a safe-guard: If the original dataset receives the results from the dataset clone, it
knows about the clone and its state. In order to protect the results from someone accidentally
synchronizing (updating) the dataset from its linked dataset after is has been deleted, the clone
should be created as a “trow-away clone” right from the start. By running git annex dead
here, GIT-ANNEX disregards the clone, preventing the deletion of data in the clone to affect the
original dataset.

$ git annex dead here

The datalad push to the original clone location of a dataset needs to be prepared carefully.
The job computes one result (out of of many results) and saves it, thus creating new data and
a new entry with the run-record in the dataset history. But each job is unaware of the results
and COMMITs produced by other branches. Should all jobs push back the results to the original
place (the MASTER BRANCH of the original dataset), the individual jobs would conflict with each
other or, worse, overwrite each other (if you don’t have the default push configuration of Git).

469 Clean-up routines can, in the case of common job schedulers, be taken care of by performing everything in
compute node specific /tmp directories that are wiped clean after job termination.

17.2. DataLad-centric analysis with job scheduling and parallel computing 337

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The general procedure and standard GIT workflow for collaboration, therefore, is to create a
change on a different, unique BRANCH, push this different branch, and integrate the changes
into the original master branch via a MERGE in the original dataset470.

In order to do this, prior to executing the analysis, the script will checkout a unique new branch
in the analysis dataset. The most convenient name for the branch is the Job-ID, an identifier
under which the job scheduler runs an individual job. This makes it easy to associate a result
(via its branch) with the log, error, or output files that the job scheduler produces471, and the
real-life example will demonstrate these advantages more concretely.

git checkout -b <name> creates a new branch and checks it out
$ git checkout -b "job-$JOBID"

Importantly, the $JOB-ID isn’t hardcoded into the script but it can be given to the script as an
environment or input variable at the time of job submission. The code snippet above uses a
bash ENVIRONMENT VARIABLE ($JOBID, as indicated by the all-upper-case variable name with a
leading $). It will be defined in the job submission – this is shown and explained in detail in the
respective paragraph below.

Next, its time for the containers-run command. The invocation will depend on the container
and dataset configuration (both of which are demonstrated in the real-life example in the next
section), and below, we pretend that the container invocation only needs an input file and an
output file. These input file is specified via a bash variables ($inputfile) that will be defined in
the script and provided at the time of job submission via command line argument from the job
scheduler, and the output file name is based on the input file name.

$ datalad containers-run \
-m "Computing results for $inputfile" \
--explicit \
--output "aggregate_${inputfile}" \
--input "rawdata/$inputfile" \
-n code/containers/mycontainer \
'{inputs}' '{outputs}'

After the containers-run execution in the script, the results can be pushed back to the dataset
SIBLING origin472:

$ datalad push --to origin

Pending a few yet missing safe guards against concurrency issues and the definition of job-
specific (environment) variables, such a script can be submitted to any job scheduler with iden-
tifiers for input files, output files, and a job ID as identifiers for the branch names. This workflow
sketch takes care of everything that needs to be done apart from combining all computed results
afterwards.
470 For an analogy, consider a group of software developers: Instead of adding code changes to the main BRANCH

of a repository, they develop in their own repository clones and on dedicated, individual feature branches. This
allows them to integrate their changes back into the original repository with as little conflict as possible. To find
out why a different branch is required to enable easy pushing back to the original dataset, please checkout the
explanation on pushing to non-bare repositories (page 269) in the section on How to get help (page 258).

471 Job schedulers can commonly produce log, error, and output files and it is advisable to save them for each job.
Usually, job schedulers make it convenient to save them with a job-ID as an identifier. An example of this for
HTCondor is shown in the Findoutmore in Job submission (page 347).

472 When a dataset is cloned from any location, this original location is by default known as the SIBLING/REMOTE

origin to the clone.

338 Chapter 17. Computing on clusters

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M17.6 Fine-tuning: Safe-guard concurrency issues

An important fine-tuning is missing: Cloning and pushing can still run into concurrency
issues in the case when one job clones the original dataset while another job is currently
pushing its results into this dataset. Therefore, a trick can make sure that no two clone
or push commands are executed at exactly the same time. This trick uses file locking462,
in particular the tool flock463, to prevent exactly concurrent processes. This is done
by prepending clone and push commands with flock --verbose $DSLOCKFILE, where
$DSLOCKFILE is a text file placed into .git/ at the time of job submission, provided via
environment variable (see below and the paragraph “Job submission”). This is a non-
trivial process, but luckily, you don’t need to understand file locking or flock in order to
follow along – just make sure that you copy the usage of $DSLOCKFILE in the script and
in the job submission.

462 https://en.wikipedia.org/wiki/File_locking
463 https://www.tutorialspoint.com/unix_system_calls/flock.htm

M17.7 Variable definition

There are two ways to define variables that a script can use: The first is by defining
ENVIRONMENT VARIABLEs, and passing this environment to the compute job. This can
be done in the job submission file. To set and pass down the job-ID and a lock file in
HTCondor, one can supply the following line in the job submission file:

environment = "JOBID=$(Cluster).$(Process) DSLOCKFILE=$ENV(PWD)/.git/datalad_lock"

The second way is via shell script command line arguments. Everything that is given as
a command line argument to the script can be accessed in the script in the order of their
appearance via $. A script invoked with bash myscript.sh <inputfile> <parameter>
<argument> can access inputfile with $1, parameter with $2, and <argument> with $3.
If the job scheduler takes care of iterating through input file names, the relevant input
variable for the simplistic example could thus be defined in the script as follows:

inputfile=$1

With fine tuning and variable definitions in place, the only things missing are a SHEBANG at the
top of the script, and some shell settings for robust scripting with verbose log files (set -e -u
-x). Here’s how the full general script looks like.

#!/bin/bash

fail whenever something is fishy, use -x to get verbose logfiles
set -e -u -x

we pass arbitrary arguments via job scheduler and can use them as variables
fileid=$1
...

go into unique location
cd /tmp
clone the analysis dataset. flock makes sure that this does not interfere
with another job finishing and pushing results back at the same time
flock --verbose $DSLOCKFILE datalad clone /path/to/parallel_analysis ds
cd ds

(continues on next page)

17.2. DataLad-centric analysis with job scheduling and parallel computing 339

https://en.wikipedia.org/wiki/File_locking
https://www.tutorialspoint.com/unix_system_calls/flock.htm

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

announce the clone to be temporary
git annex dead here
checkout a unique branch
git checkout -b "job-$JOBID"
run the job
datalad containers-run \
-m "Computing data $inputfile" \
--explicit \
--output "aggregate_${inputfile}" \
--input "rawdata/$inputfile" \
-n code/containers/mycontainer \
'{inputs}' '{outputs}'

push, with filelocking as a safe-guard
flock --verbose $DSLOCKFILE datalad push --to origin

Done - job handler should clean up workspace

Its a short script that encapsulates a complete workflow. Think of it as the sequence of necessary
DataLad commands you would need to do in order to compute a job. You can save this script
into your analysis dataset, e.g., as code/analysis_job.sh, and make it executable (such that
it is executed automatically by the program specified in the SHEBANG)using chmod +x code/
analysis_job.sh.

Job submission:

Job submission now only boils down to invoking the script for each participant with the rel-
evant command line arguments (e.g., input files for our artificial example) and the necessary
environment variables (e.g., the job ID that determines the branch name that is created, and
one that points to a lockfile created beforehand once in .git). Job scheduler such as HTCondor
can typically do this with automatic variables. They for example have syntax that can identify
subject IDs or consecutive file numbers from consistently named directory structure, access the
job ID, loop through a predefined list of values or parameters, or use various forms of pattern
matching. Examples of this are demonstrated here464. Thus, the submit file takes care of defin-
ing hundreds or thousands of variables, but can still be lean even though it queues up hundreds
or thousands of jobs. Here is a submit file that could be employed:

M17.8 HTCondor submit file

464 https://jugit.fz-juelich.de/inm7/training/htcondor/-/blob/master/03_define_jobs.md

340 Chapter 17. Computing on clusters

https://jugit.fz-juelich.de/inm7/training/htcondor/-/blob/master/03_define_jobs.md

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

universe = vanilla
get_env = True
resource requirements for each job, determined by
investigating the demands of a single test job
request_cpus = 1
request_memory = 20G
request_disk = 210G

executable = $ENV(PWD)/code/analysis_job.sh

the job expects to environment variables for labeling and synchronization
environment = "JOBID=$(Cluster).$(Process) DSLOCKFILE=$ENV(PWD)/.git/datalad_lock"
log = $ENV(PWD)/../logs/$(Cluster).$(Process).log
output = $ENV(PWD)/../logs/$(Cluster).$(Process).out
error = $ENV(PWD)/../logs/$(Cluster).$(Process).err
arguments = $(inputfile)
find all input data, based on the file names in the source dataset.
The pattern matching below finds all *files* that match the path
"rawdata/acquisition_*.txt".
Each relative path to such a file name will become the value of `inputfile`,
the argument given to the executable (the shell script).
This will queue as many jobs as file names match the pattern
queue inputfile matching files rawdata/acquisition_*_.txt

How would the first few jobs look like that this submit file queues up? It would send out
the commands

./code/analysis_job.sh rawdata/acquisition_day1year1_.txt

./code/analysis_job.sh rawdata/acquisition_day2year1_.txt
[...]

and each of them are send to a compute node with at least 1 CPU, 20GB of RAM and
210GB of disk space. The log, output, and error files are saved under a HTCondor-
specific Process and Cluster ID in a log file directory (which would need to be created for
HTCondor!). Two environment variables, JOBID (defined from HTCondor-specific Process
and Cluster IDs) and DSLOCKFILE (for file locking), will be defined on the compute node.

All it takes to submit is a single condor_submit <submit_file>.

Merging results: Once all jobs are finished, the results lie in individual branches of the original
dataset. The only thing left to do now is merging all of these branches into MASTER – and
potentially solve any merge conflicts that arise. Usually, merging branches is done using the git
merge command with a branch specification. For example, in order to merge one job branch into
the MASTER BRANCH, one would need to be on master and run git merge <job branch name>.
Given that the parallel job execution could have created thousands of branches, and that each
merge would lead to a commit, in order to not inflate the history of the dataset with hundreds
of MERGE commits, one can do a single Octopus merges465 of all branches at once.

M17.9 What is an octopus merge?

Usually a commit that arises from a merge has two parent commits: The first parent is
the branch the merge is being performed from, in the example above, master. The second
parent is the branch that was merged into the first.

465 https://git-scm.com/docs/git-merge#Documentation/git-merge.txt-octopus

17.2. DataLad-centric analysis with job scheduling and parallel computing 341

https://git-scm.com/docs/git-merge#Documentation/git-merge.txt-octopus

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

However, git merge is capable of merging more than two branches simultaneously if
more than a single branch name is given to the command. The resulting merge commit
has as many parent as were involved in the merge. If a commit has more than two
parents, if is affectionately called an “Octopus” merge.
Octopus merges require merge-conflict-free situations, and will not be carried out when-
ever manual resolution of conflicts is needed.

The merge command can be assembled quickly. If all result branches were named job-<JOBID>,
a complete list of branches is obtained with the following command:

$ git branch -l | grep 'job-' | tr -d ' '

This command line call translates to: “list all branches. Of those branches, show me those that
contain job-, and remove (tr -d) all whitespace.” This call can be given to git merge as in

$ git merge -m "Merge results from job cluster XY" $(git branch -l | grep 'job-' | tr -d
→˓' ')

Voilà – the results of all provenance-tracked job executions merged into the original dataset.
If you are interested in seeing this workflow applied in a real analysis, read on into the next
section, Walkthrough: Parallel ENKI preprocessing with fMRIprep (page 342).

17.3 Walkthrough: Parallel ENKI preprocessing with fMRIprep

This workflow has an update!

The workflow below is valid and working, but over many months and a few
very large scale projects we have improved it with a more flexible and scal-
able setup. Currently, this work can be found as a comprehensive tutorial and
bootstrapping script on GitHub (github.com/psychoinformatics-de/fairly-big-processing-
workflow473), and a corresponding show case implementation with fMRIprep
(github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial474). Also,
there is an accompanying preprint with more high-level descriptions of the workflow at
www.biorxiv.org/content/10.1101/2021.10.12.464122v1475. Its main advantages over
the workflow below lie in a distributed (and thus independent) setup of all involved
dataset locations; built-in support for two kinds of job schedulers (HTCondor, SLURM);
enhanced scalability (tested on 42k datasets of the UK Biobank dataset476; and use of
REMOTE INDEXED ARCHIVE (RIA) STOREs that provide support for additional security or
technical features. Its advised to use the updated workflow over the one below. In the
future, this chapter will be updated with an implementation of the updated workflow.
473 https://github.com/psychoinformatics-de/fairly-big-processing-workflow
474 https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
475 https://www.biorxiv.org/content/10.1101/2021.10.12.464122v1
476 https://www.ukbiobank.ac.uk/

The previous section has been an overview on parallel, provenance-tracked computations in
DataLad datasets. While the general workflow entails a complete setup, its usually easier to
understand it by seeing it applied to a concrete usecase. Its even more informative if that
usecase includes some complexities that do not exist in the “picture-perfect” example but are

342 Chapter 17. Computing on clusters

https://github.com/psychoinformatics-de/fairly-big-processing-workflow
https://github.com/psychoinformatics-de/fairly-big-processing-workflow
https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
https://www.biorxiv.org/content/10.1101/2021.10.12.464122v1
https://www.ukbiobank.ac.uk/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

likely to arise in real life. Therefore, the following walk-through in this section is a write-up of
an existing and successfully executed analysis.

The analysis

The analysis goal was standard data preprocessing using fMRIprep477 on neuroimaging data of
1300 subjects in the eNKI478 dataset. This computational task is ideal for parallelization: Each
subject can be preprocessed individually, each preprocessing takes between 6 and 8 hours per
subject, resulting in 1300x7h of serial computing, but only about 7 hours of computing time
when executed completely in parallel, and fMRIprep is a containerized pipeline that can be
pointed to a specific subject to preprocess.

ENKI was transformed into a DataLad dataset beforehand, and to set up the analysis, the fM-
RIprep container was placed – with a custom configuration to make it generalizable – into a new
dataset called pipeline. Both of these datasets, input data and pipeline dataset, became sub-
dataset of a data analysis superdataset. In order to associate input data, containerized pipeline,
and outputs, the analysis was carried out in a toplevel analysis DataLad dataset and with the
datalad containers-run command. Finally, as an additional complexity, due to the additional
complexity of a large quantity of results, the output was collected in subdatasets.

Starting point: Datasets for software and input data

At the beginning of this endeavour, two important analysis components already exist as DataLad
datasets:

1. The input data

2. The containerized pipeline

Following the YODA principles (page 136), each of these components is a standalone dataset.
While the input dataset creation is straightforwards, some thinking went into the creation of
containerized pipeline dataset to set it up in a way that allows it to be installed as a subdataset
and invoked from the superdataset. If you are interested in this, find the details in the findout-
more below. Also note that there is a large collection of pre-existing container datasets available
at github.com/ReproNim/containers479.

M17.10 pipeline dataset creation

We start with a dataset (called pipelines in this example):

$ datalad create pipelines
[INFO] Creating a new annex repo at /data/projects/enki/pipelines
create(ok): /data/projects/enki/pipelines (dataset)

$ cd pipelines

As one of tools used in fMRIprep’s the pipeline, freesurfer480, requires a license file, this
license file needs to be added into the dataset. Only then can this dataset be moved
around flexibly and also to different machines. In order to have the license file available
right away, it is saved --to-git and not annexed484:

477 https://fmriprep.readthedocs.io/
478 http://fcon_1000.projects.nitrc.org/indi/enhanced/
479 https://github.com/ReproNim/containers

17.3. Walkthrough: Parallel ENKI preprocessing with fMRIprep 343

https://fmriprep.readthedocs.io/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
https://github.com/ReproNim/containers
https://surfer.nmr.mgh.harvard.edu/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ cp <location/to/fs-license.txt> .
$ datalad save --to-git -m "add freesurfer license file" fs-license.txt

Finally, we add a container with the pipeline to the dataset using datalad
containers-add485. The important part is the configuration of the container – it has
to be done in a way that makes the container usable in any superdataset the pipeline
dataset.
Depending on how the container/pipeline needs to be called, the configuration differs. In
the case of an fMRIprep run, we want to be able to invoke the container from a data anal-
ysis superdataset. The superdataset contains input data and pipelines dataset as sub-
datasets, and will collect all of the results. Thus, these are arguments we want to supply
the invocation with (following fMRIprep’s documentation481) during a containers-run
command:

$ datalad containers-run \
[...]
<BIDS_dir> <output_dir> <analysis_level> \
--n_cpus <N> \
--participant-label <ID> \
[...]

Note how this list does not include bind-mounts of the necessary directories or of the
freesurfer license – this makes the container invocation convenient and easy for any user.
Starting an fMRIprep run requires only a datalad containers-run with all of the desired
fMRIprep options.
This convenience for the user requires that all of the bind-mounts should be taken care of
– in a generic way – in the container call specification, though. Here is how this is done:

$ datalad containers-add fmriprep \
--url /data/project/singularity/fmriprep-20.2.0.simg \
--call-fmt singularity run --cleanenv -B "$PWD" {img} {cmd} --fs-license-file "

→˓$PWD/{img_dspath}/freesurfer_license.txt"

During a datalad containers-run command, the --call-fmt specification will be used
to call the container. The placeholders {img} and {cmd} will be replaced with the con-
tainer ({img}) and the command given to datalad containers-run ({cmd}). Thus, the
--cleanenv flag as well as bind-mounts are handled prior to the container invocation,
and the --fs-license-file option with a path to the license file within the container
is appended to the command. Bind-mounting the working directory (-B "$PWD") makes
sure to bind mount the directory from which the container is being called, which should
be the superdataset that contains input data and pipelines subdataset. With these bind-
mounts, input data and the freesurfer license file within pipelines are available in the
container.
With such a setup, the pipelines dataset can be installed in any dataset and will work
out of the box.
480 https://surfer.nmr.mgh.harvard.edu/
484 If the distinction between annexed and unannexed files is new to you, please read section Data integrity

(page 85)
485 Note that this requires the datalad containers extension. Find an overview of all datalad extensions in

DataLad extensions (page 285).
481 https://fmriprep.org/en/stable/usage.html

344 Chapter 17. Computing on clusters

https://fmriprep.org/en/stable/usage.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Analysis dataset setup

The size of the input dataset and the nature of preprocessing results with fMRIprep constitute
an additional complexity: Based on the amount of input data and test runs of fMRIprep on
single subjects, we estimated that the preprocessing results from fMRIprep would encompass
several TB in size and about half a million files. This amount of files is too large to be stored in a
single dataset, though, and results will therefore need to be split into two result datasets. These
will be included as direct subdatasets of the toplevel analysis dataset. This is inconvenient –
it separates results (in the result subdatasets) from their provenance (the run-records in the
top-level dataset) – but inevitable given the dataset size. A final analysis dataset will consist of
the following components:

• input data as a subdataset

• pipelines container dataset as a subdataset

• subdatasets to hold the results

Following the benchmarks and tips in the chapter Go big or go home (page 323), the amount
of files produced by fMRIprep on 1300 subjects requires two datasets to hold them. In this
particular computation, following the naming scheme and structure of fMRIpreps output direc-
tories, one subdataset is created for the freesurfer482 results of fMRIprep in a subdataset called
freesurfer, and one for the minimally preprocessed input data in a subdataset called fmriprep.

Here is an overview of the directory structure in the superdataset:

superds
code # directory

pipelines # subdataset with fMRIprep
fmriprep # subdataset for results
freesurfer # subdataset for results
sourcedata # subdataset with BIDS-formatted data

sourcedata # subdataset with raw data
sub-A00008326 # directory
sub-...

When running fMRIprep on a smaller set of subjects, or a containerized pipeline that produces
fewer files, saving results into subdatasets isn’t necessary.

Workflow script

Based on the general principles introduced in the previous section, there is a sketch of the
workflow in the BASH (shell) script below. It still lacks fMRIprep specific fine-tuning – the
complete script is shown in the findoutmore afterwards. This initial sketch serves to highlight
key differences and adjustments due to the complexity and size of the analysis, explained below
and highlighted in the script as well:

• Getting subdatasets: The empty result subdatasets wouldn’t be installed in the clone
automatically – datalad get -n -r -R1 . installs all first-level subdatasets so that they
are available to be populated with results.

• recursive throw-away clones: In the simpler general workflow, we ran git annex dead
here in the topmost dataset. This dataset contains the results within subdatasets. In order
to make them “throw-away” as well, the git annex dead here configuration needs to be

482 https://surfer.nmr.mgh.harvard.edu/

17.3. Walkthrough: Parallel ENKI preprocessing with fMRIprep 345

https://surfer.nmr.mgh.harvard.edu/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

applied recursively for all datasets with git submodule foreach --recursive git annex
dead here.

• Checkout unique branches in the subdataset: Since the results will be pushed from the
subdatasets, it is in there that unique branches need to be checked out. We’re using git
-C <path> to apply a command in dataset under path.

• Complex container call: The containers-run command is more complex because it sup-
plies all desired fMRIprep arguments.

• Push the subdatasets only: We only need to push the results, i.e., there is one push per
each subdataset.

everything is running under /tmp inside a compute job,
/tmp is job-specific local filesystem not shared between jobs
$ cd /tmp

clone the superdataset with locking
$ flock --verbose $DSLOCKFILE datalad clone /data/project/enki/super ds
$ cd ds

get first-level subdatasets (-R1 = --recursion-limit 1)
$ datalad get -n -r -R1 .

make git-annex disregard the clones - they are meant to be thrown away
$ git submodule foreach --recursive git annex dead here

checkout unique branches (names derived from job IDs) in both subdatasets
to enable pushing the results without interference from other jobs
In a setup with no subdatasets, "-C <subds-name>" would be stripped,
and a new branch would be checked out in the superdataset instead.
$ git -C fmriprep checkout -b "job-$JOBID"
$ git -C freesurfer checkout -b "job-$JOBID"

call fmriprep with datalad containers-run. Use all relevant fMRIprep
arguments for your usecase
$ datalad containers-run \

-m "fMRIprep $subid" \
--explicit \
-o freesurfer -o fmriprep \
-i "$1" \
-n code/pipelines/fmriprep \
sourcedata . participant \
--n_cpus 1 \
--skip-bids-validation \
-w .git/tmp/wdir \
--participant-label "$subid" \
--random-seed 12345 \
--skull-strip-fixed-seed \
--md-only-boilerplate \
--output-spaces MNI152NLin6Asym \
--use-aroma \
--cifti-output

push back the results
$ flock --verbose $DSLOCKFILE datalad push -d fmriprep --to origin
$ flock --verbose $DSLOCKFILE datalad push -d freesurfer --to origin
job handler should clean up workspace

346 Chapter 17. Computing on clusters

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Just like the general script from the last section, this script can be submitted to any job scheduler
– here with a subject ID as a $subid command line variable and a job ID as environment variable
as identifiers for the fMRIprep run and branch names. At this point, the workflow misses a
tweak that is necessary in fMRIprep to enable re-running computations (the complete file is in
this Findoutmore (page 348).

M17.11 Fine-tuning: Enable re-running

If you want to make sure that your dataset is set up in a way that you have the ability to
rerun a computation quickly, the following fMRIprep-specific consideration is important:
If fMRIprep finds preexisting results, it will fail to run. Therefore, all outputs of a job
need to be removed before the job is started486. We can simply add an attempt to do this
in the script (it wouldn’t do any harm if there is nothing to be removed):

(cd fmriprep && rm -rf logs "$subid" "$subid.html" dataset_description.json desc-*.
→˓tsv)
(cd freesurfer && rm -rf fsaverage "$subid")

With this in place, the only things missing are a SHEBANG at the top of the script, and
some shell settings for robust scripting with verbose log files (set -e -u -x). You can
find the full script with rich comments in this Findoutmore (page 348).

486 The brackets around the commands are called command grouping in bash, and yield a subshell environ-
ment: www.gnu.org/software/bash/manual/html_node/Command-Grouping.html487.

Pending modifications to paths provided in clone locations, the above script and dataset setup
is generic enough to be run on different systems and with different job schedulers.

Job submission

Job submission now only boils down to invoking the script for each participant with a participant
identifier that determines on which subject the job runs, and setting two environment variables
– one the job ID that determines the branch name that is created, and one that points to a
lockfile created beforehand once in .git. Job scheduler such as HTCondor have syntax that can
identify subject IDs from consistently named directories, for example, and the submit file can
thus be lean even though it queues up more than 1000 jobs.

You can find the submit file used in this analyses in this Findoutmore (page 350).

All it takes to submit is a single condor_submit <submit_file>.

Merging results

Once all jobs have finished, the results lie in individual branches of the output datasets. In this
concrete example, the subdatasets fmriprep and freesurfer will each have more than 1000
branches that hold individual job results. The only thing left to do now is merging all of these
branches into MASTER – and potentially solve any merge conflicts that arise. As explained in
the previous section, the necessary merging was done with Octopus merges483 – one in each
subdataset (fmriprep and freesurfer).

The merge command was assembled with the trick introduced in the previous section, based on
job-ID-named branches. Importantly, this needs to be carried out inside of the subdatasets, i.e.,
483 https://git-scm.com/docs/git-merge#Documentation/git-merge.txt-octopus

17.3. Walkthrough: Parallel ENKI preprocessing with fMRIprep 347

https://www.gnu.org/software/bash/manual/html_node/Command-Grouping.html
https://git-scm.com/docs/git-merge#Documentation/git-merge.txt-octopus

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M17.12 See the complete bash script

This script is placed in code/fmriprep_participant_job. For technical reasons (render-
ing of the handbook), we break it into several blocks of code:

#!/bin/bash

fail whenever something is fishy, use -x to get verbose logfiles
set -e -u -x

we pass in "sourcedata/sub-...", extract subject id from it
subid=$(basename $1)

this is all running under /tmp inside a compute job, /tmp is a performant
local filesystem
cd /tmp
get the output dataset, which includes the inputs as well
flock makes sure that this does not interfere with another job
finishing at the same time, and pushing its results back
importantly, we clone from the location that we want to push the
results too
flock --verbose $DSLOCKFILE \

datalad clone /data/project/enki/super ds

all following actions are performed in the context of the superdataset
cd ds
obtain all first-level subdatasets:
dataset with fmriprep singularity container and pre-configured
pipeline call; also get the output dataset to prep them for output
consumption, we need to tune them for this particular job, sourcedata
important: because we will push additions to the result datasets back
at the end of the job, the installation of these result datasets
must happen from the location we want to push back too
datalad get -n -r -R1 .
let git-annex know that we do not want to remember any of these clones
(we could have used an --ephemeral clone, but that might deposite data
of failed jobs at the origin location, if the job runs on a shared
filesystem -- let's stay self-contained)
git submodule foreach --recursive git annex dead here

348 Chapter 17. Computing on clusters

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

checkout new branches in both subdatasets
this enables us to store the results of this job, and push them back
without interference from other jobs
git -C fmriprep checkout -b "job-$JOBID"
git -C freesurfer checkout -b "job-$JOBID"
create workdir for fmriprep inside to simplify singularity call
PWD will be available in the container
mkdir -p .git/tmp/wdir
pybids (inside fmriprep) gets angry when it sees dangling symlinks
of .json files -- wipe them out, spare only those that belong to
the participant we want to process in this job
find sourcedata -mindepth 2 -name '*.json' -a ! -wholename "$1"'*' -delete

next one is important to get job-reruns correct. We remove all
anticipated output, such that fmriprep isn't confused by the presence
of stale symlinks. Otherwise we would need to obtain and unlock file
content. But that takes some time, for no reason other than being
discarded at the end
(cd fmriprep && rm -rf logs "$subid" "$subid.html" dataset_description.json desc-*.
→˓tsv)
(cd freesurfer && rm -rf fsaverage "$subid")

the meat of the matter, add actual parameterization after --participant-label
datalad containers-run \
-m "fMRIprep $subid" \
--explicit \
-o freesurfer -o fmriprep \
-i "$1" \
-n code/pipelines/fmriprep \
sourcedata . participant \
--n_cpus 1 \
--skip-bids-validation \
-w .git/tmp/wdir \
--participant-label "$subid" \
--random-seed 12345 \
--skull-strip-fixed-seed \
--md-only-boilerplate \
--output-spaces MNI152NLin6Asym \
--use-aroma \
--cifti-output

selectively push outputs only
ignore root dataset, despite recorded changes, needs coordinated
merge at receiving end
flock --verbose $DSLOCKFILE datalad push -d fmriprep --to origin
flock --verbose $DSLOCKFILE datalad push -d freesurfer --to origin

job handler should clean up workspace

17.3. Walkthrough: Parallel ENKI preprocessing with fMRIprep 349

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M17.13 HTCondor submit file

The following submit file was created and saved in code/fmriprep_all_participants.
submit:

universe = vanilla
get_env = True
resource requirements for each job, determined by
investigating the demands of a single test job
request_cpus = 1
request_memory = 20G
request_disk = 210G

executable = $ENV(PWD)/code/fmriprep_participant_job

the job expects to environment variables for labeling and synchronization
environment = "JOBID=$(Cluster).$(Process) DSLOCKFILE=$ENV(PWD)/.git/datalad_lock"
log = $ENV(PWD)/../logs/$(Cluster).$(Process).log
output = $ENV(PWD)/../logs/$(Cluster).$(Process).out
error = $ENV(PWD)/../logs/$(Cluster).$(Process).err
arguments = $(subid)
find all participants, based on the subdirectory names in the source dataset
each relative path to such a subdirectory with become the value of `subid`
and another job is queued. Will queue a total number of jobs matching the
number of matching subdirectories
queue subid matching dirs sourcedata/sub-*

within fmriprep and freesurfer.

$ git merge -m "Merge results from job cluster XY" $(git branch -l | grep 'job-' | tr -d
→˓' ')

Merging with merge conflicts

When attempting an octopus merge like the one above and a merge conflict arises, the merge is
aborted automatically. This is what it looks like in fmriprep/, in which all jobs created a slightly
different CITATION.md file:

$ cd fmriprep
$ git merge -m "Merge results from job cluster 107890" $(git branch -l | grep 'job-' | tr␣
→˓-d ' ')
Fast-forwarding to: job-107890.0
Trying simple merge with job-107890.1
Simple merge did not work, trying automatic merge.
ERROR: logs/CITATION.md: Not merging symbolic link changes.
fatal: merge program failed
Automated merge did not work.
Should not be doing an octopus.
Merge with strategy octopus failed.

This merge conflict is in prinicple helpful – since there are multiple different CITATION.md files
in each branch, Git refuses to randomly pick one that it likes to keep, and instead aborts so that
the user can intervene.

350 Chapter 17. Computing on clusters

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M17.14 How to fix this?

As the file CITATION.md does not contain meaningful changes between jobs, one of the
files is kept as a backup (e.g., copied into a temporary location, or brought back to life
afterwards with git cat-file), then all CITATION.md files of all branches deleted prior
to the merge, and the back-up CITATION.md file is copied and saved into the dataset as a
last step.

First, checkout any job branch
$ git checkout job-<insert-number>
then, copy the file out of the dataset (here, its copied into your home directory)
$ cp logs/CITATION.md ~/CITATION.md
checkout master again
$ git checkout master

Then, remove all CITATION.md files from the last commit. Here is a bash loop that would
do exactly that:

$ for b in $(git branch -l | grep 'job-' | tr -d ' ');
do (git checkout -b m$b $b && git rm logs/CITATION.md && git commit --amend --

→˓no-edit) ;
done

Afterwards, merge the results:

$ git merge -m "Merge results from job cluster XY" $(git branch -l | grep 'mjob-' |␣
→˓tr -d ' ')

Finally, move the back-up file into the dataset:

$ mv ~/CITATION.md logs/
$ datalad save -m "Add CITATION file from one job" logs/CITATION.md

Merging without merge conflicts

If no merge conflicts arise and the octopus merge is successful, all results are aggregated in the
master branch. The commit log looks like a work of modern art when visualized with tools such
as TIG:

17.3. Walkthrough: Parallel ENKI preprocessing with fMRIprep 351

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Summary

Once all jobs are computed in parallel and the resulting branches merged, the superdataset
is populated with two subdatasets that hold the preprocessing results. Each result contains a
machine-readable record of provenance on when, how, and by whom it was computed. From
this point, the results in the subdatasets can be used for further analysis, while a record of how
they were preprocessed is attached to them.

352 Chapter 17. Computing on clusters

CHAPTER

EIGHTEEN

BETTER LATE THAN NEVER

18.1 Transitioning existing projects into DataLad

Using DataLad offers exciting and useful features that warrant transitioning existing projects
into DataLad datasets – and in most cases, transforming your project into one or many DataLad
datasets is easy. This sections outlines the basic steps to do so, and offers examples as well as
advice and caveats.

Important: Your safety net

Chances are high that you are reading this section of the handbook after you stumbled across
DataLad and were intrigued by its features, and you’re now looking for a quick way to get going.
If you haven’t read much of the handbook, but are now planning to DataLad-ify the gigantic
project you have been working on for the past months or years, this first paragraph is warning,
advice, and a call for safety nets to prevent unexpected misery that can arise from transitioning
to a new tool. Because while DataLad can do amazing things, you shouldn’t blindly trust it to
do everything you think it can or should do, but gain some familiarity with it.

If you’re a DataLad novice, we highly recommend that you read through the Basics (page 33)
part of the handbook. This part of the book provides you with a solid understanding of DataLad’s
functionality and a playground to experience working with DataLad. If you’re really pressed for
time because your dog is sick, your toddler keeps eating your papers and your boss is behind you
with a whip, the findoutmore below summarizes the most important sections from the Basics
for you to read:

353

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M18.1 The Basics for the impatient

To get a general idea about DataLad, please read sections A brief overview of DataLad
(page 2) and What you really need to know (page 27) from the introduction (reading
time: 15 min).
To gain a good understanding of some important parts of DataLad, please read chapter
DataLad datasets (page 34), DataLad, Run! (page 59), and Under the hood: git-annex
(page 83) (reading time: 60 minutes).
To become confident in using DataLad, sections How to get help (page 258), Miscellaneous
file system operations (page 224) can be very useful. Depending on your aim, Collabora-
tion (page 92) (for collaborative workflows), Third party infrastructure (page 177) (for
data sharing), or Make the most out of datasets (page 135) (for data analysis) may contain
the relevant background for you.

Prior to transforming your project, regardless of how advanced of a user you are, we recom-
mend to create a copy of it. We don’t believe there is much that can go wrong from the
software-side of things, but data is precious and backups a necessity, so better be safe than
sorry.

Step 1: Planning

The first step to DataLad-ify your project is to turn it into one or several nested datasets.
Whether you turn a project into a single dataset or several is dependent on the current size
of your project and how much you expect it to grow overtime, but also on its contents. You can
find guidance on this in paragraph below.

The next step is to save dataset contents. You should take your time and invest thought into
this, as this determines the looks and feels of your dataset, in particular the decision on which
contents should be saved into GIT or GIT-ANNEX. The section Data integrity (page 85) should
give you some necessary background information, and the chapter Tuning datasets to your needs
(page 112) the relevant skills to configure your dataset appropriately. You should consider the
size, file type and modification frequency of files in your decisions as well as potential plans to
share a dataset with a particular third party infrastructure.

Step 2: Dataset creation

Transforming a directory into a dataset is done with datalad create --force. The -f/--force
option enforces dataset creation in non-empty directories. Consider applying procedures
(page 126) with -c <procedure-name> to apply configurations that suit your use case.

M18.2 What if my directory is already a Git repository?

If you want to transform a Git repository to a DataLad dataset, a datalad create -f is
the way to go, too, and completely safe. Your Git history will stay intact and will not be
tampered with.

If you want to transform a series of nested directories into nested datasets, continue with
datalad create -f commands in all further subdirectories.

354 Chapter 18. Better late than never

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M18.3 One or many datasets?

In deciding how many datasets you need, try to follow the benchmarks in chapter Go big
or go home (page 323) and the yoda principles in section YODA: Best practices for data
analyses in a dataset (page 136). Two simple questions can help you make a decision:

1. Do you have independently reusable components in your directory, for example
data from several studies, or data and code/results? If yes, make each individual
component a dataset.

2. How large is each individual component? If it exceeds 100k files, split it up into
smaller datasets. The decision on where to place subdataset boundaries can be
guided by the existing directory structure or by common access patterns, for exam-
ple based on data type (raw, processed, . . .) or subject association. One straightfor-
ward organization may be a top-level superdataset and subject-specific subdatasets,
mimicking the structure chosen in the use case Scaling up: Managing 80TB and 15
million files from the HCP release (page 433).

You can automate this with BASH loops, if you want.

M18.4 Example bash loops

Consider a directory structure that follows a naming standard such as BIDS488:

create a mock-directory structure:
$ mkdir -p study/sub-0{1,2,3,4,5}/{anat,func}
$ tree study
study

sub-01
anat
func

sub-02
anat
func

sub-03
anat
func

sub-04
anat
func

sub-05
anat
func

Consider further that you have transformed the toplevel study directory into a dataset
and now want to transform all sub-* directories into further subdatasets, registered in
study. Here is a line that would do this for the example above:

$ for dir in study/sub-0{1,2,3,4,5}; do datalad -C $dir create -d^. --force .; done

488 https://bids.neuroimaging.io/

Step 3: Saving dataset contents

Any existing content in your newly created dataset(s) still needs to be saved into its dataset at
this point (unless it was already under version control with Git). This can be done with the

18.1. Transitioning existing projects into DataLad 355

https://bids.neuroimaging.io/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

datalad save command – either “in one go” using a plain datalad save (saves all untracked
files and modifications to a dataset – by default into the dataset annex), or step-by-step by
attaching paths to the save command. Make sure to run datalad status frequently.

M18.5 Save things to Git or to git-annex?

By default, all dataset contents are saved into GIT-ANNEX. Depending on your data and
use case, this may or may not be useful for all files. Here are a few things to keep in
mind:

• large files, in particular binary files should almost always go into GIT-ANNEX. If you
have pure data dataset made up of large files, put it into the dataset annex.

• small files, especially if they are text files and undergo frequent modifications (e.g.,
code, manuscripts, notes) are best put under version control by GIT.

• If you plan to publish a dataset to a repository hosting site without annex support
such as GITHUB or GITLAB, and do not intend to set up third party storage for
annexed contents, be aware that only contents placed in Git will be available to
others after cloning your repository. At the same time, be mindful of file size limits
the services impose. The largest file size GitHub allows is 100MB – a dataset with
files exceeding 100MB in size in Git will be rejected by GitHub. GIN is an alternative
hosting service with annex support, and the Open Science Framework (OSF)489

may also be a suitable option to share datasets including their annexed files.
You can find guidance on how to create configurations for your dataset (which need to
be in place and saved prior to saving contents!) in the chapter Tuning datasets to your
needs (page 112), in particular section More on DIY configurations (page 117).
489 https://readthedocs.org/projects/datalad-osf/

Create desired subdatasets first

Be mindful during saving if you have a directory that should hold more, yet uncreated
datasets down its hierarchy, as a plain datalad save will save all files and directories to
the dataset! Its best to first create all subdatasets, and only then save their contents.

If you are operating in a hierarchy of datasets, running a recursive save from the top-most
dataset (datalad save -r) will save you time: All contents are saved to their respective datasets,
all subdatasets are registered to their respective superdatasets.

Step 4: Rerunning analyses reproducibly

If you are transforming a complete data analysis into a dataset, you may also want to rerun
any computation with DataLad’s run commands. You can compose any datalad run or datalad
containers-run490 command to recreate and capture your previous analysis. Make sure to
specify your previous results as --output in order to unlock them491.

490 Prior to using a software container, install the datalad-containers (page 285) extension and add the container with
the datalad containers-add command. You can find a concrete data analysis example with datalad-containers
in the section Computational reproducibility with software containers (page 166).

491 If you are unfamiliar with datalad run, please work through chapter DataLad, Run! (page 59) first.

356 Chapter 18. Better late than never

https://readthedocs.org/projects/datalad-osf/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Summary

Existing projects and analysis can be DataLad-ified with a few standard commands. Be mind-
ful about dataset sizes and whether you save contents into Git or git-annex, though, as these
choices could potentially spoil your DataLad experience. The sections Miscellaneous file system
operations (page 224) and Fixing up too-large datasets (page 328) can help you to undo un-
wanted changes, but its better to do things right instead of having to fix them up. If you can,
read up on the DataLad Basics to understand what you are doing, and create a backup in case
things go not as planned in your first attempts.

18.1. Transitioning existing projects into DataLad 357

CHAPTER

NINETEEN

SPECIAL PURPOSE SHOWROOMS

19.1 Reproducible machine learning analyses: DataLad as DVC

Machine learning analyses are complex: Beyond data preparation and general scripting, they
typically consist of training and optimizing several different machine learning models and com-
paring them based on performance metrics. This complexity can jeopardize reproducibility – it
is hard to remember or figure out which model was trained on which version of what data and
which has been the ideal optimization. But just like any data analysis project, machine learn-
ing projects can become easier to understand and reproduce if they are intuitively structured,
appropriately version controlled, and if analysis executions are captured with enough (ideally
machine-readable and re-executable) provenance.

DataLad provides the functionality to achieve this, and previous (page 136) sections (page 166)
have given some demonstrations on how to do it. But in the context of machine learning
analyses, other domain-specific tools and workflows exist, too. One of the most well-known
is DVC (Data Version Control)492, a “version control system for machine learning projects”.
This section compares the two tools and demonstrates workflows for data versioning, data
sharing, and analysis execution493 in the context of a machine learning project with DVC and
DataLad. While they share a number of similarities and goals, their respective workflows are
quite distinct.

The workflows showcased here are based on a DVC tutorial494. This tutorial consists of the
following steps:

• A data set with pictures of 10 classes of objects (Imagenette495) is version controlled with
DVC

492 https://dvc.org/
493 https://realpython.com/python-data-version-control/
494 https://realpython.com/python-data-version-control/
495 https://github.com/fastai/imagenette

358

https://dvc.org/
https://realpython.com/python-data-version-control/
https://realpython.com/python-data-version-control/
https://realpython.com/python-data-version-control/
https://github.com/fastai/imagenette

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• the data is pushed to a “storage remote” on a local path

• the data are analyzed using various ML models in DVC pipelines

This handbook section demonstrates how DataLad could be used as an alternative to DVC. We
demonstrate each step with DVC according to their tutorial, and then recreate a corresponding
DataLad workflow. The usecase DataLad for reproducible machine-learning analyses (page 454)
demonstrates a similar analysis in a completely DataLad-centric fashion. If you want to, you
can code along, or simply read through the presentation of DVC and DataLad commands. Some
familiarity with DataLad can be helpful, but if you have never used DataLad, footnotes in each
section can point you relevant chapters for more insights on a command or concept. If you have
never used DVC, its technical docs496 or collection of third-party tutorials497 can answer further
questions.

If you are not a Git user

DVC relies heavily on Git workflows. Understanding the DVC workflows requires a solid un-
derstanding of BRANCHes, Git’s concepts of Working tree, Index (“Staging Area”), and Reposi-
tory498, and some basic Git commands such as add, commit, and checkout. The Turing Way499

has an excellent chapter on version control with Git500 if you want to catch up on those basics
first.

496 https://dvc.org/doc/command-reference
497 https://github.com/iterative/dvc.org/issues/1749
498 https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
499 https://the-turing-way.netlify.app/welcome.html
500 https://the-turing-way.netlify.app/reproducible-research/vcs.html

19.1. Reproducible machine learning analyses: DataLad as DVC 359

https://dvc.org/doc/command-reference
https://github.com/iterative/dvc.org/issues/1749
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://the-turing-way.netlify.app/welcome.html
https://the-turing-way.netlify.app/reproducible-research/vcs.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

G19.1 Terminology

Be mindful: DVC (as DataLad) comes with a range of commands and concepts that have
the same names, but differ in functionality to their Git namesake. Make sure to read the
DVC documentation501 for each command to get more information on what it does.
501 https://dvc.org/doc/command-reference

Running this tutorial requires DataLad version 0.13.4 or higher

Running this tutorial requires DataLad version 0.13.4 or higher

Setup

The DVC tutorial502 comes with a pre-made repository that is structured for DVC machine learn-
ing analyses. If you want to code along, the repository503 needs to be FORKed (requires a GitHub
account) and cloned from your own fork525.

DVC
please clone this repository from your own fork when coding along
$ git clone https://github.com/datalad-handbook/data-version-control DVC
Cloning into 'DVC'...

The resulting Git repository is already pre-structured in a way that aids DVC ML analyses: It has
the directories model and metrics, and a set of Python scripts for a machine learning analysis
in src/.

DVC
$ tree DVC
DVC

data
prepared
raw

LICENSE
metrics
model
README.md
src

evaluate.py
prepare.py
train.py

6 directories, 5 files

For a comparison, we will recreate a similarly structured DataLad dataset. For greater compli-
ance with DataLad’s YODA principles (page 136), the dataset structure will differ marginally in
that scripts will be kept in code/ instead of src/. We create the dataset with two configurations,
yoda and text2git527.
502 https://realpython.com/python-data-version-control/
503 https://github.com/datalad-handbook/data-version-control.git
525 Instructions on FORKing and cloning the repo are in the README of the repository: github.com/realpython/data-

version-control526.
526 https://github.com/realpython/data-version-control
527 The two procedures provide the dataset with useful structures and configurations for its purpose: yoda creates

360 Chapter 19. Special purpose showrooms

https://dvc.org/doc/command-reference
https://realpython.com/python-data-version-control/
https://github.com/datalad-handbook/data-version-control.git
https://github.com/realpython/data-version-control
https://github.com/realpython/data-version-control

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

DVC-DataLad
$ datalad create -c text2git -c yoda DVC-DataLad
$ cd DVC-DataLad
$ mkdir -p data/{raw,prepared} model metrics
[INFO] Creating a new annex repo at /home/me/DVCvsDL/DVC-DataLad
[INFO] Running procedure cfg_text2git
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
create(ok): /home/me/DVCvsDL/DVC-DataLad (dataset)

Afterwards, we make sure to get the same scripts.

DVC-DataLad
get the scripts
$ datalad download-url -m "download scripts for ML analysis" \
https://raw.githubusercontent.com/datalad-handbook/data-version-control/master/src/

→˓{train,prepare,evaluate}.py \
-O 'code/'

[INFO] Downloading 'https://raw.githubusercontent.com/datalad-handbook/data-version-
→˓control/master/src/train.py' into '/home/me/DVCvsDL/DVC-DataLad/code/'
download_url(ok): /home/me/DVCvsDL/DVC-DataLad/code/train.py (file)
[INFO] Downloading 'https://raw.githubusercontent.com/datalad-handbook/data-version-
→˓control/master/src/prepare.py' into '/home/me/DVCvsDL/DVC-DataLad/code/'
download_url(ok): /home/me/DVCvsDL/DVC-DataLad/code/prepare.py (file)
[INFO] Downloading 'https://raw.githubusercontent.com/datalad-handbook/data-version-
→˓control/master/src/evaluate.py' into '/home/me/DVCvsDL/DVC-DataLad/code/'
download_url(ok): /home/me/DVCvsDL/DVC-DataLad/code/evaluate.py (file)
add(ok): code/evaluate.py (file)
add(ok): code/prepare.py (file)
add(ok): code/train.py (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
download_url (ok: 3)
save (ok: 1)

Here’s the final directory structure:

DVC-DataLad
$ tree
.

CHANGELOG.md
code

evaluate.py
prepare.py
README.md
train.py

data
prepared

(continues on next page)

a dataset structure with a code directory and makes sure that everything kept in code will be committed to GIT

(thus allowing for direct sharing of code). text2git makes sure that any other text file in the dataset will be
stored in Git as well. The sections Data safety (page 83) and The YODA procedure (page 142) explain the two
configurations in detail.

19.1. Reproducible machine learning analyses: DataLad as DVC 361

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

raw
metrics
model
README.md

6 directories, 6 files

M19.1 Required software for coding along

In order to code along, DVC504, scikit-learn505, scikit-image506, pandas507, and numpy508

are required. All tools are available via pip509 or conda510. We recommend to install
them in a virtual environment511 – the DVC tutorial has step-by-step instructions512.
504 https://dvc.org/doc/install
505 https://scikit-learn.org/stable/
506 https://scikit-image.org/
507 https://pandas.pydata.org/
508 https://numpy.org/
509 https://pypi.org/project/pip/
510 https://docs.conda.io/en/latest/
511 https://realpython.com/python-data-version-control/#set-up-your-working-environment
512 https://realpython.com/python-data-version-control/#set-up-your-working-environment

Version controlling data

In the first part of the tutorial, the directory tree will be populated with data that should be
version controlled.

Although the implementation of version control for (large) data is very different between Data-
Lad and DVC, the underlying concept is very similar: (Large) data is stored outside of GIT – GIT

only tracks information on where this data can be found.

In DataLad datasets, (large) data is handled by GIT-ANNEX. Data content is hashed513 and only
the hash (represented as the original file name) is stored in Git528. Actual data is stored in
the ANNEX of the dataset, and annexed data can be transferred from and to a large number of
storage solutions514 using either DataLad or git-annex commands. Information on where data
is available from is stored in an internal representation of git-annex (page 487).

In DVC repositories, (large) data is also supposed to be stored in external remotes such as
Google Drive. For internal representation of where files are available from, DVC uses one .dvc
text file for each data file or directory given to DVC. The .dvc files contain information on the
path to the data in the repository, where the associated data file is available from, and a hash,
and those files should be committed to GIT.

DVC workflow

Prior to adding and version controlling data, a “DVC project” needs to be initialized in the Git
repository:
513 https://en.wikipedia.org/wiki/Hash_function
528 To re-read about how GIT-ANNEX handles versioning of (large) files, go back to section Data integrity (page 85).
514 https://git-annex.branchable.com/special_remotes/

362 Chapter 19. Special purpose showrooms

https://dvc.org/doc/install
https://scikit-learn.org/stable/
https://scikit-image.org/
https://pandas.pydata.org/
https://numpy.org/
https://pypi.org/project/pip/
https://docs.conda.io/en/latest/
https://realpython.com/python-data-version-control/#set-up-your-working-environment
https://realpython.com/python-data-version-control/#set-up-your-working-environment
https://en.wikipedia.org/wiki/Hash_function
https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/special_remotes/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

DVC
$ cd ../DVC
$ dvc init

You can now commit the changes to git.

+---+
| |
| DVC has enabled anonymous aggregate usage analytics. |
| Read the analytics documentation (and how to opt-out) here: |
| <https://dvc.org/doc/user-guide/analytics> |
| |
+---+

What's next?

- Check out the documentation: <https://dvc.org/doc>
- Get help and share ideas: <https://dvc.org/chat>
- Star us on GitHub: <https://github.com/iterative/dvc>

This populates the repository with a range of staged515 files – most of them are internal direc-
tories and files for DVC’s configuration.

DVC
$ git status
On branch master
Your branch is up to date with 'github/master'.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

new file: .dvc/.gitignore
new file: .dvc/config
new file: .dvc/plots/confusion.json
new file: .dvc/plots/confusion_normalized.json
new file: .dvc/plots/default.json
new file: .dvc/plots/linear.json
new file: .dvc/plots/scatter.json
new file: .dvc/plots/smooth.json
new file: .dvcignore

As they are only staged but not committed, we need to commit them (into Git):

DVC
$ git commit -m "initialize dvc"
[master 38729a0] initialize dvc
9 files changed, 515 insertions(+)
create mode 100644 .dvc/.gitignore
create mode 100644 .dvc/config
create mode 100644 .dvc/plots/confusion.json
create mode 100644 .dvc/plots/confusion_normalized.json
create mode 100644 .dvc/plots/default.json
create mode 100644 .dvc/plots/linear.json
create mode 100644 .dvc/plots/scatter.json
create mode 100644 .dvc/plots/smooth.json
create mode 100644 .dvcignore

515 https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

19.1. Reproducible machine learning analyses: DataLad as DVC 363

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The DVC project is now ready to version control data. In the tutorial, data comes from the
“Imagenette” dataset. This data is available from an Amazon S3 bucket516 as a compressed
tarball, but to keep the download fast, there is a smaller two-category version of it on the OPEN

SCIENCE FRAMEWORK (OSF). We’ll download it and extract it into the data/raw/ directory of
the repository.

DVC
download the data
$ wget -q https://osf.io/d6qbz/download -O imagenette2-160.tgz
extract it
$ tar -xzf imagenette2-160.tgz
move it into the directories
$ mv train data/raw/
$ mv val data/raw/
remove the archive
$ rm -rf imagenette2-160.tgz

The data directories in data/raw are then version controlled with the dvc add command that
can place files or complete directories under version control by DVC.

DVC
$ dvc add data/raw/train
$ dvc add data/raw/val

To track the changes with git, run:

git add data/raw/.gitignore data/raw/train.dvc

To track the changes with git, run:

git add data/raw/.gitignore data/raw/val.dvc

Here is what this command has accomplished: The data files were copied into a cache in .dvc/
cache (a non-human readable directory structure based on hashes similar to .git/annex/objects
used by git-annex), data file names were added to a .gitignore529 file to become invisible to
Git, and two .dvc files, train.dvc and val.dvc, were created530. git status shows these
changes:

DVC
$ git status
On branch master
Your branch is ahead of 'github/master' by 1 commit.

(use "git push" to publish your local commits)

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: data/raw/.gitignore

Untracked files:
(use "git add <file>..." to include in what will be committed)

(continues on next page)

516 https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz
529 You can read more about .gitignore files in the section How to hide content from DataLad (page 282)
530 If you are curious about why data is duplicated in a cache or why the paths to the data are placed into a

.gitignore file, this section in the DVC tutorial531 has more insights on the internals of this process.
531 https://realpython.com/python-data-version-control/#tracking-files

364 Chapter 19. Special purpose showrooms

https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz
https://realpython.com/python-data-version-control/#tracking-files

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

data/raw/train.dvc
data/raw/val.dvc

no changes added to commit (use "git add" and/or "git commit -a")

In order to complete the version control workflow, Git needs to know about the .dvc files, and
forget about the data directories. For this, the modified .gitignore file and the untracked .dvc
files need to be added to Git:

DVC
$ git add --all

Finally, we commit.

DVC
$ git commit -m "control data with DVC"
[master baac3ef] control data with DVC
3 files changed, 12 insertions(+)
create mode 100644 data/raw/train.dvc
create mode 100644 data/raw/val.dvc

The data is now version controlled with DVC.

M19.2 How does DVC represent modifications to data?

When adding data directories, they (i.e., the complete directory) are hashed, and this
hash is stored in the respective .dvc file. If any file in the directory changes, this hash
would change, and the dvc status command would report the directory to be “changed”.
To demonstrate this, we pretend to accidentally delete a single file:

if one or more files in the val/ data changes, dvc status reports a change
$ dvc status
data/raw/val.dvc:

changed outs:
modified: data/raw/val

Important: Detecting a data modification requires the dvc status command – git
status will not be able to detect changes as this directory as it is git-ignored!

DataLad workflow

DataLad has means to get data or data archives from web sources and store this availability
information within GIT-ANNEX. This has several advantages: For one, the original S3 bucket is
known and stored as a location to re-retrieve the data from. This enables reliable data access for
yourself and others that you share the dataset with. Beyond this, the data is also automatically
extracted and saved, and thus put under version control. Note that this strays slightly from
DataLad’s YODA principles (page 136) in a DataLad-centric workflow, where data should become
a standalone, reusable dataset that would be linked as a subdataset into a study/analysis specific
dataset. Here, we stick to the project organization of DVC though.

DVC-DataLad
$ cd ../DVC-DataLad

(continues on next page)

19.1. Reproducible machine learning analyses: DataLad as DVC 365

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

$ datalad download-url \
--archive \
--message "Download Imagenette dataset" \
https://osf.io/d6qbz/download \
-O 'data/raw/'

[INFO] Downloading 'https://osf.io/d6qbz/download' into '/home/me/DVCvsDL/DVC-DataLad/
→˓data/raw/'
download_url(ok): /home/me/DVCvsDL/DVC-DataLad/data/raw/imagenette2-160.tgz (file)
add(ok): data/raw/imagenette2-160.tgz (file)
save(ok): . (dataset)
[INFO] Adding content of the archive /home/me/DVCvsDL/DVC-DataLad/data/raw/imagenette2-
→˓160.tgz into annex AnnexRepo(/home/me/DVCvsDL/DVC-DataLad)
[INFO] Initiating special remote datalad-archives
[INFO] Finished adding /home/me/DVCvsDL/DVC-DataLad/data/raw/imagenette2-160.tgz: Files␣
→˓processed: 2701, renamed: 2701, +annex: 2701
[INFO] Finished extraction
add-archive-content(ok): /home/me/DVCvsDL/DVC-DataLad (dataset)
action summary:
add (ok: 1)
add-archive-content (ok: 1)
download_url (ok: 1)
save (ok: 1)

At this point, the data is already version controlled532, but the directory structure doesn’t re-
semble that of the DVC dataset yet – the extracted directory adds one unnecessary directory
layer:

$ tree
.

code
[...]

data
raw

train
[...]

val
[...]

metrics
model

29 directories

To make the scripts work, we move the raw data up one level. This move needs to be saved.

M19.3 How does DataLad represent modifications to data?

As DataLad always tracks files individually, datalad status (or, alternatively, git status
or git annex status) will show modifications on the level of individual files:

532 The sections Populate a dataset (page 37) and Modify content (page 43) introduce the concepts of saving and
modifying files in DataLad datasets.

366 Chapter 19. Special purpose showrooms

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad status
deleted: /home/me/DVCvsDL/DVC-DataLad/data/raw/val/n01440764/n01440764_12021.JPEG␣

→˓(symlink)

$ git status
On branch master
Your branch is ahead of 'origin/master' by 2 commits.

(use "git push" to publish your local commits)

Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
deleted: data/raw/val/n01440764/n01440764_12021.JPEG

$ git annex status
D data/raw/val/n01440764/n01440764_12021.JPEG

Sharing data

In the second part of the tutorial, the versioned data is transferred to a local directory to demon-
strate data sharing.

The general mechanisms of DVC and DataLad data sharing are similar: (Large) data files are
kept somewhere where potentially large files can be stored. They can be retrieved on demand
as the location information is stored in Git. DVC uses the term “data remote” to refer to external
storage locations for (large) data, whereas DataLad would refer to them as (storage-) SIBLINGs.

Both DVC and DataLad support a range of hosting solutions, from local paths and SSH servers
to providers such as S3 or GDrive. For DVC, every supported remote is pre-implemented, which
restricts the number of available services (a list is here517), but results in a convenient, stream-
lined procedure for adding remotes based on URL schemes. DataLad, largely thanks to “exter-
nal special remotes” mechanism of git-annex, has more storage options (in addition for exam-
ple DropBox (page 177), the Open Science Framework (OSF)518, Git LFS (page 207), Figshare
(page 215), GIN (page 208), or RIA stores (page 294)), but depending on selected storage
provider, the procedure to add a sibling may differ. In addition, DataLad is able to store com-
plete datasets (annexed data and Git repository) in certain services (e.g., OSF, GIN, GitHub if
used with GitLFS, Dropbox, . . .), enabling a clone from for example Google Drive, and while
DVC can never keep data in Git repository hosting services, DataLad can do this if the hosting
service supports hosting annexed data (default on GIN and possible with GITHUB, GITLAB or
BITBUCKET if used with GitLFS519).

DVC workflow

Step 1: Set up a remote

The DVC tutorial520 demonstrates data sharing via a local data remote533. As a first step, there
517 https://dvc.org/doc/command-reference/remote/add
518 http://docs.datalad.org/projects/osf/en/latest/
519 https://git-lfs.github.com/
520 https://realpython.com/python-data-version-control
533 A similar procedure for sharing data on a local file system for DataLad is shown in the chapter Looking without

touching (page 92).

19.1. Reproducible machine learning analyses: DataLad as DVC 367

https://dvc.org/doc/command-reference/remote/add
http://docs.datalad.org/projects/osf/en/latest/
https://git-lfs.github.com/
https://realpython.com/python-data-version-control

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

needs to exist a directory to use as a remote, so we will create a new directory:

DVC
go back to DVC (we were in DVC-Datalad)
$ cd ../DVC
create a directory somewhere else
$ mkdir ../dvc-remote

Afterwards, the new, empty directory can be added as a data remote using dvc remote add. The
-d option sets it as the default remote, which simplifies pushing later on:

DVC
$ dvc remote add -d remote_storage ../dvc_remote
Setting 'remote_storage' as a default remote.

The location of the remote is written into a config file:

DVC
$ cat .dvc/config
[core]

remote = remote_storage
['remote "remote_storage"']

url = ../../dvc_remote

Note that dvc remote add only modifies the config file, and it still needs to be added and
committed to Git:

DVC
$ git status
On branch master
Your branch is ahead of 'github/master' by 2 commits.

(use "git push" to publish your local commits)

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: .dvc/config

no changes added to commit (use "git add" and/or "git commit -a")

DVC
$ git add .dvc/config
$ git commit -m "add local remote"
[master 8f24d9f] add local remote
1 file changed, 4 insertions(+)

G19.2 Remotes

The DVC and Git concepts of a “remote” are related, but not identical. Therefore, DVC
remotes are invisible to git remote, and likewise, Git REMOTEs are invisible to the dvc
remote list command.

Step 2: Push data to the remote

Once the remote is set up, the data that is managed by DVC can be pushed from the cache of the
project to the remote. During this operation, all data for which .dvc files exist will be copied
from .dvc/cache to the remote storage.

368 Chapter 19. Special purpose showrooms

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

DVC
$ dvc push
2703 files pushed

Step 3: Push Git history

At this point, all changes that were committed to GIT (such as the .dvc files) still need to be
pushed to a Git repository hosting service.

DVC
this will only work if you have cloned from your own fork
$ git push origin master
To /home/me/pushes/data-version-control
* [new branch] master -> master

Step 4: Data retrieval

In DVC projects, there are several ways to retrieve data into its original location or the project
cache. In order to demonstrate this, we start by deleting a data directory (in its original location,
data/raw/val/).

DVC
$ rm -rf data/raw/val

G19.3 Status

Do note that this deletion would not be detected by git status – you have to use dvc
status instead.

At this point, a copy of the data still resides in the cache of the repository. These data are copied
back to val/ with the dvc checkout command:

DVC
$ dvc checkout data/raw/val.dvc
A data/raw/val/

If the cache of the repository would be empty, the data can be re-retrieved into the cache from
the data remote. To demonstrate this, let’s look at a repository with an empty cache by cloning
this repository from GitHub into a new location.

DVC
clone the repo into a new location for demonstration purposes:
$ cd ../
$ git clone https://github.com/datalad-handbook/data-version-control DVC-2
Cloning into 'DVC-2'...
done.

Retrieving the data from the data remote to repopulate the cache is done with the dvc fetch
command:

DVC
$ cd DVC-2
$ dvc fetch data/raw/val.dvc
789 files fetched

Afterwards, another dvc checkout will copy the files from the cache back to val/. Alternatively,

19.1. Reproducible machine learning analyses: DataLad as DVC 369

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

the command dvc pull performs fetch (get data into the cache) and checkout (copy data from
the cache to its original location) in a single command.

Unless DVC is used on a small subset of file systems (trfs, XFS, OCFS2, or APFS), copying
data between its original location and the cache is the default. This results in a “built-in data
duplication” on most current file systems534. An alternative is to switch from copies to SYMLINKs
(as done by GIT-ANNEX) or hardlinks521.

DataLad workflow

Because the S3 bucket of the raw data is known and stored in the dataset, it strictly speaking
isn’t necessary to create a storage sibling to push the data to – DataLad already treats the
original S3 bucket as storage. Currently, the dataset can thus be shared via GITHUB or similar
hosting services, and the data can be retrieved using datalad get.

M19.4 Really?

Sure. Let’s demonstrate this. First, we create a sibling on GitHub for this dataset and
push its contents to the sibling:

DVC-DataLad
$ cd ../DVC-DataLad
$ datalad create-sibling-github DVC-DataLad --github-organization datalad-handbook
[INFO] Successfully obtained information about organization datalad-handbook␣
→˓using UserPassword(name='github', url='https://github.com/login') credential
.: github(-) [https://github.com/datalad-handbook/DVC-DataLad.git (git)]
'https://github.com/datalad-handbook/DVC-DataLad.git' configured as sibling 'github
→˓' for Dataset(/home/me/DVCvsDL/DVC-DataLad)
$ datalad push --to github
Update availability for 'github': [...] [00:00<00:00, 28.9k Steps/s]Username for

→˓'https://github.com': <user>
Password for 'https://adswa@github.com': <password>
publish(ok): /home/me/DVCvsDL/DVC-DataLad (dataset) [refs/heads/master->

→˓github:refs/heads/master [new branch]]
publish(ok): /home/me/DVCvsDL/DVC-DataLad (dataset) [refs/heads/git-annex->

→˓github:refs/heads/git-annex [new branch]]

Next, we can clone this dataset, and retrieve the files:

534 In DataLad datasets, data duplication is usually avoided as GIT-ANNEX uses SYMLINKs. Only on file systems that
lack support for symlinks or for removing write PERMISSIONS from files (so called “crippled file systems” such as
/sdcard on Android, FAT or NTFS) git-annex needs to duplicate data.

521 https://en.wikipedia.org/wiki/Hard_link

370 Chapter 19. Special purpose showrooms

https://en.wikipedia.org/wiki/Hard_link

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

DVC-DataLad
outside of a dataset
$ datalad clone https://github.com/datalad-handbook/DVC-DataLad.git DVC-DataLad-2
$ cd DVC-DataLad-2
[INFO] Cloning dataset to Dataset(/home/me/DVCvsDL/DVC-DataLad-2)
[INFO] Attempting to clone from https://github.com/datalad-handbook/DVC-DataLad.git␣
→˓to /home/me/DVCvsDL/DVC-DataLad-2
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/DVCvsDL/DVC-DataLad-2)
[INFO] scanning for annexed files (this may take some time)
[INFO] Remote origin not usable by git-annex; setting annex-ignore
[INFO] https://github.com/datalad-handbook/DVC-DataLad.git/config download failed:␣
→˓Not Found
install(ok): /home/me/DVCvsDL/DVC-DataLad-2 (dataset)

DVC-DataLad2
$ datalad get data/raw/val
[INFO] To obtain some keys we need to fetch an archive of size 15.1 MB
[INFO] datalad-archives special remote is using an extraction cache under /home/me/
→˓DVCvsDL/DVC-DataLad-2/.git/datalad/tmp/archives/8f2938add6. Remove it with DataLad
→˓'s 'clean' command to save disk space.
get(ok): data/raw/val (directory)
action summary:
get (ok: 790)

The data was retrieved by re-downloading the original archive from S3 and extracting
the required files.

Here’s an example of pushing a dataset to a local sibling nevertheless:

Step 1: Set up the sibling

The easiest way to share data is via a local sibling533. This won’t share only annexed data, but
it instead will push everything, including the Git aspect of the dataset. First, we need to create
a local sibling:

DVC-DataLad
$ cd DVC-DataLad
$ datalad create-sibling --name mysibling ../datalad-sibling
[INFO] Considering to create a target dataset /home/me/DVCvsDL/DVC-DataLad at /home/me/
→˓DVCvsDL/datalad-sibling of localhost
[INFO] Fetching updates for Dataset(/home/me/DVCvsDL/DVC-DataLad)
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Adjusting remote git configuration
[INFO] Running post-update hooks in all created siblings
create_sibling(ok): /home/me/DVCvsDL/DVC-DataLad (dataset)

Step 2: Push the data

Afterwards, the dataset contents can be pushed using datalad push.

19.1. Reproducible machine learning analyses: DataLad as DVC 371

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

DVC-DataLad
$ datalad push --to mysibling
[INFO] Determine push target
[INFO] Push refspecs
[INFO] Transfer data
[INFO] Update availability information
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start resolving deltas
[INFO] Finished push of Dataset(/home/me/DVCvsDL/DVC-DataLad)
publish(ok): . (dataset) [refs/heads/git-annex->mysibling:refs/heads/git-annex 363fc913..
→˓a52bcf0f]
publish(ok): . (dataset) [refs/heads/master->mysibling:refs/heads/master [new branch]]
action summary:
copy (ok: 2701)
publish (ok: 2)

This pushed all of the annexed data and the Git history of the dataset.

Step 3: Retrieve the data

The data in the dataset (complete directories or individual files) can be dropped using datalad
drop, and reobtained using datalad get.

DVC-DataLad
$ datalad drop data/raw/val
drop(ok): data/raw/val (directory)
action summary:
drop (ok: 790)

DVC-DataLad
$ datalad get data/raw/val
get(ok): data/raw/val (directory)
action summary:
get (ok: 790)

Data analysis

DVC is tuned towards machine learning analyses and comes with convenience commands and
workflow management to build, compare, and reproduce machine learning pipelines. The tuto-
rial therefore runs an SGD classifier and a random forrest classifier on the data and compares the
two models. For this, the pre-existing preparation, training, and evaluation scripts are used on
the data we have downloaded and version controlled in the previous steps. DVC has means to
transform such a structured ML analysis into a workflow, reproduce this workflow on demand,
and compare it across different models or parametrizations.

In this general overview, we will only rush through the analysis: In short, it consists of three
steps, each associated with a script. src/prepare.py creates two .csv files with mappings of
file names in train/ and val/ to image categories. Later, these files will be used to train and
test the classifiers. src/train.py loads the training CSV file prepared in the previous stage,
trains a classifier on the training data, and saves the classifier into the model/ directory as
model.joblib. The final script, src/evaluate.py is used to evaluate the trained classifier on the
validation data and write the accuracy of the classification into the file metrics/accuracy.json.

372 Chapter 19. Special purpose showrooms

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

There are more detailed insights and explanations of the actual analysis code in the Tutorial522

if you’re interested in finding out more.

For workflow management, DVC has the concept of a “DVC pipeline”. A pipeline consists of
multiple stages and is executed using a dvc run command. Each stage has three components:
“deps”, “outs”, and “command”. Each of the scripts in the repository will be represented by a
stage in the DVC pipeline.

DataLad does not have any workflow management functions. The closest to it are datalad run
to record any command execution or analysis, datalad rerun to recompute such an analysis,
and datalad containers-run to perform and record a command execution or analysis inside of
a tracked software container536.

DVC workflow

Model 1: SGD classifier

Each model will be analyzed in a different branch of the repository. Therefore, we start by
creating a new branch.

DVC
$ cd ../DVC
$ git checkout -b sgd-pipeline
Switched to a new branch 'sgd-pipeline'

The first stage in the pipeline is data preparation (performed by the script prepare.py). The
following command sets up the stage:

DVC
$ dvc run -n prepare \
-d src/prepare.py -d data/raw \
-o data/prepared/train.csv -o data/prepared/test.csv \
python src/prepare.py

Running stage 'prepare' with command:
python src/prepare.py

Creating 'dvc.yaml'
Adding stage 'prepare' in 'dvc.yaml'
Generating lock file 'dvc.lock'
Updating lock file 'dvc.lock'

To track the changes with git, run:

git add data/prepared/.gitignore dvc.yaml dvc.lock

The -n parameter gives the stage a name, the -d parameter passes the dependencies – the raw
data – to the command, and the -o parameter defines the outputs of the command – the CSV
files that prepare.py will create. python src/prepare.py is the command that will be executed
in the stage.

The resulting changes can be added to Git:

DVC
$ git add dvc.yaml data/prepared/.gitignore dvc.lock

522 https://realpython.com/python-data-version-control
536 To re-read about datalad run and datalad rerun, checkout chapter DataLad, Run! (page 59).

19.1. Reproducible machine learning analyses: DataLad as DVC 373

https://realpython.com/python-data-version-control

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

This command runs the command, and also creates two YAML523 files, dvc.yaml and dvc.lock.
They contain the pipeline description, which currently comprises of the first stage:

DVC
$ cat dvc.yaml
stages:
prepare:
cmd: python src/prepare.py
deps:
- data/raw
- src/prepare.py
outs:
- data/prepared/test.csv
- data/prepared/train.csv

The lock file tracks the versions of all relevant files via MD5 hashes. This allows DVC to track
all dependencies and outputs and detect if any of these files change.

DVC
$ cat dvc.lock
prepare:
cmd: python src/prepare.py
deps:
- path: data/raw
md5: d39907b06425b95b440a692eb1af5ba4.dir
size: 16711927
nfiles: 2704

- path: src/prepare.py
md5: ef804f358e00edcfe52c865b471f8f55
size: 1231

outs:
- path: data/prepared/test.csv
md5: 536fe137c83d7119c45f5d978335425b
size: 62023

- path: data/prepared/train.csv
md5: 0bad47e2449d20d62df6fd9fdbeaa32b
size: 155128

The command also added the results from the stage, train.csv and test.csv into a .gitignore
file.

The next pipeline stage is training, in which train.py will be used to train a classifier on the
data. Initially, this classifier is an SGD classifier. The following command sets it up:

$ dvc run -n train \
-d src/train.py -d data/prepared/train.csv \
-o model/model.joblib \
python src/train.py

Running stage 'train' with command:
python src/train.py

/home/adina/env/handbook2/lib/python3.9/site-packages/sklearn/linear_model/_stochastic_
→˓gradient.py:570: ConvergenceWarning: Maximum number of iteration reached before␣
→˓convergence. Consider increasing max_iter to improve the fit.
warnings.warn("Maximum number of iteration reached before "

Adding stage 'train' in 'dvc.yaml'

(continues on next page)

523 https://en.wikipedia.org/wiki/YAML

374 Chapter 19. Special purpose showrooms

https://en.wikipedia.org/wiki/YAML

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

Updating lock file 'dvc.lock'

To track the changes with git, run:

git add dvc.yaml model/.gitignore dvc.lock

Afterwards, train.py has been executed, and the pipelines have been updated with a second
stage. The resulting changes can be added to Git:

DVC
$ git add dvc.yaml model/.gitignore dvc.lock

Finally, we create the last stage, model evaluation. The following command sets it up:

$ dvc run -n evaluate \
-d src/evaluate.py -d model/model.joblib \
-M metrics/accuracy.json \
python src/evaluate.py

Running stage 'evaluate' with command:
python src/evaluate.py

Adding stage 'evaluate' in 'dvc.yaml'
Updating lock file 'dvc.lock'

To track the changes with git, run:

git add dvc.yaml dvc.lock

DVC
$ git add dvc.yaml dvc.lock

Instead of “outs”, this final stage uses the -M flag to denote a “metric”. This type of flag can
be used if floating-point or integer values that summarize model performance (e.g. accuracies,
receiver operating characteristics, or area under the curve values) are saved in hierarchical
files (JSON, YAML). DVC can then read from these files to display model performances and
comparisons:

DVC
$ dvc metrics show

metrics/accuracy.json:
accuracy: 0.8022813688212928

The complete pipeline now consists of preparation, training, and evaluation. It now needs to
be committed, tagged, and pushed:

DVC
$ git add --all
$ git commit -m "Add SGD pipeline"
$ dvc commit
$ git push --set-upstream origin sgd-pipeline
$ git tag -a sgd-pipeline -m "Trained SGD as DVC pipeline."
$ git push origin --tags
$ dvc push
[sgd-pipeline 0268557] Add SGD pipeline
5 files changed, 71 insertions(+)

(continues on next page)

19.1. Reproducible machine learning analyses: DataLad as DVC 375

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

create mode 100644 dvc.lock
create mode 100644 dvc.yaml
create mode 100644 metrics/accuracy.json
error: src refspec sgd-pipeline matches more than one
error: failed to push some refs to '/home/me/pushes/data-version-control'
fatal: tag 'sgd-pipeline' already exists
To /home/me/pushes/data-version-control
* [new tag] random-forest -> random-forest
* [new tag] sgd-pipeline -> sgd-pipeline
3 files pushed

Model 2: random forrest classifier

In order to explore a second model, a random forrest classifier, we start with a new branch.

DVC
$ git checkout -b random_forrest
Switched to a new branch 'random_forrest'

To switch from SGD to a random forrest classifier, a few lines of code within train.py need to be
changed. The following here doc524 changes the script accordingly (changes are highlighted):

DVC
$ cat << EOT >| src/train.py
from joblib import dump
from pathlib import Path

import numpy as np
import pandas as pd
from skimage.io import imread_collection
from skimage.transform import resize
from sklearn.ensemble import RandomForestClassifier

def load_images(data_frame, column_name):
filelist = data_frame[column_name].to_list()
image_list = imread_collection(filelist)
return image_list

def load_labels(data_frame, column_name):
label_list = data_frame[column_name].to_list()
return label_list

def preprocess(image):
resized = resize(image, (100, 100, 3))
reshaped = resized.reshape((1, 30000))
return reshaped

def load_data(data_path):
df = pd.read_csv(data_path)
labels = load_labels(data_frame=df, column_name="label")
raw_images = load_images(data_frame=df, column_name="filename")
processed_images = [preprocess(image) for image in raw_images]
data = np.concatenate(processed_images, axis=0)
return data, labels

(continues on next page)

524 https://en.wikipedia.org/wiki/Here_document

376 Chapter 19. Special purpose showrooms

https://en.wikipedia.org/wiki/Here_document

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

def main(repo_path):
train_csv_path = repo_path / "data/prepared/train.csv"
train_data, labels = load_data(train_csv_path)
rf = RandomForestClassifier()
trained_model = rf.fit(train_data, labels)
dump(trained_model, repo_path / "model/model.joblib")

if __name__ == "__main__":
repo_path = Path(__file__).parent.parent
main(repo_path)

EOT

Afterwards, since train.py is changed, dvc status will realize that one dependency of the
pipeline stage “train” has changed:

DVC
$ dvc status
train:

changed deps:
modified: src/train.py

Since the code change (stage 2) will likely affect the metric (stage 3), its best to reproduce the
whole chain. You can reproduce a complete DVC pipeline file with the dvc repro <stagename>
command:

DVC
$ dvc repro evaluate
'data/raw/val.dvc' didn't change, skipping
'data/raw/train.dvc' didn't change, skipping
Stage 'prepare' didn't change, skipping
Running stage 'train' with command:

python src/train.py
Updating lock file 'dvc.lock'

Running stage 'evaluate' with command:
python src/evaluate.py

Updating lock file 'dvc.lock'

To track the changes with git, run:

git add dvc.lock
Use `dvc push` to send your updates to remote storage.

DVC checks the dependencies of the pipeline and re-executes commands that need to be
executed again. Compared to the branch sgd_pipeline, the workspace in the current
random_forrest branch contains a changed script (src/train.py), a changed trained classi-
fier (model/model.joblib), and a changed metric (metric/accuracy.json). All these changes
need to be committed, tagged, and pushed now.

DVC
$ git add --all
$ git commit -m "Train Random Forrest classifier"
$ dvc commit
$ git push --set-upstream origin random-forest

(continues on next page)

19.1. Reproducible machine learning analyses: DataLad as DVC 377

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

$ git tag -a random-forest -m "Random Forest classifier with 80.99% accuracy."
$ git push origin --tags
$ dvc push
[random_forrest 6890032] Train Random Forrest classifier
3 files changed, 11 insertions(+), 17 deletions(-)
Everything up-to-date
fatal: tag 'random-forest' already exists
Everything up-to-date
1 file pushed

At this point, you can compare metrics across multiple tags:

DVC
$ dvc metrics show -T
workspace:

metrics/accuracy.json:
accuracy: 0.8048162230671736

random-forest:
metrics/accuracy.json:

accuracy: 0.8187579214195184
sgd-pipeline:

metrics/accuracy.json:
accuracy: 0.7427122940430925

Done!

DataLad workflow

For a direct comparison to DVC, we’ll try to mimic the DVC workflow as closely as it is possible
with DataLad.

Model 1: SGD classifier

DVC-DataLad
$ cd ../DVC-DataLad

As there is no workflow manager in DataLad535, each script execution needs to be done sepa-
rately. To record the execution, get all relevant inputs, and recompute outputs at later points,
we can set up a datalad run call536. Later on, we can rerun a range of datalad run calls at
once to recompute the relevant aspects of the analysis. To harmonize execution and to assist
with reproducibility of the results, we generally recommend to create a container (Docker or
Singularity), add it to the repository as well, and use datalad containers-run call537 and have
that reran, but we’ll stay basic here.

Let’s start with data preparation. Instead of creating a pipeline stage and giving it a name, we
attach a meaningful commit message.

DVC-DataLad
$ datalad run --message "Prepare the train and testing data" \

--input "data/raw/*" \

(continues on next page)

535 yet.
537 To re-read about joining code, execution, data, results and software environment in a re-executable record with

datalad container-run, checkout section Computational reproducibility with software containers (page 166).

378 Chapter 19. Special purpose showrooms

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

--output "data/prepared/*" \
python code/prepare.py

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): data/prepared/test.csv (file)
add(ok): data/prepared/train.csv (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
get (notneeded: 1, ok: 3926)
save (ok: 1)

The results of this computation are automatically saved and associated with their inputs and
command execution. This information isn’t stored in a separate file, but in the Git history, and
saved with the commit message we have attached to the run command.

To stay close to the DVC tutorial, we will also work with tags to identify analysis versions, but
DataLad could also use a range of other identifiers, for example commit hashes, to identify this
computation. As we at this point have set up our data and are ready for the analysis, we will
name the first tag “ready-for-analysis”. This can be done with git tag, but also with datalad
save.

DVC-DataLad
$ datalad save --version-tag ready-for-analysis
save(ok): . (dataset)

Let’s continue with training by running code/train.py on the prepared data.

DVC-DataLad
$ datalad run --message "Train an SGD classifier" \

--input "data/prepared/*" \
--output "model/model.joblib" \
python code/train.py

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
/home/adina/env/handbook2/lib/python3.9/site-packages/sklearn/linear_model/_stochastic_
→˓gradient.py:574: ConvergenceWarning: Maximum number of iteration reached before␣
→˓convergence. Consider increasing max_iter to improve the fit.
warnings.warn("Maximum number of iteration reached before "

[INFO] == Command exit (modification check follows) =====
add(ok): model/model.joblib (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 2)
save (ok: 1)

As before, the results of this computations are saved, an the Git history connects computation,
results, and inputs.

As a last step, we evaluate the first model:

DVC-DataLad
$ datalad run --message "Evaluate SGD classifier model" \

(continues on next page)

19.1. Reproducible machine learning analyses: DataLad as DVC 379

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

--input "model/model.joblib" \
--output "metrics/accuracy.json" \
python code/evaluate.py

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): code/__pycache__/train.cpython-39.pyc (file)
add(ok): metrics/accuracy.json (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
get (notneeded: 1)
save (ok: 1)

At this point, the first accuracy metric is saved in metrics/accuracy.json. Let’s add a tag to
declare that it belongs to the SGD classifier.

DVC-DataLad
$ datalad save --version-tag SGD
save(ok): . (dataset)

Let’s now change the training script to use a random forrest classifier as before:

DVC-DataLad
$ cat << EOT >| code/train.py
from joblib import dump
from pathlib import Path

import numpy as np
import pandas as pd
from skimage.io import imread_collection
from skimage.transform import resize
from sklearn.ensemble import RandomForestClassifier

def load_images(data_frame, column_name):
filelist = data_frame[column_name].to_list()
image_list = imread_collection(filelist)
return image_list

def load_labels(data_frame, column_name):
label_list = data_frame[column_name].to_list()
return label_list

def preprocess(image):
resized = resize(image, (100, 100, 3))
reshaped = resized.reshape((1, 30000))
return reshaped

def load_data(data_path):
df = pd.read_csv(data_path)
labels = load_labels(data_frame=df, column_name="label")
raw_images = load_images(data_frame=df, column_name="filename")
processed_images = [preprocess(image) for image in raw_images]
data = np.concatenate(processed_images, axis=0)
return data, labels

(continues on next page)

380 Chapter 19. Special purpose showrooms

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

def main(repo_path):
train_csv_path = repo_path / "data/prepared/train.csv"
train_data, labels = load_data(train_csv_path)
rf = RandomForestClassifier()
trained_model = rf.fit(train_data, labels)
dump(trained_model, repo_path / "model/model.joblib")

if __name__ == "__main__":
repo_path = Path(__file__).parent.parent
main(repo_path)

EOT

We need to save this change:

$ datalad save -m "Switch to random forrest classification" code/train.py
add(ok): code/train.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Afterwards, we can rerun all run records between the tags ready-for-analysis and SGD using
datalad rerun. We could automatically compute this on a different branch if we wanted to by
using the branch option:

$ datalad rerun --branch="randomforrest" -m "Recompute classification with random forrest␣
→˓classifier" ready-for-analysis..SGD
[INFO] checkout commit 2f50499;
[INFO] run commit 152599e; (Train an SGD clas...)
[INFO] Making sure inputs are available (this may take some time)
unlock(ok): model/model.joblib (file)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): model/model.joblib (file)
save(ok): . (dataset)
[INFO] run commit fbc0ddf; (Evaluate SGD clas...)
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): code/__pycache__/train.cpython-39.pyc (file)
add(ok): metrics/accuracy.json (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
get (notneeded: 3)
save (ok: 2)
unlock (notneeded: 2, ok: 1)

Done! The difference in accuracies between models could now for example be compared with
a git diff:

$ git diff SGD -- metrics/accuracy.json
diff --git a/metrics/accuracy.json b/metrics/accuracy.json
index f847bc7c..38044953 100644
--- a/metrics/accuracy.json

(continues on next page)

19.1. Reproducible machine learning analyses: DataLad as DVC 381

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

+++ b/metrics/accuracy.json
@@ -1 +1 @@
-{"accuracy": 0.752851711026616}
\ No newline at end of file
+{"accuracy": 0.8136882129277566}
\ No newline at end of file

Even though there is no one-to-one correspondence between a DVC and a DataLad workflow, a
DVC workflow can also be implemented with DataLad.

Summary

DataLad and DVC aim to solve the same problems: Version control data, sharing data, and
enabling reproducible analyses. DataLad provides generic solutions to these issues, while DVC
is tuned for machine-learning pipelines. Despite their similar purpose, the looks, feels and
functions of both tools are different, and its a personal decision which one you feel more com-
fortable with. Using DVC requires solid knowledge of Git, because DVC workflows heavily rely
on effective Git practices, such as branching, tags, and .gitignore files. But despite the reliance
on Git, DVC barely integrates with Git – changes done to files in DVC can not be detected by
Git and vice versa, DVC and Git aspects of a repository have to be handled in parallel by the
user, and DVC and Git have distinct command functions and concepts that nevertheless share
the same name. Thus, DVC users need to master Git and DVC workflows and intertwine them
correctly. In return, DVC provides users with workflow management and reporting tuned to
machine learning analyses. It also provides a somewhat more lightweight and uniform across
operating and file systems approach to “data version control” than git-annex used by DataLad.

382 Chapter 19. Special purpose showrooms

CHAPTER

TWENTY

DATALAD INTERNALS

20.1 DataLad’s internal design

The handbook should have provided plenty of insights into common usage patterns for DataLad.
When approaching the software not from a user perspective, but from a developer angle, you
can find further information on the design principles and internal code structure in DataLad’s
Design Documents. These documents are part of the developer docs at docs.datalad.org538 and
538 http://docs.datalad.org

383

http://docs.datalad.org

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

constitute an ongoing effort to document and harmonize the development rules and processes.
Head over to docs.datalad.org/design/index.html539 to find out more.

20.2 Contributing to DataLad

DataLad is free and open source software. Everyone can contribute in various forms – feature
requests, questions, artwork, tutorials, code patches, bug reports, . . . even follows, likes, or
retweets on Twitter540, or discussions in our matrix chatroom541. We would be delighted to
hear from you in any form.

The following resources could be helpful:

For the Handbook

• Take a look at the section Contributing (page 498) for more information.

For DataLad

• Use it! Although it may sound nothing like a contribution, using DataLad is a fundamental
contribution anyone can make. You can find further tutorials, materials, videos, and other
resources in this handbook, and in a dedicated Tutorials repository542. And if you like it,
you can also tell your friends, system administrators, and colleagues about it, or convince
your local IT department to install it on shared compute infrastructure.

• Get in touch: We strive to improve the clarity of DataLad and its documentation. If you
tried to implement DataLad in a specific way and the existing documentation didn’t make
sense, or wasn’t clear enough or even confusing, please help us fix it. Let us know that the
instructions could have been clearer, or that it didn’t cover your use case, or led you along
the wrong path. And if you have suggestions for improvements, let’s incorporate them!
Come chat with us about what you do on Matrix543 (a free, decentralized, and secure

539 http://docs.datalad.org/en/stable/design/index.html
540 https://twitter.com/datalad
541 https://app.element.io/#/room/%23datalad:matrix.org
542 https://github.com/datalad/tutorials
543 https://app.element.io/#/room/%23datalad:matrix.org

384 Chapter 20. DataLad internals

http://docs.datalad.org/en/stable/design/index.html
https://twitter.com/datalad
https://app.element.io/#/room/%23datalad:matrix.org
https://github.com/datalad/tutorials
https://app.element.io/#/room/%23datalad:matrix.org

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

communication network), tag datalad in an issue on Neurostars544, or get in touch via
GITHUB.

• Show your support: If you like DataLad you can show your support in various meaningful
ways. You can “star”545 the project on GitHub. You can subscribe, like, or follow DataLad
on social media: There is a Twitter Account546 on which we regularly post updates, and
a YouTube channel547 on which we post tutorials and talks. And if you write academic
papers or blog posts, you can cite the paper about DataLad548 if DataLad assisted in your
work.

• Contribute on GitHub: A most valuable contribution is your time. We are interested
and grateful for opinions, bug reports, feature requests, patches, larger code contribu-
tions, or simply a notice what you use DataLad for. Find the relevant repository, be that
github.com/datalad/datalad549 (the main repository), github.com/datalad-datasets550

(many open datasets), or any DATALAD EXTENSION, and open issues or pull requests.
DataLad’s CONTRIBUTING551 file has tons of technical and social information to get you
started with code contributions. But don’t be intimidated by the wealth of information
you will find in there. We’ll be happy to help you at any stage. Also, you can take a look
at technical docs (docs.datalad.org552) and in particular the Design documents (page 383)
that shed light on the internal design principles of the software.

• Write an extension! If you have unique use cases, you can write your own DATA-
LAD EXTENSION for it, that can provide any number of additional DataLad commands
that are automatically included in DataLad’s command line and Python API. Our ex-
tension template553 is the best starting point. It contains an example command im-
plementation, and will have test setup and packaging configurations in place already.
If you want to, you can register your extension against DataLad’s extension registry at
github.com/datalad/datalad-extensions554 – if your project is included, we can continu-
ously check whether current versions of DataLad work with your extension.

• Contribute to related projects As open source software, we proudly stand on the shoul-
ders of giants. The DataLad project wouldn’t be possible without many other open source
packages and projects. Helping them helps us, and you could do so in any of the ways
described above, including documentation, tutorials, patches, support – if you have a pas-
sion for Haskell555 or C556 you could even head over to git-annex557 or Git558 themselves.

Thank you for your interest and support!

544 https://neurostars.org/
545 https://github.com/datalad/datalad/stargazers
546 https://twitter.com/datalad
547 https://youtube.com/datalad
548 https://joss.theoj.org/papers/10.21105/joss.03262
549 https://github.com/datalad/datalad
550 https://github.com/datalad-datasets
551 https://github.com/datalad/datalad/blob/master/CONTRIBUTING.md
552 http://docs.datalad.org/
553 https://github.com/datalad/datalad-extension-template
554 https://github.com/datalad/datalad-extensions
555 https://www.haskell.org/
556 https://en.wikipedia.org/wiki/C_(programming_language)
557 http://source.git-annex.branchable.com/?p=source.git;a=summary
558 https://github.com/git/git

20.2. Contributing to DataLad 385

https://neurostars.org/
https://github.com/datalad/datalad/stargazers
https://twitter.com/datalad
https://youtube.com/datalad
https://joss.theoj.org/papers/10.21105/joss.03262
https://github.com/datalad/datalad
https://github.com/datalad-datasets
https://github.com/datalad/datalad/blob/master/CONTRIBUTING.md
http://docs.datalad.org/
https://github.com/datalad/datalad-extension-template
https://github.com/datalad/datalad-extension-template
https://github.com/datalad/datalad-extensions
https://www.haskell.org/
https://en.wikipedia.org/wiki/C_(programming_language)
http://source.git-annex.branchable.com/?p=source.git;a=summary
https://github.com/git/git

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

386 Chapter 20. DataLad internals

Part IV

Use cases

387

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

In this part of the book you will find concrete examples of DataLad applications for general
inspiration. You can get an overview of what is possible by browsing through them, and step-
by-step solutions for a range of problems in every single one. Provided you have read the
previous Basics (page 33) sections, the usecases’ code examples are sufficient (though sparser
than in Basics) to recreate or apply the solutions they demonstrate.

388

CHAPTER

TWENTYONE

A TYPICAL COLLABORATIVE DATA MANAGEMENTWORKFLOW

This use case sketches the basics of a common, collaborative data management workflow for an
analysis:

1. A 3rd party dataset is obtained to serve as input for an analysis.

2. Data processing is collaboratively performed by two colleagues.

3. Upon completion, the results are published alongside the original data for further con-
sumption.

The data types and methods mentioned in this usecase belong to the scientific field of neu-
roimaging, but the basic workflow is domain-agnostic.

21.1 The Challenge

Bob is a new PhD student and about to work on his first analysis. He wants to use an open
dataset as the input for his analysis, so he asks a friend who has worked with the same dataset
for the data and gets it on a hard drive. Later, he’s stuck with his analysis. Luckily, Alice, a
senior grad student in the same lab, offers to help him. He sends his script to her via email and
hopes she finds the solution to his problem. She responds a week later with the fixed script,
but in the meantime Bob already performed some miscellaneous changes to his script as well.
Identifying and integrating her fix into his slightly changed script takes him half a day. When
he finally finishes his analysis, he wants to publish code and data online, but can not find a way
to share his data together with his code.

21.2 The DataLad Approach

Bob creates his analysis project as a DataLad dataset. Complying with the YODA principles
(page 136), he creates his scripts in a dedicated code/ directory, and clones the open dataset as
a standalone DataLad subdataset within a dedicated subdirectory. To collaborate with his senior
grad student Alice, he shares the dataset on the lab’s SSH server, and they can collaborate on
the version controlled dataset almost in real time with no need for Bob to spend much time
integrating the fix that Alice provides him with. Afterwards, Bob can execute his scripts in a
way that captures all provenance for this results with a datalad run command. Bob can share
his whole project after completion by creating a sibling on a webserver, and pushing all of his
dataset, including the input data, to this sibling, for everyone to access and recompute.

389

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

21.3 Step-by-Step

Bob creates a DataLad dataset for his analysis project to live in. Because he knows about the
YODA principles, he configures the dataset to be a YODA dataset right at the time of creation:

$ datalad create -c yoda --description "my 1st phd project on work computer" myanalysis
[INFO] Creating a new annex repo at /home/me/usecases/collab/myanalysis
[INFO] scanning for unlocked files (this may take some time)
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
create(ok): /home/me/usecases/collab/myanalysis (dataset)

After creation, there already is a code/ directory, and all of its inputs are version-controlled by
GIT instead of GIT-ANNEX thanks to the yoda procedure:

$ cd myanalysis
$ tree
.

CHANGELOG.md
code

README.md
README.md

1 directory, 3 files

Bob knows that a DataLad dataset can contain other datasets. He also knows that as any content
of a dataset is tracked and its precise state is recorded, this is a powerful method to specify and
later resolve data dependencies, and that including the dataset as a standalone data component
will it also make it easier to keep his analysis organized and share it later. The dataset that Bob
wants to work with is structural brain imaging data from the studyforrest project559, a public
data resource that the original authors share as a DataLad dataset through GITHUB. This means
that Bob can simply clone the relevant dataset from this service and into his own dataset. To do
that, he clones it as a subdataset into a directory he calls src/ as he wants to make it obvious
which parts of his analysis steps and code require 3rd party data:

$ datalad clone -d . https://github.com/psychoinformatics-de/studyforrest-data-structural.
→˓git src/forrest_structural
[INFO] Cloning dataset to Dataset(/home/me/usecases/collab/myanalysis/src/forrest_
→˓structural)
[INFO] Attempting to clone from https://github.com/psychoinformatics-de/studyforrest-data-
→˓structural.git to /home/me/usecases/collab/myanalysis/src/forrest_structural
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/collab/myanalysis/src/
→˓forrest_structural)
[INFO] scanning for unlocked files (this may take some time)
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): src/forrest_structural (dataset)
add(ok): src/forrest_structural (file)

(continues on next page)

559 http://studyforrest.org/

390 Chapter 21. A typical collaborative data management workflow

http://studyforrest.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

add(ok): .gitmodules (file)
save(ok): . (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
install (ok: 1)
save (ok: 2)

Now that he executed this command, Bob has access to the entire dataset content, and the
precise version of the dataset got linked to his top-level dataset myanalysis. However, no data
was actually downloaded (yet). Bob very much appreciates that DataLad datasets primarily
contain information on a dataset’s content and where to obtain it: Cloning above was done
rather quickly, and will still be relatively lean even for a dataset that contains several hundred
GBs of data. He knows that his script can obtain the relevant data he needs on demand if he
wraps it into a datalad run command and therefore does not need to care about getting the
data yet. Instead, he focuses to write his script code/run_analysis.sh. To save this progress,
he runs frequent datalad save commands:

$ datalad save -m "First steps: start analysis script" code/run_analysis.py
add(ok): code/run_analysis.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Once Bob’s analysis is finished, he can wrap it into datalad run. To ease execution, he first
makes his script executable by adding a SHEBANG that specifies Python as an interpreter at the
start of his script, and giving it executable PERMISSIONS:

$ chmod +x code/run_analysis.py
$ datalad save -m "make script executable"
add(ok): code/run_analysis.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Importantly, prior to a datalad run, he specifies the necessary inputs such that DataLad can
take care of the data retrieval for him:

$ datalad run -m "run first part of analysis workflow" \
--input "src/forrest_structural" \
--output results.txt \
"code/run_analysis.py"

[INFO] Making sure inputs are available (this may take some time)
get(ok): src/forrest_structural/sub-01/anat/sub-01_T1w.nii.gz (file) [from mddatasrc...]
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====

This will take care of retrieving the data, running Bobs script, and saving all outputs.

Some time later, Bob needs help with his analysis. He turns to his senior grad student Alice
for help. Alice and Bob both work on the same computing server. Bob has told Alice in which
directory he keeps his analysis dataset, and the directory is configured to have PERMISSIONS

21.3. Step-by-Step 391

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

that allow for read-access for all lab-members, so Alice can obtain Bob’s work directly from his
home directory:

$ datalad clone /myanalysis bobs_analysis
[INFO] Cloning dataset to Dataset(/home/me/usecases/collab/bobs_analysis)
[INFO] Attempting to clone from myanalysis to /home/me/usecases/collab/bobs_analysis
[INFO] Completed clone attempts for Dataset(/home/me/usecases/collab/bobs_analysis)
[INFO] scanning for unlocked files (this may take some time)
install(ok): /home/me/usecases/collab/bobs_analysis (dataset)

$ cd bobs_analysis
... make contributions, and save them
$ [...]
$ datalad save -m "you're welcome, bob"
add(ok): code/run_analysis.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Alice can get the studyforrest data Bob used as an input as well as the result file, but she can
also rerun his analysis by using datalad rerun. She goes ahead and fixes Bobs script, and saves
the changes. To integrate her changes into his dataset, Bob registers Alice’s dataset as a sibling:

#in Bobs home directory
$ datalad siblings add -s alice --url '/bobs_analysis'
.: alice(+) [../bobs_analysis (git)]

Afterwards, he can get her changes with a datalad update --merge command:

$ datalad update -s alice --merge
[INFO] Fetching updates for Dataset(/home/me/usecases/collab/myanalysis)
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
merge(ok): . (dataset) [Merged alice/master]
update.annex_merge(ok): . (dataset) [Merged annex branch]
update(ok): . (dataset)
action summary:
merge (ok: 1)
update (ok: 1)
update.annex_merge (ok: 1)

Finally, when Bob is ready to share his results with the world or a remote collaborator, he
makes his dataset available by uploading them to a webserver via SSH. Bob does so by creating
a sibling for the dataset on the server, to which the dataset can be published and later also
updated.

this generated sibling for the dataset and all subdatasets
$ datalad create-sibling --recursive -s public "$SERVER_URL"

Once the remote sibling is created and registered under the name “public”, Bob can publish his
version to it.

$ datalad push -r --to public .

392 Chapter 21. A typical collaborative data management workflow

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

This workflow allowed Bob to obtain data, collaborate with Alice, and publish or share his
dataset with others easily – he cannot wait for his next project, given that this workflow made
his life so simple.

21.3. Step-by-Step 393

CHAPTER

TWENTYTWO

BASIC PROVENANCE TRACKING

This use case demonstrates how the provenance of downloaded and generated files can be
captured with DataLad by

1. downloading a data file from an arbitrary URL from the web

2. perform changes to this data file and

3. capture provenance for all of this

How to become a Git pro

This section uses advanced Git commands and concepts on the side that are not covered
in the book. If you want to learn more about the Git commands shown here, the ProGit
book560 is an excellent resource.
560 https://git-scm.com/book/en/v2

22.1 The Challenge

Rob needs to turn in an art project at the end of the high school year. He wants to make it as
easy as possible and decides to just make a photomontage of some pictures from the internet.
When he submits the project, he does not remember where he got the input data from, nor the
exact steps to create his project, even though he tried to take notes.

22.2 The DataLad Approach

Rob starts his art project as a DataLad dataset. When downloading the images he wants to use
for his project, he tracks where they come from. And when he changes or creates output, he
tracks how, when and why and this was done using standard DataLad commands. This will
make it easy for him to find out or remember what he has done in his project, and how it has
been done, a long time after he finished the project, without any note taking.

22.3 Step-by-Step

Rob starts by creating a dataset, because everything in a dataset can be version controlled and
tracked:

394

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad create artproject && cd artproject
[INFO] Creating a new annex repo at /home/me/usecases/provenance/artproject
[INFO] scanning for unlocked files (this may take some time)
create(ok): /home/me/usecases/provenance/artproject (dataset)

For his art project, Rob decides to download a mosaic image composed of flowers from Wiki-
media. As a first step, he extracts some of the flowers into individual files to reuse them later.
He uses the datalad download-url command to get the resource straight from the web, but
also capture all provenance automatically, and save the resource in his dataset together with a
useful commit message:

$ mkdir sources
$ datalad download-url -m "Added flower mosaic from wikimedia" \
https://upload.wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.jpg \
--path sources/flowers.jpg

[INFO] Downloading 'https://upload.wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.
→˓jpg' into '/home/me/usecases/provenance/artproject/sources/flowers.jpg'
download_url(ok): /home/me/usecases/provenance/artproject/sources/flowers.jpg (file)
add(ok): sources/flowers.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

If he later wants to find out where he obtained this file from, a git annex whereis562 command
will tell him:

$ git annex whereis sources/flowers.jpg
whereis sources/flowers.jpg (2 copies)

00000000-0000-0000-0000-000000000001 -- web
6a5e5a27-06b0-4987-b028-c9fcfa0d13c4 -- me@muninn:~/usecases/provenance/

→˓artproject [here]

web: https://upload.wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.jpg
ok

To extract some image parts for the first step of his project, he uses the extract tool from
ImageMagick561 to extract the St. Bernard’s Lily from the upper left corner, and the pimpernel
from the upper right corner. The commands will take the Wikimedia poster as an input and
produce output files from it. To capture provenance on this action, Rob wraps it into datalad
run563 commands.

$ datalad run -m "extract st-bernard lily" \
--input "sources/flowers.jpg" \
--output "st-bernard.jpg" \
"convert -extract 1522x1522+0+0 sources/flowers.jpg st-bernard.jpg"
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): st-bernard.jpg (file)
save(ok): . (dataset)

(continues on next page)

562 If you want to learn more about git annex whereis, re-read section Where’s Waldo? (page 99).
561 https://imagemagick.org/index.php
563 If you want to learn more about datalad run, read on from section Keeping track (page 59).

22.3. Step-by-Step 395

https://imagemagick.org/index.php

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

action summary:
add (ok: 1)
get (notneeded: 1)
save (ok: 1)

$ datalad run -m "extract pimpernel" \
--input "sources/flowers.jpg" \
--output "pimpernel.jpg" \
"convert -extract 1522x1522+1470+1470 sources/flowers.jpg pimpernel.jpg"

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): pimpernel.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 1)
save (ok: 1)

He continues to process the images, capturing all provenance with DataLad. Later, he can
always find out which commands produced or changed which file. This information is easily
accessible within the history of his dataset, both with Git and DataLad commands such as git
log or datalad diff.

$ git log --oneline HEAD~3..HEAD
ee60856 [DATALAD RUNCMD] extract pimpernel
604e0ec [DATALAD RUNCMD] extract st-bernard lily
8abceb1 Added flower mosaic from wikimedia

$ datalad diff -f HEAD~3
added: pimpernel.jpg (file)
added: sources/flowers.jpg (file)
added: st-bernard.jpg (file)

Based on this information, he can always reconstruct how an when any data file came to be –
across the entire life-time of a project.

He decides that one image manipulation for his art project will be to displace pixels of an image
by a random amount to blur the image:

$ datalad run -m "blur image" \
--input "st-bernard.jpg" \
--output "st-bernard-displaced.jpg" \
"convert -spread 10 st-bernard.jpg st-bernard-displaced.jpg"

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): st-bernard-displaced.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 1)
save (ok: 1)

Because he is not completely satisfied with the first random pixel displacement, he decides to

396 Chapter 22. Basic provenance tracking

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

retry the operation. Because everything was wrapped in datalad run, he can rerun the com-
mand. Rerunning the command will produce a commit, because the displacement is random
and the output file changes slightly from its previous version.

$ git log -1 --oneline HEAD
548ba71 [DATALAD RUNCMD] blur image

$ datalad rerun 548ba71b3f319d7f88b85ba899081245c567b31c
[INFO] run commit 548ba71; (blur image)
[INFO] Making sure inputs are available (this may take some time)
unlock(ok): st-bernard-displaced.jpg (file)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): st-bernard-displaced.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 1)
save (ok: 1)
unlock (ok: 1)

This blur also does not yet fulfill Robs expectations, so he decides to discard the change, using
standard Git tools564.

$ git reset --hard HEAD~1
HEAD is now at 548ba71 [DATALAD RUNCMD] blur image

He knows that within a DataLad dataset, he can also rerun a range of commands with the
--since flag, and even specify alternative starting points for rerunning them with the --onto
flag. Every command from commits reachable from the specified checksum until --since (but
not including --since) will be re-executed. For example, datalad rerun --since=HEAD~5 will
re-execute any commands in the last five commits. --onto indicates where to start rerunning
the commands from. The default is HEAD, but anything other than HEAD will be checked out
prior to execution, such that re-execution happens in a detached HEAD state, or checked out out
on the new branch specified by the --branch flag. If --since is an empty string, it is set to rerun
every command from the first commit that contains a recorded command. If --onto is an empty
string, re-execution is performed on top to the parent of the first run commit in the revision
list specified with --since. When both arguments are set to empty strings, it therefore means
“rerun all commands with HEAD at the parent of the first commit a command”. In other words,
Rob can “replay” all the history for his artproject in a single command. Using the --branch
option of datalad rerun, he does it on a new branch he names replay:

$ datalad rerun --since= --onto= --branch=replay
[INFO] checkout commit 8abceb1;
[INFO] run commit 604e0ec; (extract st-bernar...)
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): st-bernard.jpg (file)
save(ok): . (dataset)
[INFO] run commit ee60856; (extract pimpernel)
[INFO] Making sure inputs are available (this may take some time)

(continues on next page)

564 Find out more about working with the history of a dataset with Git in section Miscellaneous file system operations
(page 224)

22.3. Step-by-Step 397

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): pimpernel.jpg (file)
save(ok): . (dataset)
[INFO] run commit 548ba71; (blur image)
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): st-bernard-displaced.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
get (notneeded: 3)
save (ok: 3)

Now he is on a new branch of his project, which contains “replayed” history.

$ git log --oneline --graph master replay
* 5a31ed6 [DATALAD RUNCMD] blur image
* b67c608 [DATALAD RUNCMD] extract pimpernel
* 5a861fa [DATALAD RUNCMD] extract st-bernard lily
| * 548ba71 [DATALAD RUNCMD] blur image
| * ee60856 [DATALAD RUNCMD] extract pimpernel
| * 604e0ec [DATALAD RUNCMD] extract st-bernard lily
|/
* 8abceb1 Added flower mosaic from wikimedia
* 62829d6 [DATALAD] new dataset

He can even compare the two branches:

$ datalad diff -t master -f replay
modified: st-bernard-displaced.jpg (file)

He can see that the blurring, which involved a random element, produced different results.
Because his dataset contains two branches, he can compare the two branches using normal
Git operations. The next command, for example, marks which commits are “patch-equivalent”
between the branches. Notice that all commits are marked as equivalent (=) except the ‘random
spread’ ones.

$ git log --oneline --left-right --cherry-mark master...replay
> 5a31ed6 [DATALAD RUNCMD] blur image
= b67c608 [DATALAD RUNCMD] extract pimpernel
= 5a861fa [DATALAD RUNCMD] extract st-bernard lily
< 548ba71 [DATALAD RUNCMD] blur image
= ee60856 [DATALAD RUNCMD] extract pimpernel
= 604e0ec [DATALAD RUNCMD] extract st-bernard lily

Rob can continue processing images, and will turn in a successful art project. Long after he
finishes high school, he finds his dataset on his old computer again and remembers this small
project fondly.

398 Chapter 22. Basic provenance tracking

CHAPTER

TWENTYTHREE

WRITING A REPRODUCIBLE PAPER

This use case demonstrates how to use nested DataLad datasets to create a fully reproducible
paper by linking

1. (different) DataLad dataset sources with

2. the code needed to compute results and

3. LaTeX files to compile the resulting paper.

The different components each exist in individual DataLad datasets and are aggregated into a
single DATALAD SUPERDATASET complying to the YODA principles for data analysis projects573.
The resulting superdataset can be publicly shared, data can be obtained effortlessly on demand
by anyone that has the superdataset, and results and paper can be generated and recomputed
everywhere on demand.

A template to start your own reproducible paper with the same set up can be found on
GitHub565.

23.1 The Challenge

Over the past year, Steve worked on the implementation of an algorithm as a software package.
For testing purposes, he used one of his own data collections, and later also included a publicly
shared data collection. After completion, he continued to work on validation analyses to prove
the functionality and usefulness of his software. Next to a directory in which he developed his
code, and directories with data he tested his code on, he now also has other directories with
different data sources used for validation analyses. “This can not take too long!” Steve thinks
optimistically when he finally sits down to write up a paper.

His scripts run his algorithm on the different data collections, create derivatives of his raw data,
pretty figures, and impressive tables. Just after he hand-copies and checks the last decimal of
the final result in the very last table of his manuscript, he realizes that the script specified the
wrong parameter values, and all of the results need to be recomputed - and obviously updated
in his manuscript. When writing the discussion, he finds a paper that reports an error in the
publicly shared data collection he uses. After many more days of updating tables and fixing
data columns by hand, he finally submits the paper. Trying to stand with his values of open
and reproducible science, he struggles to bundle all scripts, algorithm code, and data he used
in a shareable form, and frankly, with all the extra time this manuscript took him so far, he
lacks motivation and time. In the end, he writes a three page long README file in his GitHub
573 You can read up on the YODA principles again in section YODA: Best practices for data analyses in a dataset

(page 136)
565 https://github.com/datalad-handbook/repro-paper-sketch/

399

https://github.com/datalad-handbook/repro-paper-sketch/
https://github.com/datalad-handbook/repro-paper-sketch/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

code repository, includes his email for data requests, and secretly hopes that no-one will want
to recompute his results, because by now even he himself forgot which script ran on which
dataset and what data was fixed in which way, or whether he was careful enough to copy all
of the results correctly. In the review process, reviewer 2 demands that the figures his software
produces need to get a new color scheme, which requires updates in his software package, and
more recomputations.

23.2 The DataLad Approach

Steve sets up a DataLad dataset and calls it algorithm-paper. In this dataset, he creates several
subdirectories to collate everything that is relevant for the manuscript: Data, code, a manuscript
backbone without results. code/ contains a Python script that he uses for validation analyses,
and prior to computing results, the script attempts to download the data should the files need to
be obtained using DataLad’s Python API. data/ contains a separate DataLad subdataset for every
dataset he uses. An algorithm/ directory is a DataLad dataset containing a clone of his software
repository, and within it, in the directory test/data/, are additional DataLad subdatasets that
contain the data he used for testing. Lastly, the DataLad superdataset contains a LaTeX .tex file
with the text of the manuscript. When everything is set up, a single command line call triggers
(optional) data retrieval from GitHub repositories of the datasets, computation of results and
figures, automatic embedding of results and figures into his manuscript upon computation, and
PDF compiling. When he notices the error in his script, his manuscript is recompiled and up-
dated with a single command line call, and when he learns about the data error, he updates the
respective DataLad dataset to the fixed state while preserving the history of the data repository.

He makes his superdataset a public repository on GitHub, and anyone who clones it can obtain
the data automatically and recompute and recompile the full manuscript with all results. Steve
never had more confidence in his research results and proudly submits his manuscript. During
review, the color scheme update in his algorithm sourcecode is integrated with a simple update
of the algorithm/ subdataset, and upon command-line invocation his manuscript updates itself
with the new figures.

Take a look at the real manuscript dataset

The actual manuscript this use case is based on can be found here566: https://github.com
/psychoinformatics-de/paper-remodnav/. datalad clone the repository and follow the
few instructions in the README to experience the DataLad approach described above.
There is also a slimmed down template that uses the analysis demonstrated in YODA-
compliant data analysis projects (page 143) and packages it up into a reproducible paper
using the same tools: github.com/datalad-handbook/repro-paper-sketch/567.

566 https://github.com/psychoinformatics-de/paper-remodnav/
567 https://github.com/datalad-handbook/repro-paper-sketch/

23.3 Step-by-Step

datalad create a DataLad dataset. In this example, it is named “algorithm-paper”, and datalad
create uses the yoda procedure573 to apply useful configurations for a data analysis project:

400 Chapter 23. Writing a reproducible paper

https://github.com/psychoinformatics-de/paper-remodnav/
https://github.com/psychoinformatics-de/paper-remodnav/
https://github.com/psychoinformatics-de/paper-remodnav/
https://github.com/datalad-handbook/repro-paper-sketch/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad create -c yoda algorithm-paper

[INFO] Creating a new annex repo at /home/adina/repos/testing/algorithm-paper
create(ok): /home/adina/repos/testing/algorithm-paper (dataset)

This newly created directory already has a code/ directory that will be tracked with Git and
some README.md and CHANGELOG.md files thanks to the yoda procedure applied above. Addition-
ally, create a subdirectory data/ within the dataset. This project thus already has a comprehen-
sible structure:

$ cd algorithm-paper
$ mkdir data

You can checkout the directory structure with the tree command

$ tree
algorithm-paper

CHANGELOG.md
code

README.md
data
README.md

All of your analyses scripts should live in the code/ directory, and all input data should live in
the data/ directory.

To populate the DataLad dataset, add all the data collections you want to perform analyses on as
individual DataLad subdatasets within data/. In this example, all data collections are already
DataLad datasets or git repositories and hosted on GitHub. datalad clone therefore installs
them as subdatasets, with -d ../ registering them as subdatasets to the superdataset574.

$ cd data
clone existing git repositories with data (-s specifies the source, in this case,␣
→˓GitHub repositories)
-d points to the root of the superdataset
datalad clone -d ../ https://github.com/psychoinformatics-de/studyforrest-data-phase2.git

[INFO] Cloning https://github.com/psychoinformatics-de/studyforrest-data-phase2.git [1␣
→˓other candidates] into '/home/adina/repos/testing/algorithm-paper/data/raw_eyegaze'
install(ok): /home/adina/repos/testing/algorithm-paper/data/raw_eyegaze (dataset)

$ datalad clone -d ../ git@github.com:psychoinformatics-de/studyforrest-data-
→˓eyemovementlabels.git

[INFO] Cloning git@github.com:psychoinformatics-de/studyforrest-data-eyemovementlabels.
→˓git into '/home/adina/repos/testing/algorithm-paper/data/studyforrest-data-
→˓eyemovementlabels'
Cloning (compressing objects): 45% 1.80k/4.00k [00:01<00:01, 1.29k objects/s
[...]

Any script we need for the analysis should live inside code/. During script writing, save any
changes to you want to record in your history with datalad save.

The eventual outcome of this work is a GitHub repository that anyone can use to get the data
and recompute all results when running the script after cloning and setting up the necessary
574 You can read up on cloning datasets as subdatasets again in section Install datasets (page 46).

23.3. Step-by-Step 401

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

software. This requires minor preparation:

• The final analysis should be able to run on anyone’s filesystem. It is therefore important
to reference datafiles with the scripts in code/ as RELATIVE PATHs instead of hard-coding
ABSOLUTE PATHs.

• After cloning the algorithm-paper repository, data files are not yet present locally. To
spare users the work of a manual datalad get, you can have your script take care of data
retrieval via DataLad’s Python API.

These two preparations can be seen in this excerpt from the Python script:

import DataLad's API
from datalad.api import get

note that the datapath is relative
datapath = op.join('data',

'studyforrest-data-eyemovementlabels',
'sub*',
'*run-2*.tsv')

data = sorted(glob(datapath))

this will get the data if it is not yet retrieved
get(dataset='.', path=data)

Lastly, datalad clone the software repository as a subdataset in the root of the superdataset575.

in the root of ``algorithm-paper`` run
$ datalad clone -d . git@github.com:psychoinformatics-de/remodnav.git

This repository has also subdatasets in which the datasets used for testing live (tests/data/):

$ tree
[...]

| remodnav
clf.py
__init__.py
__main__.py
tests

data
anderson_etal
studyforrest

At this stage, a public algorithm-paper repository shares code and data, and changes to any
dataset can easily be handled by updating the respective subdataset. This already is a big leap
towards open and reproducible science. Thanks to DataLad, code, data, and the history of all
code and data are easily shared - with exact versions of all components and bound together in a
single, fully tracked research object. By making use of the Python API of DataLad and RELATIVE

PATHs in scripts, data retrieval is automated, and scripts can run on any other computer.
575 Note that the software repository may just as well be cloned into data/.

402 Chapter 23. Writing a reproducible paper

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

23.4 Automation with existing tools

To go beyond that and include freshly computed results in a manuscript on the fly does not
require DataLad anymore, only some understanding of Python, LaTeX, and Makefiles. As with
most things, its a surprisingly simple challenge if one has just seen how to do it once. This last
section will therefore outline how to compile the results into a PDF manuscript and automate
this process. In principle, the challenge boils down to:

1. have the script output results (only requires print() statements)

2. capture these results automatically (done with a single line of Unix commands)

3. embed the captured results in the PDF (done with one line in the .tex file and some clever
referencing)

4. automate as much as possible to keep it as simple as possible (done with a Makefile)

That does not sound too bad, does it? Let’s start by revealing how this magic trick works.
Everything relies on printing the results in the form of user-defined LaTeX definitions (using
the \newcommand command), referencing those definitions in your manuscript where the results
should end up, and bind the \newcommands as \input{} to your .tex file. But lets get there in
small steps.

First, if you want to read up on the \newcommand, please see its documentation568. The command
syntax looks like this:

\newcommand{\name}[num]{definition}

What we want to do, expressed in the most human-readable form, is this:

\newcommand{\Table1Cell1Row1}{0.67}

where 0.67 would be a single result computed by your script. This requires print() statements
that look like this in the most simple form (excerpt from script):

print('\\newcommand{\\maxmclf}{{%.2f}}' % max_mclf)

where max_mclf is a variable that stores the value of one computation.

Tables and references to results within the .tex files then do not contain the specific value 0.67
(this value would change if the data changes, or other parameters), but \maxmclf (and similar,
unique names for other results). For full tables, one can come up with naming schemes that
make it easy to fill tables with unique names with minimal work, for example like this (excerpt):

\begin{table}[tbp]
\caption{Cohen's Kappa reliability between human coders (MN, RA),
and \remodnav\ (AL) with each of the human coders.
}
\label{tab:kappa}
\begin{tabular*}{0.5\textwidth}{c @{\extracolsep{\fill}}llll}
\textbf {Fixations} & & \\
\hline\noalign{\smallskip}
Comparison & Images & Dots \\
\noalign{\smallskip}\hline\noalign{\smallskip}
MN versus RA & \kappaRAMNimgFix & \kappaRAMNdotsFix \\
AL versus RA & \kappaALRAimgFix & \kappaALRAdotsFix \\

(continues on next page)

568 https://en.wikibooks.org/wiki/LaTeX/Macros

23.4. Automation with existing tools 403

https://en.wikibooks.org/wiki/LaTeX/Macros

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

AL versus MN & \kappaALMNimgFix & \kappaALMNdotsFix \\
\noalign{\smallskip}
\textbf{Saccades} & & \\
\hline\noalign{\smallskip}
Comparison & Images & Dots \\
\noalign{\smallskip}\hline\noalign{\smallskip}
MN versus RA & \kappaRAMNimgSac & \kappaRAMNdotsSac \\
AL versus RA & \kappaALRAimgSac & \kappaALRAdotsSac \\
AL versus MN & \kappaALMNimgSac & \kappaALMNdotsSac \\
\noalign{\smallskip}
% [..] more content omitted

\end{tabular*}
\end{table}

Without diving into the context of the paper, this table contains results for three three com-
parisons (“MN versus RA”, “AL versus RA”, “AL versus MN”), for three event types (Fixations,
Saccades, and post-saccadic oscillations (PSO)), and three different stimulus types (Images,
Dots, and Videos). The latter event and stimulus are omitted for better readability of the .tex
excerpt. Here is how this table looks like in the manuscript (cropped to match the .tex snippet):

It might appear tedious to write scripts that output results for such tables with individual names.
However, print() statements to fill those tables can utilize Pythons string concatenation meth-
ods and loops to keep the code within a few lines for a full table, such as

iterate over stimulus categories
for stim in ['img', 'dots', 'video']:

iterate over event categories
for ev in ['Fix', 'Sac', 'PSO']:

[...]

create the combinations
for rating, comb in [('RAMN', [RA_res_flat, MN_res_flat]),

('ALRA', [RA_res_flat, AL_res_flat]),
('ALMN', [MN_res_flat, AL_res_flat])]:

kappa = cohen_kappa_score(comb[0], comb[1])
label = 'kappa{}{}{}'.format(rating, stim, ev)
print the result
print('\\newcommand{\\%s}{%s}' % (label, '%.2f' % kappa))

Running the python script will hence print plenty of LaTeX commands to your screen (try it out
in the actual manuscript, if you want!). This was step number 1 of 4.

M23.1 How about figures?

To include figures, the figures just need to be saved into a dedicated location (for example
a directory img/) and included into the .tex file with standard LaTeX syntax. Larger
figures with subfigures can be created by combining several figures:

404 Chapter 23. Writing a reproducible paper

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

\begin{figure*}[tbp]
\includegraphics[trim=0 8mm 3mm 0,clip,width=.5\textwidth]{img/mainseq_lab}
\includegraphics[trim=8mm 8mm 0 0,clip,width=.5\textwidth-3.3mm]{img/mainseq_sub_

→˓lab} \\
\includegraphics[trim=0 0 3mm 0,clip,width=.5\textwidth]{img/mainseq_mri}
\includegraphics[trim=8mm 0 0 0,clip,width=.5\textwidth-3.3mm]{img/mainseq_sub_

→˓mri}

\caption{Main sequence of eye movement events during one 15 minute sequence of
the movie (segment 2) for lab (top), and MRI participants (bottom). Data
across all participants per dataset is shown on the left, and data for a single
exemplary participant on the right.}

\label{fig:overallComp}
\end{figure*}

This figure looks like this in the manuscript:

For step 2 and 3, the print statements need to be captured and bound to the .tex file. The
tee569 command can write all of the output to a file (called results_def.tex):

code/mk_figuresnstats.py -s | tee results_def.tex

This will redirect every print statement the script wrote to the terminal into a file called
results_def.tex. This file will hence be full of \newcommand definitions that contain the re-
sults of the computations.

For step 3, one can include this file as an input source into the .tex file with

\begin{document}
\input{results_def.tex}

Upon compilation of the .tex file into a PDF, the results of the computations captured with
\newcommand definitions are inserted into the respective part of the manuscript.

The last step is to automate this procedure. So far, the script would need to be executed with
a command line call, and the PDF compilation would require another commandline call. One
way to automate this process are Makefiles570. make is a decades-old tool known to many and

569 https://en.wikipedia.org/wiki/Tee_(command)
570 https://en.wikipedia.org/wiki/Make_(software)

23.4. Automation with existing tools 405

https://en.wikipedia.org/wiki/Tee_(command)
https://en.wikipedia.org/wiki/Make_(software)

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

bears the important advantage that is will deliver results regardless of what actually needs to be
done with a single make call – whether it is executing a Python script, running bash commands,
or rendering figures, or all of this. Here is the one used for the manuscript:

1 all: main.pdf
2

3 main.pdf: main.tex tools.bib EyeGaze.bib results_def.tex figures
4 latexmk -pdf -g $<
5

6 results_def.tex: code/mk_figuresnstats.py
7 bash -c 'set -o pipefail; code/mk_figuresnstats.py -s | tee results_def.tex'
8

9 figures: figures-stamp
10

11 figures-stamp: code/mk_figuresnstats.py
12 code/mk_figuresnstats.py -f -r -m
13 $(MAKE) -C img
14 touch $@
15

16 clean:
17 rm -f main.bbl main.aux main.blg main.log main.out main.pdf main.tdo main.fls main.

→˓fdb_latexmk example.eps img/*eps-converted-to.pdf texput.log results_def.tex figures-
→˓stamp

18 $(MAKE) -C img clean

One can read a Makefile as a recipe:

• Line 1: “The overall target should be main.pdf (the final PDF of the manuscript).”

• Line 2-3: “To make the target main.pdf, the following files are required: main.tex (the
manuscript’s .tex file), tools.bib & EyeGaze.bib (bibliography files), results_def.tex
(the results definitions), and figures (a section not covered here, about rendering figures
with inkscape prior to including them in the manuscript). If all of these files are present,
the target main.pdf can be made by running the command latexmk -pdf -g”

• Line 5-6: “To make the target results_def.tex, the script code/mk_figuresnstats.py
is required. If the file is present, the target results_def.tex can be made by run-
ning the command bash -c 'set -o pipefail; code/mk_figuresnstats.py -s | tee
results_def.tex'”

This triggers the execution of the script, collection of results in results_def.tex, and PDF com-
pilation upon typing make. The last three lines define that a make clean removes all computed
files, and also all images.

Finally, by wrapping make in a datalad run command, the computation of results and compiling
of the manuscript with all generated output can be written to the history of the superdataset.
datalad run make will thus capture all provenance for the results and the final PDF.

Thus, by using DataLad and its Python API, a few clever Unix and LaTeX tricks, and Makefiles,
anyone can create a reproducible paper. This saves time, increases your own trust in the results,
and helps to make a more convincing case with your research. If you have not yet, but are
curious, checkout the manuscript this use case is based on571. Any questions can be asked by
opening an issue572.

571 http://github.com/psychoinformatics-de/paper-remodnav/
572 https://github.com/psychoinformatics-de/paper-remodnav/issues/new

406 Chapter 23. Writing a reproducible paper

http://github.com/psychoinformatics-de/paper-remodnav/
https://github.com/psychoinformatics-de/paper-remodnav/issues/new

CHAPTER

TWENTYFOUR

STUDENT SUPERVISION IN A RESEARCH PROJECT

This use case will demonstrate a workflow that uses DataLad tools and principles to assist in
technical aspects of supervising research projects with computational components. It demon-
strates how a DataLad dataset comes with advantages that mitigate technical complexities for
trainees and allows high-quality supervision from afar with minimal effort and time commit-
ment from busy supervisors. It furthermore serves to log undertaken steps, establishes trust in
an analysis, and eases collaboration.

Successful workflows rely on more knowledgeable “trainers” (i.e., supervisors, or a more ex-
perienced collaborator) for a quick initial dataset setup with optimal configuration, and an
introduction to the YODA principles and basic DataLad commands. Subsequently, supervision
and collaboration is made easy by the distributed nature of a dataset. Afterwards, reuse of a
students work is made possible by the modular nature of the dataset. Students can concen-
trate on questions relevant for the field and research topic, and computational complexities are
minimized.

24.1 The Challenge

Megan is a graduate student and does an internship in a lab at a partnering research institution.
As she already has experience in data analysis, and the time of her supervisor is limited, she
is given a research question to work on autonomously. The data are already collected, and
everyone involved is certain that Megan will be fine performing the analyses she has experience
with. Her supervisor confidently proposes the research project as a conference talk Megan
should give at the end of her stay. Megan is excited about the responsibility and her project,
and can not wait to start.

On the first day, her supervisor spends an hour to show her the office, the coffee machine, and
they chat about the high-level aspects of the projects: Which is the relevant literature, who
collected the data, how long should the final talk be. Megan has many procedural questions,
but the hour is over fast, and it is difficult to find time to meet again. As it turns out, her
supervisor will leave the country for a three month visit to a lab in Japan soon, and is very busy
preparing this stay and coordinating other projects. However, everyone is confident that Megan
will be just fine. The IT office issues an account on the computational cluster for her, and the
postdoc that collected the data points her to the directories in which the data are stored.

When she starts, Megan realizes that she has no experience with the Linux-based operating
system running on the compute cluster. She knows very well how to write scripts to perform
very complex analyses, but needs to invest much time to understand basic concepts and relevant
commands on the cluster because no-one is around to give her a quick introduction. When she
starts her computations, she accidentally overwrites a data file in the data collection, and emails

407

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

the postdoc for help. He luckily has a backup of the data and is able to restore the original state,
but grimly CCs her supervisor in his response email to her. Not being told where to store analysis
results in, Megan saves the results in a not backed-up scratch directory. With ambiguous, hard-
to-make-sense-of emails her supervisor sends at 3am, Megan tries to comply to the instructions
she extracts from the emails, and reports back lengthy explanations of what she is doing that her
supervisor rarely has time to read. Without an interactive discussion or feedback component,
Megan is very unsure about what she is supposed to do, and saves multiple different analysis
scripts and results of them inside of the scratch folder.

When her supervisor returns and meets for a project update, he scolds her for the bad organiza-
tion, and the no-backup storage choice. With a pressing timeline, Megan is told to write down
her results. She is discouraged when she finally gets feedback on them and learns that she
interpreted one instruction of her supervisor differently from what was meant by it, deeming
all of her results irrelevant. Not trusting Megan’s analyses anymore, her supervisor cancels the
talk and has the postdoc take over. Megan feels incompetent and regards the stay as a waste
of time, her supervisor is unhappy about the mis-communication and lack of results, and the
postdoc taking over is unable to comprehend what was done so far and needs to start over new,
even though all analysis scripts were correct and very relevant for the future of the project.

24.2 The DataLad Approach

When Megan arrives in the lab, her supervisor and the postdoc that collected the data take
an hour to meet and talk about the upcoming project. To ease the technical complexities for
a new student like Megan on an unfamiliar computational infrastructure, they talk about the
YODA principles, basic DataLad commands, and set up a project dataset for Megan to work in.
Inside of this dataset, the original data are cloned as a subdataset, code is tracked with Git, and
the appropriate software is provided with a containerized image tracked in the dataset. Megan
can adopt the version control workflow and data analysis principles very fast and is thankful
for the brief but sufficient introduction. When her supervisor leaves for Japan, they stay in
touch via email, but her supervisor also checks the development of the project and occasionally
skims through Megan’s code updates from afar every other week. When he notices that one of
his instructions was ambiguous and Megan’s approach to it misguided, he can intervene right
away. Megan feels comfortable and confident that she is doing something useful and learns a
lot about data management in the safe space of a version controlled dataset. Her supervisor can
see how well made Megan’s analysis methods are, and has trust in her results. Megan proudly
presents the results of her analysis and leaves with many good experiences and lots of new
knowledge. Her supervisor is happy about the progress done on the project, and the dataset is
a standalone “lab-notebook” that anyone can later use as a detailed log to make sense of what
was done. As an ongoing collaboration, Megan, the postdoc, and her supervisor write up a
paper on the analysis and use the analysis dataset as a subdataset in this project.

24.3 Step-by-Step

Megan’s supervisor is excited that she comes to visit the lab and trusts her to be a diligent,
organized, and capable researcher. But he also does not have much time for a lengthy introduc-
tion to technical aspects unrelated to the project, interactive teaching, or in-person supervision.
Megan in turn is a competent student and eager to learn new things, but she does not have
experience with DataLad, version control, or the computational cluster.

408 Chapter 24. Student supervision in a research project

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

As a first step, therefore, her supervisor and the postdoc prepare a preconfigured dataset in a
dedicated directory everyone involved in the project has access to:

$ datalad create -c yoda project-megan

All data that this lab generates or uses is a standalone DataLad dataset that lives in a dedicated
data\ directory on a server. To give Megan access to the data without endangering or potentially
modifying the pristine data kept in there, complying to the YODA principles, they clone the data
she is supposed to analyze as a subdataset:

$ cd project-megan
$ datalad clone -d . \
/home/data/ABC-project \
data/ABC-project

[INFO] Cloning /home/data/ABC-project [1 other candidates] into '/home/projects/
→˓project-megan/data/ABC-project'
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): data/ABC-project (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

The YODA principle and the data installation created a comprehensive directory structure and
configured the code\ directory to be tracked in Git, to allow for easy, version-controlled modifi-
cations without the necessity to learn about locked content in the annex.

$ tree
.

CHANGELOG.md
code

README.md
data

ABC-project [13 entries exceeds filelimit, not opening dir]
README.md

Within a 20-minute walk-through, Megan learns the general concepts of version- control, gets
an overview of the YODA principles577, configures her Git identity with the help of her super-
visor, and is given an introduction to the most important DataLad commands relevant to her,
datalad save578, datalad containers-run579, and datalad rerun580. For reference, they also
give her the cheat sheet (page 496) and the link to the DataLad handbook as a resource if she
has further questions.

To make the analysis reproducible, they spent the final part of the meeting on adding the labs
default singularity image to the dataset. The lab has a singularity image with all the relevant
software on Singularity-Hub576, and it can easily be added to the dataset with the DataLad-
containers extension579:

577 Find out more about the YODA principles in section YODA: Best practices for data analyses in a dataset (page 136)
578 Find out more about datalad save in section Modify content (page 43)
579 Find out more about the datalad containers extension in section TODO:link once it exists
580 Find out more about the datalad rerun command in section DataLad, Re-Run! (page 64)
576 https://singularity-hub.org/

24.3. Step-by-Step 409

https://singularity-hub.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad containers-add somelabsoftware --url shub://somelab/somelab-
→˓container:Softwaresetup

With the container image registered in the dataset, Megan can perform her analysis in the
correct software environment, does not need to setup software herself, and creates a more
reproducible analysis.

With only a single command to run, Megan finds it easy to version control her scripts and gets
into the habit of running datalad save frequently. This way, she can fully concentrate on writing
up the analysis. In the beginning, her commit messages may not be optimal, and the changes
she commits into a single commit might have better been split up into separate commits. But
from the very beginning she is able to version control her progress, and she gets more and more
proficient as the project develops.

Knowing the YODA principles gives her clear and easy-to-follow guidelines on how to work.
Her scripts are producing results in dedicated output/ directories and are executed with datalad
containers-run to capture the provenance of how which result came to be with which software.
These guidelines are not complex, and yet make her whole workflow much more comprehensi-
ble, organized, and transparent.

The preconfigured DataLad dataset thus minimized the visible technical complexity. Just a few
commands and standards have a large positive impact on her project and Megan learns these
new skills fast. It did not take her supervisor much time to configure the dataset or give her an
introduction to the relevant commands, and yet it ensured her to be able to productively work
and contribute her expertise to the project.

Her supervisor can also check how the project develops if Megan asks for assistance or if he is
curious – even from afar and whenever he has some 15 minutes of spare-time. When he notices
that Megan must have misunderstood one of his emails, he can intervene and contact Megan by
their preferred method of communication, and/or push a fix or comment to the project, as he
has write-access. This enables him to stay up-to-date independent of emails or meetings with
Megan, and to help when necessary without much trouble. When they talk, they focus on the
code and analysis at hand, and not solely on verbal reports.

Megan finishes her analysis well ahead of time and can prepare her talk. Together with her
supervisor she decides which figures look good and which results are important. All results that
are deemed irrelevant can be dropped to keep the dataset lean, but could be recomputed as
their provenance was tracked. Finally, the data analysis project is cloned as an input into a new
dataset created for collaborative paper-writing on the analysis:

$ datalad create megans-paper
$ cd megans-paper
$ datalad clone -d . \
/home/projects/project-megan \
analysis

[INFO] Cloning /home/projects/project-megan [1 other candidates] into '/home/paper/
→˓megans-paper'
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): analysis (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

410 Chapter 24. Student supervision in a research project

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Even as Megan returns to her home institution, they can write up the paper on her analysis col-
laboratively, and her co-authors have a detailed research log of the project within the dataset’s
history.

In summary, DataLad can help to effectively manage student supervision in computational
projects. It requires minimal effort, but comes with great benefit:

• Appropriate data management is made a key element of the project and handled from the
start, not an afterthought that needs to be addressed at the end of its lifetime.

• The dataset becomes the lab notebook, hence a valid and detailed log is always available
and accessible to supervisor and trainee.

• supervisors can efficiently prepare for meetings in a way that does not rely exclusively on
a students report. This shifts the focus from trust in a student to trust in a student’s work.

• supervisors can provide feedback, not only high-level based on a presentation, but much
more detailed, and also on process aspects if desired/necessary: Supervisors can directly
contribute in a way that is as auditable/accountable as the student’s own contributions
– for both parties the strict separation and tracking of any external inputs of a project
make it possible (when a project is completed) that a supervisor can efficiently test the
integrity of the inputs, discard them (if unmodified), and only archive the outputs that
are unique to the project – which then can become a modular component for re-use in a
future project.

24.3. Step-by-Step 411

CHAPTER

TWENTYFIVE

A BASIC AUTOMATICALLY AND COMPUTATIONALLY
REPRODUCIBLE NEUROIMAGING ANALYSIS

This use case sketches the basics of a portable analysis of public neuroimaging data that can be
automatically computationally reproduced by anyone:

1. Public open data stems from THE DATALAD SUPERDATASET ///.

2. Automatic data retrieval can be ensured by using DataLad’s commands in the analysis
scripts, or the --input specification of datalad run,

3. Analyses are executed using datalad run and datalad rerun commands to capture ev-
erything relevant to reproduce the analysis.

4. The final dataset can be kept as lightweight as possible by dropping input that can be
easily re-obtained.

5. A complete reproduction of the computation (including input retrieval), is possible with
a single datalad rerun command.

This use case is a specialization of Writing a reproducible paper (page 399), and a simpler
version of An automatically and computationally reproducible neuroimaging analysis from scratch
(page 420): It is a data analysis that requires and creates large data files, uses specialized
analysis software, and is fully automated using solely DataLad commands and tools. While
exact data types, analysis methods, and software mentioned in this use case belong to the
scientific field of neuroimaging, the basic workflow is domain-agnostic.

25.1 The Challenge

Creating reproducible (scientific) analyses seems to require so much: One needs to share data,
scripts, results, and instructions on how to use data and scripts to obtain the results. A re-
searcher at any stage of their career can struggle to remember which script needs to be run in
which order, or to create comprehensible instructions for others on where and how to obtain
data and how to run which script at what point in time. This leads to failed replications, a loss
of confidence in results, and major time requirements for anyone trying to reproduce others or
even their own analyses.

25.2 The DataLad Approach

Scientific studies should be reproducible, and with the increasing accessibility of data, there is
not much excuse for a lack of reproducibility anymore. DataLad can help with the technical

412

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

aspects of reproducible science.

For neuroscientific studies, THE DATALAD SUPERDATASET /// provides unified access to a large
amount of data. Using it to install datasets into an analysis-superdataset makes it easy to
share this data together with the analysis. By ensuring that all relevant data is downloaded
via datalad get via DataLad’s command line tools in the analysis scripts, or --input specifica-
tions in a datalad run, an analysis can retrieve all required inputs fully automatically during
execution. Recording executed commands with datalad run allows to rerun complete analysis
workflows with a single command, even if input data does not exist locally. Combining these
three steps allows to share fully automatically reproducible analyses as lightweight datasets.

25.3 Step-by-Step

It always starts with a dataset:

$ datalad create -c yoda demo
[INFO] Creating a new annex repo at /home/me/usecases/repro/demo
[INFO] Scanning for unlocked files (this may take some time)
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
create(ok): /home/me/usecases/repro/demo (dataset)

For this demo we are using two public brain imaging datasets that were pub-
lished on OpenFMRI.org581, and are available from THE DATALAD SUPERDATASET ///
(datasets.datalad.org). When installing datasets from this superdataset, we can use its abbrevi-
ation ///. The two datasets, ds000001582 and ds000002583, are installed into the subdirectory
inputs/.

$ cd demo
$ datalad clone -d . ///openfmri/ds000001 inputs/ds000001
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro/demo/inputs/ds000001)
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000001 to /home/me/
→˓usecases/repro/demo/inputs/ds000001
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000001/.git to /
→˓home/me/usecases/repro/demo/inputs/ds000001
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro/demo/inputs/ds000001)
[INFO] scanning for unlocked files (this may take some time)
install(ok): inputs/ds000001 (dataset)
add(ok): inputs/ds000001 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:

(continues on next page)

581 https://legacy.openfmri.org/
582 https://legacy.openfmri.org/dataset/ds000001/
583 https://legacy.openfmri.org/dataset/ds000002/

25.3. Step-by-Step 413

https://legacy.openfmri.org/
https://legacy.openfmri.org/dataset/ds000001/
https://legacy.openfmri.org/dataset/ds000002/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

add (ok: 3)
install (ok: 1)
save (ok: 2)

$ cd demo
$ datalad clone -d . ///openfmri/ds000002 inputs/ds000002
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro/demo/inputs/ds000002)
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000002 to /home/me/
→˓usecases/repro/demo/inputs/ds000002
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000002/.git to /
→˓home/me/usecases/repro/demo/inputs/ds000002
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro/demo/inputs/ds000002)
[INFO] scanning for unlocked files (this may take some time)
install(ok): inputs/ds000002 (dataset)
add(ok): inputs/ds000002 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
install (ok: 1)
save (ok: 2)

Both datasets are now registered as subdatasets, and their precise versions (e.g. in the form of
the commit shasum of the latest commit) are on record:

$ datalad --output-format '{path}: {gitshasum}' subdatasets
/home/me/usecases/repro/demo/inputs/ds000001: f7fe2e38852915e7042ca1755775fcad0ff166e5
/home/me/usecases/repro/demo/inputs/ds000002: 6b16eff0c9e8d443ee551784981ddd954f657071

DataLad datasets are fairly lightweight in size, they only contain pointers to data and history
information in their minimal form. Thus, so far very little data were actually downloaded:

$ du -sh inputs/
15M inputs/

Both datasets would actually be several gigabytes in size, once the dataset content gets down-
loaded:

$ datalad -C inputs/ds000001 status --annex
$ datalad -C inputs/ds000002 status --annex
130 annex'd files (2.3 GB recorded total size)
nothing to save, working tree clean
274 annex'd files (2.7 GB recorded total size)
nothing to save, working tree clean

Both datasets contain brain imaging data, and are compliant with the BIDS standard584. This
makes it really easy to locate particular images and perform analysis across datasets.
584 https://bids.neuroimaging.io/

414Chapter 25. A basic automatically and computationally reproducible neuroimaging analysis

https://bids.neuroimaging.io/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Here we will use a small script that performs ‘brain extraction’ using FSL585 as a stand-in for
a full analysis pipeline. The script will be stored inside of the code/ directory that the yoda-
procedure created that at the time of dataset-creation.

$ cat << EOT > code/brain_extraction.sh
enable FSL
. /etc/fsl/5.0/fsl.sh

obtain all inputs
datalad get \$@
perform brain extraction
count=1
for nifti in \$@; do
subdir="sub-\$(printf %03d \$count)"
mkdir -p \$subdir
echo "Processing \$nifti"
bet \$nifti \$subdir/anat -m
count=\$((count + 1))

done
EOT

Note that this script uses the datalad get command which automatically obtains the required
files from their remote source – we will see this in action shortly.

We are saving this script in the dataset. This way, we will know exactly which code was used
for the analysis. Everything inside of code/ is tracked with Git thanks to the yoda-procedure, so
we can see more easily how it was edited over time. In addition, we will “tag” this state of the
dataset with the tag setup_done to mark the repository state at which the analysis script was
completed. This is optional, but it can help to identify important milestones more easily.

$ datalad save --version-tag setup_done -m "Brain extraction script" code/brain_
→˓extraction.sh
add(ok): code/brain_extraction.sh (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Now we can run our analysis code to produce results. However, instead of running it directly,
we will run it with DataLad – this will automatically create a record of exactly how this script
was executed.

For this demo we will just run it on the structural images (T1w) of the first subject (sub-01)
from each dataset. The uniform structure of the datasets makes this very easy. Of course we
could run it on all subjects; we are simply saving some time for this demo. While the command
runs, you should notice a few things:

1) We run this command with ‘bash -e’ to stop at any failure that may occur

2) You’ll see the required data files being obtained as they are needed – and only those that
are actually required will be downloaded (because of the appropriate --input specifi-
cation of the datalad run – but as a datalad get is also included in the bash script,
forgetting an --input specification would not be problem).

585 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

25.3. Step-by-Step 415

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad run -m "run brain extract workflow" \
--input "inputs/ds*/sub-01/anat/sub-01_T1w.nii.gz" \
--output "sub-*/anat" \
bash -e code/brain_extraction.sh inputs/ds*/sub-01/anat/sub-01_T1w.nii.gz
[INFO] Making sure inputs are available (this may take some time)
get(ok): inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz (file) [from web...]
get(ok): inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz (file) [from web...]
[INFO] == Command start (output follows) =====
action summary:
get (notneeded: 4)

Processing inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz
Processing inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz
[INFO] == Command exit (modification check follows) =====
add(ok): sub-001/anat.nii.gz (file)
add(ok): sub-001/anat_mask.nii.gz (file)
add(ok): sub-002/anat.nii.gz (file)
add(ok): sub-002/anat_mask.nii.gz (file)
save(ok): . (dataset)

The analysis step is done, all generated results were saved in the dataset. All changes, including
the command that caused them are on record:

$ git show --stat
commit 43927820508224c47b678b1f8f9cfca4f42f583c
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 10:28:12 2021 +0200

[DATALAD RUNCMD] run brain extract workflow

=== Do not change lines below ===
{
"chain": [],
"cmd": "bash -e code/brain_extraction.sh inputs/ds000001/sub-01/anat/sub-01_T1w.nii.

→˓gz inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz",
"dsid": "b9aafaf5-0399-4726-805b-0440aa138be7",
"exit": 0,
"extra_inputs": [],
"inputs": [
"inputs/ds*/sub-01/anat/sub-01_T1w.nii.gz"
],
"outputs": [
"sub-*/anat"
],
"pwd": "."

}
^^^ Do not change lines above ^^^

sub-001/anat.nii.gz | 1 +
sub-001/anat_mask.nii.gz | 1 +
sub-002/anat.nii.gz | 1 +
sub-002/anat_mask.nii.gz | 1 +
4 files changed, 4 insertions(+)

DataLad has enough information stored to be able to re-run a command.

On command exit, it will inspect the results and save them again, but only if they are different.
In our case, the re-run yields bit-identical results, hence nothing new is saved.

416Chapter 25. A basic automatically and computationally reproducible neuroimaging analysis

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad rerun
[INFO] run commit 4392782; (run brain extract...)
[INFO] Making sure inputs are available (this may take some time)
unlock(ok): sub-001/anat.nii.gz (file)
unlock(ok): sub-001/anat_mask.nii.gz (file)
unlock(ok): sub-002/anat.nii.gz (file)
unlock(ok): sub-002/anat_mask.nii.gz (file)
[INFO] == Command start (output follows) =====
action summary:
get (notneeded: 4)

Processing inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz
Processing inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz
[INFO] == Command exit (modification check follows) =====
add(ok): sub-001/anat.nii.gz (file)
add(ok): sub-001/anat_mask.nii.gz (file)
add(ok): sub-002/anat.nii.gz (file)
add(ok): sub-002/anat_mask.nii.gz (file)
action summary:
add (ok: 4)
get (notneeded: 4)
save (notneeded: 3)
unlock (ok: 4)

Now that we are done, and have checked that we can reproduce the results ourselves, we can
clean up. DataLad can easily verify if any part of our input dataset was modified since we
configured our analysis, using datalad diff and the tag we provided:

$ datalad diff setup_done inputs

Nothing was changed.

With DataLad with don’t have to keep those inputs around – without losing the ability to repro-
duce an analysis. Let’s uninstall them, and check the size on disk before and after.

$ du -sh
26M .

$ datalad uninstall inputs/*
drop(ok): /home/me/usecases/repro/demo/inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz␣
→˓(file) [checking http://openneuro.s3.amazonaws.com/ds000001/ds000001_R1.1.0/
→˓uncompressed/sub001/anatomy/highres001.nii.gz?
→˓versionId=8TJ17W9WInNkQPdiQ9vS7wo8ZJ9llF80...]
drop(ok): inputs/ds000001 (directory)
uninstall(ok): inputs/ds000001 (dataset)
drop(ok): /home/me/usecases/repro/demo/inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz␣
→˓(file) [checking http://openneuro.s3.amazonaws.com/ds000002/ds000002_R2.0.0/
→˓uncompressed/sub-01/anat/sub-01_T1w.nii.gz?versionId=vXK2.bQ360phhPqbVV_n6RMYqaWAy4Dg...
→˓]
drop(ok): inputs/ds000002 (directory)
uninstall(ok): inputs/ds000002 (dataset)
action summary:
drop (ok: 4)
uninstall (ok: 2)

$ du -sh
3.2M .

25.3. Step-by-Step 417

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The dataset is substantially smaller as all inputs are gone. . .

$ ls inputs/*
inputs/ds000001:

inputs/ds000002:

But as these inputs were registered in the dataset when we installed them, getting them back
is very easy. Only the remaining data (our code and the results) need to be kept and require a
backup for long term archival. Everything else can be re-obtained as needed, when needed.

As DataLad knows everything needed about the inputs, including where to get the right version,
we can re-run the analysis with a single command. Watch how DataLad re-obtains all required
data, re-runs the code, and checks that none of the results changed and need saving.

$ datalad rerun
[INFO] run commit 4392782; (run brain extract...)
[INFO] Making sure inputs are available (this may take some time)
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro/demo/inputs/ds000001)
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000001 to /home/me/
→˓usecases/repro/demo/inputs/ds000001
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000001/.git to /
→˓home/me/usecases/repro/demo/inputs/ds000001
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro/demo/inputs/ds000001)
[INFO] scanning for unlocked files (this may take some time)
install(ok): inputs/ds000001 (dataset) [Installed subdataset in order to get /home/me/
→˓usecases/repro/demo/inputs/ds000001]
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro/demo/inputs/ds000002)
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000002 to /home/me/
→˓usecases/repro/demo/inputs/ds000002
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000002/.git to /
→˓home/me/usecases/repro/demo/inputs/ds000002
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro/demo/inputs/ds000002)
[INFO] scanning for unlocked files (this may take some time)
install(ok): inputs/ds000002 (dataset) [Installed subdataset in order to get /home/me/
→˓usecases/repro/demo/inputs/ds000002]
get(ok): inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz (file) [from web...]
get(ok): inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz (file) [from web...]
unlock(ok): sub-001/anat.nii.gz (file)
unlock(ok): sub-001/anat_mask.nii.gz (file)
unlock(ok): sub-002/anat.nii.gz (file)
unlock(ok): sub-002/anat_mask.nii.gz (file)
[INFO] == Command start (output follows) =====
action summary:
get (notneeded: 4)

Processing inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz
Processing inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz

(continues on next page)

418Chapter 25. A basic automatically and computationally reproducible neuroimaging analysis

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[INFO] == Command exit (modification check follows) =====
add(ok): sub-001/anat.nii.gz (file)
add(ok): sub-001/anat_mask.nii.gz (file)
add(ok): sub-002/anat.nii.gz (file)
add(ok): sub-002/anat_mask.nii.gz (file)
action summary:
add (ok: 4)
get (notneeded: 2, ok: 2)
install (ok: 2)
save (notneeded: 3)
unlock (ok: 4)

Reproduced!

This dataset could now be published and shared as a lightweight yet fully reproducible resource
and enable anyone to replicate the exact same analysis – with a single command. Public data
and reproducible execution for the win!

Note though that reproducibility can and should go further: With more complex software de-
pendencies, it is inevitable to keep track of the software environment involved in the analysis
as well. If you are curious on how to do this, read on into An automatically and computationally
reproducible neuroimaging analysis from scratch (page 420).

25.3. Step-by-Step 419

CHAPTER

TWENTYSIX

AN AUTOMATICALLY AND COMPUTATIONALLY REPRODUCIBLE
NEUROIMAGING ANALYSIS FROM SCRATCH

This use case sketches the basics of a portable analysis that can be automatically computa-
tionally reproduced, starting from the acquisition of a neuroimaging dataset with a magnetic
resonance imaging (MRI) scanner up to complete data analysis results:

1. Two extension packages, datalad-container586 and datalad-neuroimaging587 extend Data-
Lad’s functionality with the ability to work with computational containers and neuroimag-
ing data workflows.

2. The analysis is conducted in a way that leaves comprehensive provenance (including soft-
ware environments) all the way from the raw data, and structures study components in a
way that facilitates reuse.

3. It starts with preparing a raw data (dicom) dataset, and subsequently uses the prepared
data for a general linear model (GLM) based analysis.

4. After completion, data and results are archived, and disk usage of the dataset is maximally
reduced.

This use case is adapted from the ReproIn/DataLad tutorial588 by Michael Hanke and Yaroslav
Halchenko, given at the 2018 OHBM training course ran by ReproNim589.

26.1 The Challenge

Allan is an exemplary neuroscientist and researcher. He has spent countless hours diligently
learning not only the statistical methods for his research questions and the software tools for
his computations, but also taught himself about version control and data standards in neu-
roimaging, such as the brain imaging data structure (BIDS590). For his final PhD project, he
patiently acquires functional MRI data of many participants, and prepares it according to the
BIDS standard afterwards. It takes him a full week of time and two failed attempts, but he
eventually has a BIDS-compliant591 dataset.

When he writes his analysis scripts he takes extra care to responsibly version control every
change. He happily notices how much cleaner his directories are, and how he and others can
transparently see how his code evolved. Once everything is set up, he runs his analysis using

586 https://github.com/datalad/datalad-container
587 https://github.com/datalad/datalad-neuroimaging
588 http://www.repronim.org/ohbm2018-training/03-01-reproin/
589 https://www.repronim.org/
590 https://bids.neuroimaging.io/
591 http://bids-standard.github.io/bids-validator/

420

https://github.com/datalad/datalad-container
https://github.com/datalad/datalad-neuroimaging
http://www.repronim.org/ohbm2018-training/03-01-reproin/
https://www.repronim.org/
https://bids.neuroimaging.io/
http://bids-standard.github.io/bids-validator/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

large and complex neuroscientific software packages that he installed on his computer a few
years back. Finally, he writes a paper and publishes his findings in a prestigious peer-reviewed
journal. His data and code can be accessed by others easily, as he makes them publicly available.
Colleagues and supervisors admire him for his wonderful contribution to open science.

However, a few months after publication, Allan starts to get emails by that report that his scripts
do not produce the same results as the ones reported in the publication. Startled and confused
he investigates what may be the issue. After many sleepless nights he realizes: The software he
used was fairly old! More recent versions of the same software compute results slightly different,
changed function’s names, or fixed discovered bugs in the underlying source code. Shocked,
he realizes that his scripts are even incompatible with the most recent release of the software
package he used and throw an error. Luckily, he can quickly fix this by adding information about
the required software versions to the README of his project, and he is grateful for colleagues and
other scientists that provide adjusted versions of his code for more recent software releases. In
the end, his results prove to be robust regardless of software version. But while Allen shared
code and data, not including any information about his software environment prevented his
analysis from becoming computationally reproducible.

26.2 The DataLad Approach

Even if an analysis workflow is fully captured and version-controlled, and data and code are
being linked, an analysis may not reproduce. Comprehensive computational reproducibility re-
quires that also the software involved in an analysis and its precise versions need to be known.
DataLad can help with this. Using the datalad-containers extension, complete software en-
vironments can be captured in computational containers, added to (and thus shared together
with) datasets, and linked with commands and outputs they were used for.

26.3 Step-by-Step

The first part of this Step-by-Step guide details how to computationally reproducibly and au-
tomatically reproducibly perform data preparation from raw DICOM592 files to BIDS-compliant
NifTi593 images. The actual analysis, a first-level GLM for a localization task, is performed in
the second part. A final paragraph shows how to prepare the dataset for the afterlife.

For this use case, two DataLad extensions are required:

• datalad-container594 and

• datalad-neuroimaging595

You can install them via pip like this:

$ pip install datalad-neuroimaging datalad-container

Data Preparation

We start by creating a home for the raw data:
592 https://www.dicomstandard.org/
593 https://nifti.nimh.nih.gov/
594 https://github.com/datalad/datalad-container
595 https://github.com/datalad/datalad-neuroimaging

26.2. The DataLad Approach 421

https://www.dicomstandard.org/
https://nifti.nimh.nih.gov/
https://github.com/datalad/datalad-container
https://github.com/datalad/datalad-neuroimaging

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad create localizer_scans
$ cd localizer_scans
[INFO] Creating a new annex repo at /home/me/usecases/repro2/localizer_scans
[INFO] scanning for unlocked files (this may take some time)
create(ok): /home/me/usecases/repro2/localizer_scans (dataset)

For this example, we use a number of publicly available DICOM files. Luckily, at the time
of data acquisition, these DICOMs were already equipped with the relevant metadata: Their
headers contain all necessary information to identify the purpose of individual scans and encode
essential properties to create a BIDS compliant dataset from them. The DICOMs are stored on
Github (as a Git repository601), so they can be installed as a subdataset. As they are the raw
inputs of the analysis, we store them in a directory we call inputs/raw.

$ datalad clone --dataset . \
https://github.com/datalad/example-dicom-functional.git \
inputs/rawdata
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro2/localizer_scans/inputs/rawdata)
[INFO] Attempting to clone from https://github.com/datalad/example-dicom-functional.git␣
→˓to /home/me/usecases/repro2/localizer_scans/inputs/rawdata
[INFO] Start enumerating objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro2/localizer_scans/
→˓inputs/rawdata)
install(ok): inputs/rawdata (dataset)
add(ok): inputs/rawdata (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
install (ok: 1)
save (ok: 2)

The datalad subdatasets reports the installed dataset to be indeed a subdataset of the super-
dataset localizer_scans:

$ datalad subdatasets
subdataset(ok): inputs/rawdata (dataset)

Given that we have obtained raw data, this data is not yet ready for data analysis. Prior to per-
forming actual computations, the data needs to be transformed into appropriate formats and
standardized to an intuitive layout. For neuroimaging, a useful transformation is a transforma-
tion from DICOMs into the NifTi format, a format specifically designed for scientific analyses of
brain images. An intuitive layout is the BIDS standard. Performing these transformations and
standardizations, however, requires software. For the task at hand, HeudiConv596, a DICOM
converter, is our software of choice. Beyond converting DICOMs, it also provides assistance in
converting a raw data set to the BIDS standard, and it integrates with DataLad to place con-

601 “Why can such data exist as a Git repository, shouldn’t large files be always stored outside of Git?” you may
ask. The DICOMs exist in a Git-repository for a number of reasons: First, it makes them easily available for
demonstrations and tutorials without involving DataLad at all. Second, the DICOMs are comparatively small: 21K
per file. Importantly, the repository is not meant to version control those files and future states or derivatives and
results obtained from them – this would bring a Git repositories to its knees.

596 https://heudiconv.readthedocs.io/en/latest/

422Chapter 26. An automatically and computationally reproducible neuroimaging analysis from
scratch

https://heudiconv.readthedocs.io/en/latest/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

verted and original data under Git/Git-annex version control, while automatically annotating
files with sensitive information (e.g., non-defaced anatomicals, etc).

To take extra care to know exactly what software is used both to be able to go back to it at
a later stage should we have the need to investigate an issue, and to capture full provenance
of the transformation process, we are using a software container that contains the relevant
software setup. A ready-made singularity597 container is available from singularity-hub598 at
shub://ReproNim/ohbm2018-training:heudiconvn.

Using the datalad containers-add command we can add this container to the localizer_scans
superdataset. We are giving it the name heudiconv.

$ datalad containers-add heudiconv --url shub://ReproNim/ohbm2018-training:heudiconvn
[INFO] Initiating special remote datalad
add(ok): .datalad/config (file)
save(ok): . (dataset)
containers_add(ok): /home/me/usecases/repro2/localizer_scans/.datalad/environments/
→˓heudiconv/image (file)
action summary:
add (ok: 1)
containers_add (ok: 1)
save (ok: 1)

The command datalad containers-list can verify that this worked:

$ datalad containers-list
heudiconv -> .datalad/environments/heudiconv/image

Great. The dataset now tracks all of the input data and the computational environment for
the DICOM conversion. Thus far, we have a complete record of all components. Let’s stay
transparent, but also automatically reproducible in the actual data conversion by wrapping the
necessary heudiconv command seen below:

$ heudiconv -f reproin -s 02 -c dcm2niix -b -l "" --minmeta -a . \
-o /tmp/heudiconv.sub-02 --files inputs/rawdata/dicoms

within a datalad containers-run command. To save time, we will only transfer one subjects
data (sub-02, hence the subject identifier -s 02 in the command). Note that the output below is
how it indeed should look like – the software we are using in this example produces very wordy
output.

$ datalad containers-run -m "Convert sub-02 DICOMs into BIDS" \
--container-name heudiconv \
heudiconv -f reproin -s 02 -c dcm2niix -b -l "" --minmeta -a . \
-o /tmp/heudiconv.sub-02 --files inputs/rawdata/dicoms

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
INFO: Running heudiconv version 0.5.2-dev
INFO: Analyzing 5460 dicoms
INFO: Filtering out 0 dicoms based on their filename
WARNING: dcmstack without support of pydicom >= 1.0 is detected. Adding a plug
INFO: Generated sequence info for 1 studies with 1 entries total
INFO: Processing sequence infos to deduce study/session

(continues on next page)

597 http://singularity.lbl.gov/
598 https://singularity-hub.org/

26.3. Step-by-Step 423

http://singularity.lbl.gov/
https://singularity-hub.org/
shub://ReproNim/ohbm2018-training:heudiconvn

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

INFO: Study session for {'locator': 'Hanke/Stadler/0083_transrep2', 'session': None,
→˓'subject': '02'}
INFO: Need to process 1 study sessions
INFO: PROCESSING STARTS: {'outdir': '/tmp/heudiconv.sub-02/', 'session': None, 'subject':
→˓'02'}
INFO: Processing 1 pre-sorted seqinfo entries
INFO: Processing 1 seqinfo entries
INFO: Doing conversion using dcm2niix
INFO: Converting ./sub-02/func/sub-02_task-oneback_run-01_bold (5460 DICOMs) -> ./sub-02/
→˓func . Converter: dcm2niix . Output types: ('nii.gz', 'dicom')
INFO: Generating grammar tables from /usr/lib/python3.5/lib2to3/Grammar.txt
INFO: Generating grammar tables from /usr/lib/python3.5/lib2to3/PatternGrammar.txt
210729-10:15:13,343 nipype.workflow INFO:

[Node] Setting-up "convert" in "/tmp/dcm2niixn_ufbfmu/convert".
INFO: [Node] Setting-up "convert" in "/tmp/dcm2niixn_ufbfmu/convert".
210729-10:15:14,429 nipype.workflow INFO:

[Node] Running "convert" ("nipype.interfaces.dcm2nii.Dcm2niix"), a CommandLine␣
→˓Interface with command:
dcm2niix -b y -z y -x n -t n -m n -f func -o . -s n -v n /tmp/dcm2niixn_ufbfmu/convert
INFO: [Node] Running "convert" ("nipype.interfaces.dcm2nii.Dcm2niix"), a CommandLine␣
→˓Interface with command:
dcm2niix -b y -z y -x n -t n -m n -f func -o . -s n -v n /tmp/dcm2niixn_ufbfmu/convert
210729-10:15:16,883 nipype.interface INFO:

stdout 2021-07-29T10:15:16.883127:Chris Rorden's dcm2niiX version v1.0.20180622␣
→˓GCC6.3.0 (64-bit Linux)
INFO: stdout 2021-07-29T10:15:16.883127:Chris Rorden's dcm2niiX version v1.0.20180622␣
→˓GCC6.3.0 (64-bit Linux)
210729-10:15:16,883 nipype.interface INFO:

stdout 2021-07-29T10:15:16.883127:Found 5460 DICOM file(s)
INFO: stdout 2021-07-29T10:15:16.883127:Found 5460 DICOM file(s)
210729-10:15:16,883 nipype.interface INFO:

stdout 2021-07-29T10:15:16.883127:swizzling 3rd and 4th dimensions (XYTZ ->␣
→˓XYZT), assuming interslice distance is 3.300000
INFO: stdout 2021-07-29T10:15:16.883127:swizzling 3rd and 4th dimensions (XYTZ -> XYZT),␣
→˓assuming interslice distance is 3.300000
210729-10:15:16,883 nipype.interface INFO:

stdout 2021-07-29T10:15:16.883127:Warning: Images sorted by instance number ␣
→˓[0020,0013](1..5460), but AcquisitionTime [0008,0032] suggests a different order␣
→˓(160423..160223)
INFO: stdout 2021-07-29T10:15:16.883127:Warning: Images sorted by instance number [0020,
→˓0013](1..5460), but AcquisitionTime [0008,0032] suggests a different order (160423..
→˓160223)
210729-10:15:16,883 nipype.interface INFO:

stdout 2021-07-29T10:15:16.883127:Using RWVSlope:RWVIntercept = 4.00757:0
INFO: stdout 2021-07-29T10:15:16.883127:Using RWVSlope:RWVIntercept = 4.00757:0
210729-10:15:16,883 nipype.interface INFO:

stdout 2021-07-29T10:15:16.883127: Philips Scaling Values RS:RI:SS = 4.00757:0:0.
→˓0132383 (see PMC3998685)
INFO: stdout 2021-07-29T10:15:16.883127: Philips Scaling Values RS:RI:SS = 4.00757:0:0.
→˓0132383 (see PMC3998685)
210729-10:15:16,883 nipype.interface INFO:

stdout 2021-07-29T10:15:16.883127:Convert 5460 DICOM as ./func (80x80x35x156)
INFO: stdout 2021-07-29T10:15:16.883127:Convert 5460 DICOM as ./func (80x80x35x156)
210729-10:15:17,731 nipype.interface INFO:

stdout 2021-07-29T10:15:17.731699:compress: "/usr/bin/pigz" -n -f -6 "./func.nii"
INFO: stdout 2021-07-29T10:15:17.731699:compress: "/usr/bin/pigz" -n -f -6 "./func.nii"

(continues on next page)

424Chapter 26. An automatically and computationally reproducible neuroimaging analysis from
scratch

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

210729-10:15:17,731 nipype.interface INFO:
stdout 2021-07-29T10:15:17.731699:Conversion required 3.229892 seconds (2.427477␣

→˓for core code).
INFO: stdout 2021-07-29T10:15:17.731699:Conversion required 3.229892 seconds (2.427477␣
→˓for core code).
210729-10:15:17,918 nipype.workflow INFO:

[Node] Finished "convert".
INFO: [Node] Finished "convert".
INFO: Populating template files under ./
INFO: PROCESSING DONE: {'outdir': '/tmp/heudiconv.sub-02/', 'session': None, 'subject':
→˓'02'}
[INFO] == Command exit (modification check follows) =====
add(ok): CHANGES (file)
add(ok): README (file)
add(ok): dataset_description.json (file)
add(ok): participants.tsv (file)
add(ok): sourcedata/README (file)
add(ok): sourcedata/sub-02/func/sub-02_task-oneback_run-01_bold.dicom.tgz (file)
add(ok): sub-02/func/sub-02_task-oneback_run-01_bold.json (file)
add(ok): sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz (file)
add(ok): sub-02/func/sub-02_task-oneback_run-01_events.tsv (file)
add(ok): sub-02/sub-02_scans.tsv (file)
add(ok): task-oneback_bold.json (file)
save(ok): . (dataset)
action summary:
add (ok: 11)
get (notneeded: 1)
save (notneeded: 1, ok: 1)

Find out what changed after this command by comparing the most recent commit by DataLad
(i.e., HEAD) to the previous one (i.e., HEAD~1) with datalad diff:

$ datalad diff -f HEAD~1
added: CHANGES (file)
added: README (file)
added: dataset_description.json (file)
added: participants.tsv (file)
added: sourcedata/README (file)
added: sourcedata/sub-02/func/sub-02_task-oneback_run-01_bold.dicom.tgz (file)
added: sub-02/func/sub-02_task-oneback_run-01_bold.json (file)
added: sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz (file)
added: sub-02/func/sub-02_task-oneback_run-01_events.tsv (file)
added: sub-02/sub-02_scans.tsv (file)
added: task-oneback_bold.json (file)

As expected, DICOM files of one subject were converted into NifTi files, and the outputs follow
the BIDS standard’s layout and naming conventions! But what’s even better is that this action
and the relevant software environment was fully recorded.

There is only one thing missing before the functional imaging data can be analyzed: A stim-
ulation protocol, so that we know what stimulation was done at which point during the scan.
Thankfully, the data was collected using an implementation that exported this information di-
rectly in the BIDS events.tsv format. The file came with our DICOM dataset and can be found
at inputs/rawdata/events.tsv. All we need to do is copy it to the right location under the
BIDS-mandated name. To keep track of where this file came from, we will also wrap the copy-
ing into a datalad run command. The {inputs} and {outputs} placeholders can help to avoid

26.3. Step-by-Step 425

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

duplication in the command call:

$ datalad run -m "Import stimulation events" \
--input inputs/rawdata/events.tsv \
--output sub-02/func/sub-02_task-oneback_run-01_events.tsv \
cp {inputs} {outputs}

[INFO] Making sure inputs are available (this may take some time)
unlock(ok): sub-02/func/sub-02_task-oneback_run-01_events.tsv (file)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): sub-02/func/sub-02_task-oneback_run-01_events.tsv (file)
save(ok): . (dataset)

git log shows what information DataLad captured about this command’s execution:

$ git log -n 1
commit bbab0d13e6d827c2b2dd711386e86c3eab5e78a6
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 10:15:38 2021 +0200

[DATALAD RUNCMD] Import stimulation events

=== Do not change lines below ===
{
"chain": [],
"cmd": "cp '{inputs}' '{outputs}'",
"dsid": "cbaa0d64-00e2-4806-9fd4-d4738a889bf4",
"exit": 0,
"extra_inputs": [],
"inputs": [
"inputs/rawdata/events.tsv"
],
"outputs": [
"sub-02/func/sub-02_task-oneback_run-01_events.tsv"
],
"pwd": "."

}
^^^ Do not change lines above ^^^

Analysis execution

Since the raw data are reproducibly prepared in BIDS standard we can now go further an
conduct an analysis. For this example, we will implement a very basic first-level GLM analysis
using FSL599 that takes only a few minutes to run. As before, we will capture all provenance:
inputs, computational environments, code, and outputs.

Following the YODA principles602, the analysis is set up in a new dataset, with the input dataset
localizer_scans as a subdataset:

get out of localizer_scans
$ cd ../

(continues on next page)

599 http://fsl.fmrib.ox.ac.uk/
602 To re-read everything about the YODA principles, checkout out section YODA: Best practices for data analyses in a

dataset (page 136).

426Chapter 26. An automatically and computationally reproducible neuroimaging analysis from
scratch

http://fsl.fmrib.ox.ac.uk/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

$ datalad create glm_analysis
$ cd glm_analysis
[INFO] Creating a new annex repo at /home/me/usecases/repro2/glm_analysis
[INFO] scanning for unlocked files (this may take some time)
create(ok): /home/me/usecases/repro2/glm_analysis (dataset)

We install localizer_scans by providing its path as a --source to datalad install:

$ datalad clone -d . \
../localizer_scans \
inputs/rawdata

[INFO] Cloning dataset to Dataset(/home/me/usecases/repro2/glm_analysis/inputs/rawdata)
[INFO] Attempting to clone from ../localizer_scans to /home/me/usecases/repro2/glm_
→˓analysis/inputs/rawdata
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro2/glm_analysis/inputs/
→˓rawdata)
[INFO] scanning for unlocked files (this may take some time)
install(ok): inputs/rawdata (dataset)
add(ok): inputs/rawdata (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
install (ok: 1)
save (ok: 2)

datalad subdatasets reports the number of installed subdatasets again:

$ datalad subdatasets
subdataset(ok): inputs/rawdata (dataset)

We almost forgot something really useful: Structuring the dataset with the help of DataLad!
Luckily, procedures such as yoda can not only be applied upon creating of a dataset (as in Create
a dataset (page 34)), but also with the run-procedure command (as in Configurations to go
(page 126))

$ datalad run-procedure cfg_yoda
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====

The analysis obviously needs custom code. For the simple GLM analysis with FSL we use:

1. A small script to convert BIDS-formatted events.tsv files into the EV3 format FSL un-
derstands, available at https://raw.githubusercontent.com/myyoda/ohbm2018-training
/master/section23/scripts/events2ev3.sh

2. An FSL analysis configuration template script, available at https://raw.githubusercontent.
com/myyoda/ohbm2018-training/master/section23/scripts/ffa_design.fsf

These script should be stored and tracked inside the dataset within code/. The datalad
download-url command downloads these scripts and records where they were obtained from:

26.3. Step-by-Step 427

https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/events2ev3.sh
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/events2ev3.sh
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/ffa_design.fsf
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/ffa_design.fsf

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ datalad download-url --path code/ \
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/

→˓events2ev3.sh \
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/ffa_

→˓design.fsf
[INFO] Downloading 'https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/
→˓section23/scripts/events2ev3.sh' into '/home/me/usecases/repro2/glm_analysis/code/'
download_url(ok): /home/me/usecases/repro2/glm_analysis/code/events2ev3.sh (file)
[INFO] Downloading 'https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/
→˓section23/scripts/ffa_design.fsf' into '/home/me/usecases/repro2/glm_analysis/code/'
download_url(ok): /home/me/usecases/repro2/glm_analysis/code/ffa_design.fsf (file)
add(ok): code/events2ev3.sh (file)
add(ok): code/ffa_design.fsf (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
download_url (ok: 2)
save (ok: 1)

The commit message that DataLad created shows the URL where each script has been down-
loaded from:

$ git log -n 1
commit d0c450292c870c9eccea849d1cf0ae885136b438
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 10:15:44 2021 +0200

[DATALAD] Download URLs

URLs:
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/

→˓events2ev3.sh
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/

→˓ffa_design.fsf

Prior to the actual analysis, we need to run the events2ev3.sh script to transform inputs into
the format that FSL expects. The datalad run makes this maximally reproducible and easy, as
the files given as --inputs and --outputs are automatically managed by DataLad.

$ datalad run -m 'Build FSL EV3 design files' \
--input inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_events.tsv \
--output 'sub-02/onsets' \
bash code/events2ev3.sh sub-02 {inputs}

[INFO] Making sure inputs are available (this may take some time)
get(ok): inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_events.tsv (file) [from␣
→˓origin...]
[INFO] == Command start (output follows) =====
sub-02
1
[INFO] == Command exit (modification check follows) =====
add(ok): sub-02/onsets/run-1/body.txt (file)
add(ok): sub-02/onsets/run-1/face.txt (file)
add(ok): sub-02/onsets/run-1/house.txt (file)
add(ok): sub-02/onsets/run-1/object.txt (file)
add(ok): sub-02/onsets/run-1/scene.txt (file)
add(ok): sub-02/onsets/run-1/scramble.txt (file)
save(ok): . (dataset)

428Chapter 26. An automatically and computationally reproducible neuroimaging analysis from
scratch

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The dataset now contains and manages all of the required inputs, and we’re ready for FSL. Since
FSL is not a simple program, we make sure to record the precise software environment for the
analysis with datalad containers-run. First, we get a container with FSL in the version we
require:

$ datalad containers-add fsl --url shub://mih/ohbm2018-training:fsl
[INFO] Initiating special remote datalad
add(ok): .datalad/config (file)
save(ok): . (dataset)
containers_add(ok): /home/me/usecases/repro2/glm_analysis/.datalad/environments/fsl/image␣
→˓(file)
action summary:
add (ok: 1)
containers_add (ok: 1)
save (ok: 1)

As the analysis setup is now complete, let’s label this state of the dataset:

$ datalad save --version-tag ready4analysis
save(ok): . (dataset)

All we have left is to configure the desired first-level GLM analysis with FSL. At this point,
the template contains placeholders for the basepath and the subject ID, and they need to be
replaced. The following command uses the arcane, yet powerful SED editor to do this. We will
again use datalad run to invoke our command so that we store in the history how this template
was generated (so that we may audit, alter, or regenerate this file in the future — fearlessly).

$ datalad run \
-m "FSL FEAT analysis config script" \
--output sub-02/1stlvl_design.fsf \
bash -c 'sed -e "s,##BASEPATH##,{pwd},g" -e "s,##SUB##,sub-02,g" \
code/ffa_design.fsf > {outputs}'
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): sub-02/1stlvl_design.fsf (file)
save(ok): . (dataset)

To compute the analysis, a simple feat sub-02/1stlvl_design.fsf command is wrapped into
a datalad containers-run command with appropriate --input and --output specification:

$ datalad containers-run --container-name fsl -m "sub-02 1st-level GLM" \
--input sub-02/1stlvl_design.fsf \
--input sub-02/onsets \
--input inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz \
--output sub-02/1stlvl_glm.feat \
feat {inputs[0]}

[INFO] Making sure inputs are available (this may take some time)
get(ok): inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz (file) [from␣
→˓origin...]
[INFO] == Command start (output follows) =====
To view the FEAT progress and final report, point your web browser at /home/me/usecases/
→˓repro2/glm_analysis/sub-02/1stlvl_glm.feat/report_log.html
[INFO] == Command exit (modification check follows) =====
add(ok): sub-02/1stlvl_glm.feat/.files/fsl.css (file)
save(ok): . (dataset)
action summary:

(continues on next page)

26.3. Step-by-Step 429

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

add (ok: 344)
get (notneeded: 4, ok: 1)
save (notneeded: 1, ok: 1)

Once this command finishes, DataLad will have captured the entire FSL output, and the dataset
will contain a complete record all the way from the input BIDS dataset to the GLM results. The
BIDS subdataset in turn has a complete record of all processing down from the raw DICOMs
onwards.

Many files need more planning

See how many files were created and added in this computation of a single participant? If
your study has many participants, analyses like the one above could inflate your dataset.
Please check out the chapter Go big or go home (page 323). in particular the section
Calculate in greater numbers (page 326) for tips and tricks on how to create analyses
datasets that scale.

Archive data and results

After study completion it is important to properly archive data and results, for example for
future inquiries by reviewers or readers of the associated publication. Thanks to the modularity
of the study units, this tasks is easy and avoids needless duplication.

The raw data is tracked in its own dataset (localizer_scans) that only needs to be archived
once, regardless of how many analysis are using it as input. This means that we can “throw
away” this subdataset copy within this analysis dataset. DataLad can re-obtain the correct
version at any point in the future, as long as the recorded location remains accessible.

To make sure we’re not deleting information we are not aware of, datalad diff and git log
can help to verify that the subdataset is in the same state as when it was initially added:

$ datalad diff -- inputs

The command does not show any output, thus indicating that there is indeed no difference. git
log confirms that the only action that was performed on inputs/ was the addition of it as a
subdataset:

$ git log -- inputs
commit 05703a378ad34120fcb5cf6556446b78da8a98a8
Author: Elena Piscopia <elena@example.net>
Date: Thu Jul 29 10:15:40 2021 +0200

[DATALAD] Added subdataset

Since the state of the subdataset is exactly the state of the original localizer_scans dataset it
is safe to uninstall it.

$ datalad uninstall --dataset . inputs --recursive
drop(ok): /home/me/usecases/repro2/glm_analysis/inputs/rawdata/sub-02/func/sub-02_task-
→˓oneback_run-01_bold.nii.gz (file)
drop(ok): /home/me/usecases/repro2/glm_analysis/inputs/rawdata/sub-02/func/sub-02_task-
→˓oneback_run-01_events.tsv (file)

(continues on next page)

430Chapter 26. An automatically and computationally reproducible neuroimaging analysis from
scratch

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

drop(ok): inputs/rawdata (directory)
uninstall(ok): inputs/rawdata (dataset)
action summary:
drop (ok: 3)
uninstall (ok: 1)

Prior to archiving the results, we can go one step further and verify their computational repro-
ducibility. DataLad’s rerun command is capable of “replaying” any recorded command. The
following command re-executes the FSL analysis by re-running everything since the dataset
was tagged as ready4analysis). It will record the recomputed results in a separate Git branch
named verify. Afterwards, we can automatically compare these new results to the original
ones in the master branch. We will see that all outputs can be reproduced in bit-identical form.
The only changes are observed in log files that contain volatile information, such as time steps.

$ datalad rerun --branch verify --onto ready4analysis --since ready4analysis
[INFO] checkout commit 6bd6c90;
[INFO] run commit f10c6c1; (FSL FEAT analysis...)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): sub-02/1stlvl_design.fsf (file)
save(ok): . (dataset)
[INFO] run commit 0238dbf; (sub-02 1st-level GLM)
[INFO] Making sure inputs are available (this may take some time)
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro2/glm_analysis/inputs/rawdata)
[INFO] Attempting to clone from ../localizer_scans to /home/me/usecases/repro2/glm_
→˓analysis/inputs/rawdata
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro2/glm_analysis/inputs/
→˓rawdata)
[INFO] scanning for unlocked files (this may take some time)
get(ok): inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz (file) [from␣
→˓origin...]
[INFO] == Command start (output follows) =====
To view the FEAT progress and final report, point your web browser at /home/me/usecases/
→˓repro2/glm_analysis/sub-02/1stlvl_glm.feat/report_log.html
[INFO] == Command exit (modification check follows) =====
save(ok): . (dataset)
action summary:
add (ok: 345)
get (notneeded: 4, ok: 1)
save (notneeded: 1, ok: 2)

check that we are now on the new `verify` branch
$ git branch
git-annex
master

* verify

compare which files have changes with respect to the original results
$ git diff master --stat
sub-02/1stlvl_glm.feat/logs/feat0 | 2 +-
.../1stlvl_glm.feat/logs/{feat0_init.e3076726 => feat0_init.e3079448} | 0
.../1stlvl_glm.feat/logs/{feat0_init.o3076726 => feat0_init.o3079448} | 0
sub-02/1stlvl_glm.feat/logs/feat1 | 2 +-
sub-02/1stlvl_glm.feat/logs/{feat2_pre.e3076809 => feat2_pre.e3079531} | 0

(continues on next page)

26.3. Step-by-Step 431

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

sub-02/1stlvl_glm.feat/logs/{feat2_pre.o3076809 => feat2_pre.o3079531} | 0
.../1stlvl_glm.feat/logs/{feat3_film.e3077273 => feat3_film.e3080001} | 0
.../1stlvl_glm.feat/logs/{feat3_film.o3077273 => feat3_film.o3080001} | 0
.../1stlvl_glm.feat/logs/{feat4_post.e3077646 => feat4_post.e3080379} | 0
.../1stlvl_glm.feat/logs/{feat4_post.o3077646 => feat4_post.o3080379} | 0
.../1stlvl_glm.feat/logs/{feat5_stop.e3078278 => feat5_stop.e3081019} | 0
.../1stlvl_glm.feat/logs/{feat5_stop.o3078278 => feat5_stop.o3081019} | 0
sub-02/1stlvl_glm.feat/report.html | 2 +-
sub-02/1stlvl_glm.feat/report_log.html | 2 +-
14 files changed, 4 insertions(+), 4 deletions(-)

switch back to the master branch and remove the `verify` branch
$ git checkout master
$ git branch -D verify
Switched to branch 'master'
Deleted branch verify (was 8b6a3a7).

The outcome of this usecase can be found as a dataset on Github here600.

600 https://github.com/myyoda/demo-dataset-glmanalysis

432Chapter 26. An automatically and computationally reproducible neuroimaging analysis from
scratch

https://github.com/myyoda/demo-dataset-glmanalysis

CHAPTER

TWENTYSEVEN

SCALING UP: MANAGING 80TB AND 15 MILLION FILES FROM THE
HCP RELEASE

This usecase outlines how a large data collection can be version controlled and published in an
accessible manner with DataLad in a remote indexed archive (RIA) data store. Using the Human
Connectome Project603 (HCP) data as an example, it shows how large-scale datasets can be
managed with the help of modular nesting, and how access to data that is contingent on usage
agreements and external service credentials is possible via DataLad without circumventing or
breaching the data providers terms:

1. The datalad addurls command is used to automatically aggregate files and information
about their sources from public AWS S3604 bucket storage into small-sized, modular Data-
Lad datasets.

2. Modular datasets are structured into a hierarchy of nested datasets, with a single HCP
superdataset at the top. This modularizes storage and access, and mitigates performance
problems that would arise in oversized standalone datasets, but maintains access to any
subdataset from the top-level dataset.

3. Individual datasets are stored in a remote indexed archive (RIA) store at
store.datalad.org605 under their DATASET ID. This setup constitutes a flexible, domain-
agnostic, and scalable storage solution, while dataset configurations enable seamless au-
tomatic dataset retrieval from the store.

4. The top-level dataset is published to GitHub as a public access point for the full HCP
dataset. As the RIA store contains datasets with only file source information instead of
hosting data contents, a datalad get retrieves file contents from the original AWS S3
sources.

5. With DataLad’s authentication management, users will authenticate once – and are thus
required to accept the HCP projects terms to obtain valid credentials –, but subsequent
datalad get commands work swiftly without logging in.

6. The datalad copy-file can be used to subsample special-purpose datasets for faster ac-
cess.

603 http://www.humanconnectomeproject.org/
604 https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
605 http://store.datalad.org/

433

http://www.humanconnectomeproject.org/
http://www.humanconnectomeproject.org/
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://store.datalad.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

27.1 The Challenge

The Human Connectome Project606 aims to provide an unparalleled compilation of neural data
through a customized database. Its largest open access data collection is the WU-Minn HCP1200
Data607. It is made available via a public AWS S3 bucket and includes high-resolution 3T
magnetic resonance608 scans from young healthy adult twins and non-twin siblings (ages 22-35)
using four imaging modalities: structural images (T1w and T2w), resting-state fMRI (rfMRI)609,
task-fMRI (tfMRI), and high angular resolution diffusion imaging (dMRI)610. It further includes
behavioral and other individual subject measure data for all, and magnetoencephalography611

data and 7T MR data for a subset of subjects (twin pairs). In total, the data release encompasses
around 80TB of data in 15 million files, and is of immense value to the field of neuroscience.

Its large amount of data, however, also constitutes a data management challenge: Such amounts
of data are difficult to store, structure, access, and version control. Even tools such as DataLad,
and its foundations, GIT and GIT-ANNEX, will struggle or fail with datasets of this size or number
of files. Simply transforming the complete data release into a single DataLad dataset would at
best lead to severe performance issues, but quite likely result in software errors and crashes.
Moreover, access to the HCP data is contingent on consent to the data usage agreement612 of
the HCP project and requires valid AWS S3 credentials. Instead of hosting this data or providing
otherwise unrestrained access to it, an HCP DataLad dataset would need to enable data retrieval
from the original sources, conditional on the user agreeing to the HCP usage terms.

27.2 The DataLad Approach

Using the datalad addurls command, the HCP data release is aggregated into a large amount
(N ~= 4500) of datasets. A lean top-level dataset combines all datasets into a nested dataset
hierarchy that recreates the original HCP data release’s structure. The topmost dataset con-
tains one subdataset per subject with the subject’s release notes, and within each subject’s
subdataset, each additional available subdirectory is another subdataset. This preserves the
original structure of the HCP data release, but builds it up from sensible components that re-
semble standalone dataset units. As with any DataLad dataset, dataset nesting and operations
across dataset boundaries are seamless, and allow to easily retrieve data on a subject, modality,
or file level.

The highly modular structure has several advantages. For one, with barely any data in the su-
perdataset, the top-level dataset is very lean. It mainly consists of an impressive .gitmodules
file624 with almost 1200 registered (subject-level) subdatasets. The superdataset is published to
GITHUB at github.com/datalad-datasets/human-connectome-project-openaccess613 to expose
this superdataset and allow anyone to install it with a single datalad clone command in a
few seconds. Secondly, the modularity from splitting the data release into several thousand
subdatasets has performance advantages. If GIT or GIT-ANNEX repositories exceed a certain size

606 http://www.humanconnectomeproject.org/
607 https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release/
608 https://en.wikipedia.org/wiki/Magnetic_resonance_imaging
609 https://en.wikipedia.org/wiki/Resting_state_fMRI
610 https://en.wikipedia.org/wiki/Diffusion_MRI
611 https://en.wikipedia.org/wiki/Magnetoencephalography
612 http://www.humanconnectomeproject.org/wp-content/uploads/2010/01/HCP_Data_Agreement.pdf
624 If you want to read up on how DataLad stores information about registered subdatasets in .gitmodules, checkout

section More on DIY configurations (page 117).
613 https://github.com/datalad-datasets/human-connectome-project-openaccess

434 Chapter 27. Scaling up: Managing 80TB and 15 million files from the HCP release

http://www.humanconnectomeproject.org/
https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release/
https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release/
https://en.wikipedia.org/wiki/Magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Resting_state_fMRI
https://en.wikipedia.org/wiki/Diffusion_MRI
https://en.wikipedia.org/wiki/Magnetoencephalography
http://www.humanconnectomeproject.org/wp-content/uploads/2010/01/HCP_Data_Agreement.pdf
https://github.com/datalad-datasets/human-connectome-project-openaccess

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(either in terms of file sizes or the number of files), performance can drop severely625. By di-
viding the vast amount of data into many subdatasets, this can be prevented: Subdatasets are
small-sized units that are combined to the complete HCP dataset structure, and nesting comes
with no additional costs or difficulties, as DataLad can work smoothly across hierarchies of
subdatasets.

In order to simplify access to the data instead of providing data access that could circumvent
HCP license term agreements for users, DataLad does not host any HCP data. Instead, thanks to
datalad addurls, each data file knows its source (the public AWS S3 bucket of the HCP project),
and a datalad get will retrieve HCP data from this bucket. With this setup, anyone who wants
to obtain the data will still need to consent to data usage terms and retrieve AWS credentials
from the HCP project, but can afterwards obtain the data solely with DataLad commands from
the command line or in scripts. Only the first datalad get requires authentication with AWS
credentials provided by the HCP project: DataLad will prompt any user at the time of retrieval of
the first file content of the dataset. Afterwards, no further authentication is needed, unless the
credentials become invalid or need to be updated for other reasons. Thus, in order to retrieve
HCP data of up to single file level with DataLad, users only need to:

• datalad clone the superdataset from GITHUB (github.com/datalad-datasets/human-
connectome-project-openaccess614)

• Create an account at http://db.humanconnectome.org to accept data use terms and obtain
AWS credentials

• Use datalad get [-n] [-r] PATH to retrieve file, directory, or subdataset contents on
demand. Authentication is necessary only once (at the time of the first datalad get).

The HCP data release, despite its large size, can thus be version controlled and easily dis-
tributed with DataLad. In order to speed up data retrieval, subdataset installation can be
parallelized, and the full HCP dataset can be subsampled into special-purpose datasets using
DataLad’s copy-file command (introduced with DataLad version 0.13.0)

27.3 Step-by-Step

Building and publishing a DataLad dataset with HCP data consists of several steps: 1) Creating
all necessary datasets, 2) publishing them to a RIA store, and 3) creating an access point to all
files in the HCP data release. The upcoming subsections detail each of these.

Dataset creation with datalad addurls

The datalad addurls command (datalad-addurls manual) allows you to create (and update)
potentially nested DataLad datasets from a list of download URLs that point to the HCP files in
the S3 buckets. By supplying subject specific .csv files that contain S3 download links, a subject
ID, a file name, and a version specification per file in the HCP dataset, as well as information on
where subdataset boundaries are, datalad addurls can download all subjects’ files and create
(nested) datasets to store them in. With the help of a few bash commands, this task can be
automated, and with the help of a job scheduler615, it can also be parallelized. As soon as files

625 Precise performance will always be dependent on the details of the repository, software setup, and hardware, but
to get a feeling for the possible performance issues in oversized datasets, imagine a mere git status or datalad
status command taking several minutes up to hours in a clean dataset.

614 https://github.com/datalad-datasets/human-connectome-project-openaccess
615 https://en.wikipedia.org/wiki/Job_scheduler

27.3. Step-by-Step 435

https://github.com/datalad-datasets/human-connectome-project-openaccess
https://github.com/datalad-datasets/human-connectome-project-openaccess
http://db.humanconnectome.org
https://en.wikipedia.org/wiki/Job_scheduler

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

are downloaded and saved to a dataset, their content can be dropped with datalad drop: The
origin of the file was successfully recorded, and a datalad get can now retrieve file contents
on demand. Thus, shortly after a complete download of the HCP project data, the datasets
in which it has been aggregated are small in size, and yet provide access to the HCP data for
anyone who has valid AWS S3 credentials.

At the end of this step, there is one nested dataset per subject in the HCP data release. If you
are interested in the details of this process, checkout the hidden section below.

M27.1 How exactly did the datasets came to be?

All code and tables necessary to generate the HCP datasets can be found on GitHub at
github.com/TobiasKadelka/build_hcp616.
The datalad addurls command is capable of building all necessary nested subject
datasets automatically, it only needs an appropriate specification of its tasks. We’ll ap-
proach the function of datalad addurls and how exactly it was invoked to build the HCP
dataset by looking at the information it needs. Below are excerpts of the .csv table of
one subject (100206) that illustrate how addurls works:

Listing 1: Table header and some of the release note files

616 https://github.com/TobiasKadelka/build_hcp"original_url","subject","filename","version"
"s3://hcp-openaccess/HCP_1200/100206/release-notes/Diffusion_unproc.txt","100206",
→˓"release-notes/Diffusion_unproc.txt","j9bm9Jvph3EzC0t9Jl51KVrq6NFuoznu"
"s3://hcp-openaccess/HCP_1200/100206/release-notes/ReleaseNotes.txt","100206",
→˓"release-notes/ReleaseNotes.txt","RgG.VC2mzp5xIc6ZGN6vB7iZ0mG7peXN"
"s3://hcp-openaccess/HCP_1200/100206/release-notes/Structural_preproc.txt","100206",
→˓"release-notes/Structural_preproc.txt","OeUYjysiX5zR7nRMixCimFa_6yQ3IKqf"
"s3://hcp-openaccess/HCP_1200/100206/release-notes/Structural_preproc_extended.txt",
→˓"100206","release-notes/Structural_preproc_extended.txt","cyP8G5_
→˓YX5F30gO9Yrpk8TADhkLltrNV"
"s3://hcp-openaccess/HCP_1200/100206/release-notes/Structural_unproc.txt","100206",
→˓"release-notes/Structural_unproc.txt","AyW6GmavML6I7LfbULVmtGIwRGpFmfPZ"

436 Chapter 27. Scaling up: Managing 80TB and 15 million files from the HCP release

https://github.com/TobiasKadelka/build_hcp

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Listing 2: Some files in the MNINonLinear directory
"s3://hcp-openaccess/HCP_1200/100206/MNINonLinear/100206.164k_fs_LR.wb.spec","100206
→˓","MNINonLinear//100206.164k_fs_LR.wb.spec","JSZJhZekZnMhv1sDWih.khEVUNZXMHTE"
"s3://hcp-openaccess/HCP_1200/100206/MNINonLinear/100206.ArealDistortion_FS.164k_fs_
→˓LR.dscalar.nii","100206","MNINonLinear//100206.ArealDistortion_FS.164k_fs_LR.
→˓dscalar.nii","sP4uw8R1oJyqCWeInSd9jmOBjfOCtN4D"
"s3://hcp-openaccess/HCP_1200/100206/MNINonLinear/100206.ArealDistortion_MSMAll.
→˓164k_fs_LR.dscalar.nii","100206","MNINonLinear//100206.ArealDistortion_MSMAll.
→˓164k_fs_LR.dscalar.nii","yD88c.HfsFwjyNXHQQv2SymGIsSYHQVZ"
"s3://hcp-openaccess/HCP_1200/100206/MNINonLinear/100206.ArealDistortion_MSMSulc.
→˓164k_fs_LR.dscalar.nii","100206","MNINonLinear

The .csv table contains one row per file, and includes the columns original_url,
subject, filename, and version. original_url is an s3 URL pointing to an individ-
ual file in the S3 bucket, subject is the subject’s ID (here: 100206), filename is the path
to the file within the dataset that will be build, and version is an S3 specific file version
identifier. The first table excerpt thus specifies a few files in the directory release-notes
in the dataset of subject 100206. For datalad addurls, the column headers serve as place-
holders for fields in each row. If this table excerpt is given to a datalad addurls call as
shown below, it will create a dataset and download and save the precise version of each
file in it:

$ datalad addurls -d <Subject-ID> <TABLE> '{original_url}?versionId={version}' '
→˓{filename}'

This command translates to “create a dataset with the name of the subject ID (-d
<Subject-ID>) and use the provided table (<TABLE>) to assemble the dataset contents.
Iterate through the table rows, and perform one download per row. Generate the
download URL from the original_url and version field of the table ({original_url}?
versionId={version}'), and save the downloaded file under the name specified in the
filename field ('{filename}')”.
If the file name contains a double slash (//), for example seen in the second table excerpt
in "MNINonLinear//..., this file will be created underneath a subdataset of the name in
front of the double slash. The rows in the second table thus translate to “save these files
into the subdataset MNINonLinear, and if this subdataset does not exist, create it”.
Thus, with a single subject’s table, a nested, subject specific dataset is built. Here is how
the directory hierarchy looks for this particular subject once datalad addurls worked
through its table:

100206
MNINonLinear <- subdataset
release-notes
T1w <- subdataset
unprocessed <- subdataset

This is all there is to assemble subject specific datasets. The interesting question is: How
can this be done as automated as possible?
How to create subject-specific tables
One crucial part of the process are the subject specific tables for datalad addurls. The
information on the file url, its name, and its version can be queried with the datalad ls
command (datalad-ls manual). It is a DataLad-specific version of the Unix ls command
and can be used to list summary information about s3 URLs and datasets. With this
command, the public S3 bucket can be queried and the command will output the relevant

27.3. Step-by-Step 437

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

information.
The datalad ls command is a rather old command and less user-friendly than other
commands demonstrated in the handbook. One problem for automation is that the
command is made for interactive use, and it outputs information in a non-structured
fashion. In order to retrieve the relevant information, a custom Python script was used
to split its output and extract it. This script can be found in the GitHub repository as
code/create_subject_table.py617.
How to schedule datalad addurls commands for all tables
Once the subject specific tables exist, datalad addurls can start to aggregate the files
into datasets. To do it efficiently, this can be done in parallel by using a job scheduler. On
the computer cluster the datasets were aggregated, this was HTCondor618.
The jobs (per subject) performed by HTCondor consisted of

• a datalad addurls command to generate the (nested) dataset and retrieve content
once626:

datalad -l warning addurls -d "$outds" -c hcp_dataset "$subj_table" '
→˓{original_url}?versionId={version}' '{filename}'

• a subsequent datalad drop command to remove file contents as soon as they were
saved to the dataset to save disk space (this is possible since the S3 source of the
file is known, and content can be reobtained using get):

datalad drop -d "$outds" -r --nocheck

• a few (Git) commands to clean up well afterwards, as the system the HCP dataset
was downloaded to had a strict 5TB limit on disk usage.

Summary
Thus, in order to download the complete HCP project and aggregate it into nested subject
level datasets (on a system with much less disk space than the complete HCP project’s
size!), only two DataLad commands, one custom configuration, and some scripts to parse
terminal output into .csv tables and create subject-wise HTCondor jobs were necessary.
With all tables set up, the jobs ran over the Christmas break and finished before everyone
went back to work. Getting 15 million files into datasets? Check!

617 https://github.com/TobiasKadelka/build_hcp/blob/master/code/create_subject_table.py
618 https://research.cs.wisc.edu/htcondor/
626 Note that this command is more complex than the previously shown datalad addurls command. In

particular, it has an additional loglevel configuration for the main command, and creates the datasets
with an hcp_dataset configuration. The logging level was set (to warning) to help with post-execution
diagnostics in the HTCondors log files. The configuration can be found in code/cfg_hcp_dataset627 and
enables a SPECIAL REMOTE in the resulting dataset.

Using a Remote Indexed Archive Store for dataset hosting

All datasets were built on a scientific compute cluster. In this location, however, datasets would
only be accessible to users with an account on this system. Subsequently, therefore, every-
thing was published with datalad push to the publicly available store.datalad.org619, a remote
indexed archive (RIA) store.

A RIA store is a flexible and scalable data storage solution for DataLad datasets. While its layout
may look confusing if one were to take a look at it, a RIA store is nothing but a clever storage
solution, and users never consciously interact with the store to get the HCP datasets. On the

619 http://store.datalad.org/

438 Chapter 27. Scaling up: Managing 80TB and 15 million files from the HCP release

https://github.com/TobiasKadelka/build_hcp/blob/master/code/create_subject_table.py
https://research.cs.wisc.edu/htcondor/
https://github.com/TobiasKadelka/build_hcp/blob/master/code/cfg_hcp_dataset.sh
http://store.datalad.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

lowest level, store.datalad.org620 is a directory on a publicly accessible server that holds a great
number of datasets stored as BARE GIT REPOSITORIES. The only important aspect of it for this
usecase is that instead of by their names (e.g., 100206), datasets are stored and identified via
their DATASET ID. The datalad clone command can understand this layout and install datasets
from a RIA store based on their ID.

M27.2 How would a datalad clone from a RIA store look like?

In order to get a dataset from a RIA store, datalad clone needs a RIA URL. It is build
from the following components:

• a ria+ identifier
• a path/url to the store in question. For store.datalad.org, this is http://store.

datalad.org, but it could also be an SSH url, such as ssh://juseless.inm7.de/
data/group/psyinf/dataset_store

• a pound sign (#)
• the dataset ID
• and optionally a version or branch specification (appended with a leading @)

Here is how a valid datalad clone command from the data store for one dataset would
look like:

datalad clone 'ria+http://store.datalad.org#d1ca308e-3d17-11ea-bf3b-f0d5bf7b5561'␣
→˓subj-01

But worry not! To get the HCP data, no-one will ever need to compose clone commands
to RIA stores apart from DataLad itself.

A RIA store is used, because – among other advantages – its layout makes the store flexible and
scalable. With datasets of sizes like the HCP project, especially scalability becomes an important
factor. If you are interested in finding out why, you can find more technical details on RIA stores,
their advantages, and even how to create and use one yourself in the section Remote Indexed
Archives for dataset storage and backup (page 294).

Making the datasets accessible

At this point, roughly 1200 nested datasets were created and published to a publicly accessible
RIA store. This modularized the HCP dataset and prevented performance issues that would
arise in oversized datasets. In order to make the complete dataset available and accessible from
one central point, the only thing missing is a single superdataset.

For this, a new dataset, human-connectome-project-openaccess, was created. It contains a
README file with short instructions on how to use it, a text-based copy of the HCP project’s data
usage agreement, – and each subject dataset as a subdataset. The .gitmodules file624 of this
superdataset thus is impressive. Here is an excerpt:

[submodule "100206"]
path = HCP1200/100206
url = ./HCP1200/100206
branch = master
datalad-id = 346a3ae0-2c2e-11ea-a27d-002590496000

[submodule "100307"]
path = HCP1200/100307

(continues on next page)

620 http://store.datalad.org/

27.3. Step-by-Step 439

http://store.datalad.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

url = ./HCP1200/100307
branch = master
datalad-id = a51b84fc-2c2d-11ea-9359-0025904abcb0

[submodule "100408"]
path = HCP1200/100408
url = ./HCP1200/100408
branch = master
datalad-id = d3fa72e4-2c2b-11ea-948f-0025904abcb0

[...]

For each subdataset (named after subject IDs), there is one entry (note that individual urls of
the subdatasets are pointless and not needed: As will be demonstrated shortly, DataLad resolves
each subdataset ID from the common store automatically). Thus, this superdataset combines
all individual datasets to the original HCP dataset structure. This (and only this) superdataset
is published to a public GITHUB repository that anyone can datalad clone628.

Data retrieval and interacting with the repository

HCP dataset version requirements

Using this dataset requires DataLad version 0.12.2 or higher. Upgrading an existing
DataLad installation is detailed in section Installation and configuration (page 10).

Procedurally, getting data from this dataset is almost as simple as with any other public DataLad
dataset: One needs to clone the repository and use datalad get [-n] [-r] PATH to retrieve
any file, directory, or subdataset (content). But because the data will be downloaded from the
HCP’s AWS S3 bucket, users will need to create an account at db.humanconnectome.org621 to
agree to the project’s data usage terms and get credentials. When performing the first datalad
get for file contents, DataLad will prompt for these credentials interactively from the terminal.
Once supplied, all subsequent get commands will retrieve data right away.

M27.3 Resetting AWS credentials

In case one misenters their AWS credentials or needs to reset them, this can easily be
done using the Python keyring622 package. For more information on keyring and Data-
Lad’s authentication process, see the Basic process section in Configure custom data access
(page 290).
After launching Python, import the keyring package and use the set_password() func-
tion. This function takes 3 arguments:

• system: “datalad-hcp-s3” in this case
• username: “key_id” if modifying the AWS access key ID or “secret_id” if modifying

the secret access key
• password: the access key itself

628 To re-read about publishing datasets to hosting services such as GITHUB or GITLAB, go back to Publishing the
dataset to GitHub (page 153).

621 http://db.humanconnectome.org

440 Chapter 27. Scaling up: Managing 80TB and 15 million files from the HCP release

http://db.humanconnectome.org
https://keyring.readthedocs.io/en/latest/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

import keyring

keyring.set_password("datalad-hcp-s3", "key_id", <password>)
keyring.set_password("datalad-hcp-s3", "secret_id", <password>)

Alternatively, one can set their credentials using environment variables. For more details
on this method, see this Findoutmore (page 125).

$ export DATALAD_hcp_s3_key_id=<password>
$ export DATALAD_hcp_s3_secret_id=<password>

622 https://keyring.readthedocs.io/en/latest/

Internally, DataLad cleverly manages the crucial aspects of data retrieval: Linking registered
subdatasets to the correct dataset in the RIA store. If you inspect the GitHub repository, you
will find that the subdataset links in it will not resolve if you click on them, because none of
the subdatasets were published to GitHub629, but lie in the RIA store instead. Dataset or file
content retrieval will nevertheless work automatically with datalad get: Each .gitmodule entry
lists the subdataset’s dataset ID. Based on a configuration of “subdataset-source-candidates” in
.datalad/config of the superdataset, the subdataset ID is assembled to a RIA URL that retrieves
the correct dataset from the store by get:

$ cat .datalad/config
[datalad "dataset"]

id = 2e2a8a70-3eaa-11ea-a9a5-b4969157768c
[datalad "get"]

subdataset-source-candidate-origin = "ria+http://store.datalad.org#{id}"

This configuration allows get to flexibly generate RIA URLs from the base URL in the config file
and the dataset IDs listed in .gitmodules. In the superdataset, it needed to be done “by hand”
via the git config command. Because the configuration should be shared together with the
dataset, the configuration needed to be set in .datalad/config630:

$ git config -f .datalad/config "datalad.get.subdataset-source-candidate-origin"
→˓"ria+http://store.datalad.org#{id}"

With this configuration, get will retrieve all subdatasets from the RIA store. Any subdataset
that is obtained from a RIA store in turn gets the very same configuration automatically into
.git/config. Thus, the configuration that makes seamless subdataset retrieval from RIA stores
possible is propagated throughout the dataset hierarchy. With this in place, anyone can clone
the top most dataset from GitHub, and – given they have valid credentials – get any file in the
HCP dataset hierarchy.

629 If you coded along in the Basics part of the book and published your dataset to GIN, you have experienced in
Subdataset publishing (page 212) how the links to unpublished subdatasets in a published dataset do not resolve
in the webinterface: Its path points to a URL that would resolve to lying underneath the superdataset, but there
is not published subdataset on the hosting platform!

630 To re-read on configurations of datasets, go back to sections DIY configurations (page 112) and More on DIY
configurations (page 117).

27.3. Step-by-Step 441

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Speeding operations up

At this point in time, the HCP dataset is a single, published superdataset with ~4500 subdatasets
that are hosted in a REMOTE INDEXED ARCHIVE (RIA) STORE at store.datalad.org623. This makes
the HCP data accessible via DataLad and its download easier. One downside to gigantic nested
datasets like this one, though, is the time it takes to retrieve all of it. Some tricks can help to
mitigate this: Contents can either be retrieved in parallel, or, in the case of general need for
subsets of the dataset, subsampled datasets can be created with datalad copy-file.

If the complete HCP dataset is required, subdataset installation and data retrieval can be sped
up by parallelizing. The gists Parallelize subdataset processing (page 273) and Retrieve partial
content from a hierarchy of (uninstalled) datasets (page 276) can shed some light on how to
do this. If you are interested in learning about the datalad copy-file, checkout the section
Subsample datasets using datalad copy-file (page 313).

Summary

This usecase demonstrated how it is possible to version control and distribute datasets of sizes
that would otherwise be unmanageably large for version control systems. With the public HCP
dataset available as a DataLad dataset, data access is simplified, data analysis that use the HCP
data can link it (in precise versions) to their scripts and even share it, and the complete HCP
release can be stored at a fraction of its total size for on demand retrieval.

623 http://store.datalad.org/

442 Chapter 27. Scaling up: Managing 80TB and 15 million files from the HCP release

http://store.datalad.org/

CHAPTER

TWENTYEIGHT

BUILDING A SCALABLE DATA STORAGE FOR SCIENTIFIC
COMPUTING

Research can require enormous amounts of data. Such data needs to be accessed by multiple
people at the same time, and is used across a diverse range of computations or research ques-
tions. The size of the dataset, the need for simultaneous access and transformation of this data
by multiple people, and the subsequent storing of multiple copies or derivatives of the data con-
stitutes a challenge for computational clusters and requires state-of-the-art data management
solutions. This use case details a model implementation for a scalable data storage solution,
suitable to serve the computational and logistic demands of data science in big (scientific) in-
stitutions, while keeping workflows for users as simple as possible. It elaborates on

1. How to implement a scalable REMOTE INDEXED ARCHIVE (RIA) STORE to flexibly store
large amounts of DataLad datasets, potentially remote to lower storage strains on com-
puting infrastructure,

2. How disk-space aware computing can be eased by DataLad based workflows and enforced
by infrastructural incentives and limitations, and

3. How to reduce technical complexities for users and encourage reproducible, version-
controlled, and scalable scientific workflows.

Use case target audience

This usecase is technical in nature and aimed at IT/data management personnel seeking
insights into the technical implementation and configuration of a RIA store or into its
workflows. In particular, it describes the RIA data storage and workflow implementation
as done in INM-7, research centre Juelich, Germany.
Note further: Building a RIA store requires DataLad version 0.13.0 or higher.

28.1 The Challenge

The data science institute XYZ consists of dozens of people: Principle investigators, PhD stu-
dents, general research staff, system administration, and IT support. It does research on im-
portant global issues, and prides itself with ground-breaking insights obtained from elaborate
and complex computations run on a large scientific computing cluster. The datasets used in the
institute are big both in size and number of files, and expensive to collect. Therefore, datasets
are used for various different research questions, by multiple researchers. Every member of the
institute has an account on an expensive and large compute cluster, and all of the data exists in
dedicated directories on this server. However, researchers struggle with the technical overhead
of data management and data science. In order to work on their research questions without

443

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

modifying original data, every user creates their own copies of the full data in their user ac-
count on the cluster – even if it contains many files that are not necessary for their analysis.
In addition, as version control is not a standard skill, they add all computed derivatives and
outputs, even old versions, out of fear of losing work that may become relevant again. Thus, an
excess of (unorganized) data copies and derivatives exists in addition to the already substan-
tial amount of original data. At the same time, the compute cluster is both the data storage
and the analysis playground for the institute. With data directories of several TB in size, and
computationally heavy analyses, the compute cluster is quickly brought to its knees: Insuffi-
cient memory and IOPS starvation make computations painstakingly slow, and hinder scientific
progress. Despite the elaborate and expensive cluster setup, exciting datasets can not be stored
or processed, as there just doesn’t seem to be enough disk space.

Therefore, the challenge is two-fold: On an infrastructural level, institute XYZ needs a scalable,
flexible, and maintainable data storage solution for their growing collection of large datasets.
On the level of human behavior, researchers not formerly trained in data management need to
apply and adhere to advanced data management principles.

28.2 The DataLad approach

The compute cluster is refurbished to a state-of-the-art data management system. For a scalable
and flexible dataset storage, the data store is a REMOTE INDEXED ARCHIVE (RIA) STORE –
an extendable, file-system based storage solution for DataLad datasets that aligns well with the
requirements of scientific computing (infrastructure). The RIA store is configured as a git-annex
ORA-remote (“optional remote archive”) special remote for access to annexed keys in the store
and so that full datasets can be (compressed) 7-zip archives. The latter is especially useful in
case of filesystem inode limitations, such as on HPC storage systems: Regardless of a dataset’s
number of files and size, (compressed) 7zipped datasets use only few inodes, but retain the
ability to query available files. Unlike traditional solutions, both because of the size of the large
amounts of data, and for more efficient use of compute power for calculations instead of data
storage, the RIA store is set up remote: Data is stored on a different machine than the one
the scientific analyses are computed on. While unconventional, it is convenient, and perfectly
possible with DataLad.

The infrastructural changes are accompanied by changes in the mindset and workflows of the
researchers that perform analyses on the cluster. By using a RIA store, the institute’s work
routines are adjusted around DataLad datasets. Simple configurations, distributed system-wide
with DataLad’s run-procedures, or basic data management principles improve the efficiency
and reproducibility of research projects: Analyses are set-up inside of DataLad datasets, and for
every analysis, an associated project is created under the namespace of the institute on the
institute’s GITLAB instance automatically. This does not only lead to vastly simplified version
control workflows, but also to simplified access to projects and research logs for collaborators
and supervisors. Input data gets installed as subdatasets from the RIA store. This automatically
links analyses projects to data sets, and allows for fine-grained access of up to individual file
level. With only precisely needed data, analyses datasets are already much leaner than with
previous complete dataset copies, but as data can be re-obtained on-demand from the store,
original input files or files that are easily recomputed can safely be dropped to save even more
disk-space. Beyond this, upon creation of an analysis project, the associated GitLab project is
automatically configured as a remote with a publication dependency on the data store, thus
enabling vastly simplified data publication routines and backups of pristine results: After com-
puting their results, a datalad push is all it takes to backup and share ones scientific insights.
Thus, even with a complex setup of data store, compute infrastructure, and repository hosting,

444 Chapter 28. Building a scalable data storage for scientific computing

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

configurations adjusted to the compute infrastructure can be distributed and used to mitigate
any potential remaining technical overhead. Finally, with all datasets stored in a RIA store and
in a single place, any remaining maintenance and query tasks in the datasets can be performed
by data management personnel without requiring domain knowledge about dataset contents.

28.3 Step-by-step

The following section will elaborate on the details of the technical implementation of a RIA
store, and the workflow requirements and incentives for researchers. Both of them are aimed
at making scientific analyses on a compute cluster scale and can be viewed as complimentary
but independent.

Note on the generality of the described setup

Some hardware-specific implementation details are unique to the real-world example this
usecase is based on, and are not a requirement. In this particular case of application, for
example, a remote setup for a RIA store made sense: Parts of an old compute cluster and
of the super computer at the Juelich supercomputing centre (JSC) instead of the institutes
compute cluster are used to host the data store. This may be an unconventional storage
location, but it is convenient: The data does not strain the compute cluster, and with
DataLad, it is irrelevant where the RIA store is located. The next subsection introduces
the general layout of the compute infrastructure and some DataLad-unrelated incentives
and restrictions.

Incentives and imperatives for disk-space aware computing

On a high level, the layout and relationships of the relevant computational infrastructure in this
usecase are as follows: Every researcher has a workstation that they can access the compute
cluster with. On the compute clusters’ head node, every user account has their own home di-
rectory. These are the private spaces of researchers and are referred to as $HOME in Fig. 28.1.
Analyses should be conducted on the cluster’s compute nodes ($COMPUTE). $HOME and $COMPUTE
are not managed or trusted by data management personnel, and are seen as ephemeral (short-
lived). The RIA store ($DATA) can be accessed both from $HOME and $COMPUTE, in both directions:
Researchers can pull datasets from the store, push new datasets to it, or update (certain) ex-
isting datasets. $DATA is the one location in which experienced data management personnel
ensures back-up and archival, performs house-keeping, and handles PERMISSIONS, and is thus
were pristine raw data is stored or analysis code or results from $COMPUTE and $HOME should
end up in. This aids organization, and allows a central management of back-ups and archival,
potentially by data stewards or similar data management personnel with no domain knowledge
about data contents.

One aspect of the problem are disk-space unaware computing workflows. Researchers make
and keep numerous copies of data in their home directory and perform computationally expen-
sive analyses on the headnode of a compute cluster because they do not know better, and/or
want to do it in the easiest way possible. A general change for the better can be achieved by
imposing sensible limitations and restrictions on what can be done at which scale: Data from
the RIA store ($DATA) is accessible to researchers for exploration and computation, but the scale
of the operations they want to perform can require different approaches. In their $HOME, re-
searchers are free to do whatever they want as long as it is within the limits of their machines
or their user accounts (100GB). Thus, researchers can explore data, test and develop code, or

28.3. Step-by-step 445

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

ephemeral
(untrusted)

(unmanaged)

persistent
trusted

managed

$HOME

$COMPUTE

$DATA

Fig. 28.1: Trinity of research data handling: The data store ($DATA) is managed and backed-up.
The compute cluster ($COMPUTE) has an analysis-appropriate structure with adequate resources,
but just as users workstations/laptops ($HOME), it is not concerned with data hosting.

446 Chapter 28. Building a scalable data storage for scientific computing

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

visualize results, but they can not create complete dataset copies or afford to keep an excess
of unused data around. Only $COMPUTE has the necessary hardware requirements for expensive
computations. Thus, within $HOME, researchers are free to explore data as they wish, but scaling
requires them to use $COMPUTE. By using a job scheduler, compute jobs of multiple researchers
are distributed fairly across the available compute infrastructure. Version controlled (and po-
tentially reproducible) research logs and the results of the analyses can be pushed from COMPUTE
to $DATA for back-up and archival, and hence anything that is relevant for a research project is
tracked, backed-up, and stored, all without straining available disk-space on the cluster after-
wards. While the imposed limitations are independent of DataLad, DataLad can make sure that
the necessary workflows are simple enough for researchers of any seniority, background, or skill
level.

Remote indexed archive (RIA) stores

A RIA store is a storage solution for DataLad datasets that can be flexibly extended with new
datasets, independent of static file names or directory hierarchies, and that can be (automat-
ically) maintained or queried without requiring expert or domain knowledge about the data.
At its core, it is a flat, file-system based repository representation of any number of datasets,
limited only by disk-space constrains of the machine it lies on.

Put simply, a RIA store is a dataset storage location that allows for access to and collaboration
on DataLad datasets. The high-level workflow overview is as follows: Create a dataset, use
the datalad create-sibling-ria command to establish a connection to an either pre-existing
or not-yet-existing RIA store, publish dataset contents with datalad push, (let others) clone
the dataset from the RIA store, and (let others) publish and pull updates. In the case of large,
institute-wide datasets, a RIA store (or multiple RIA stores) can serve as a central storage lo-
cation that enables fine-grained data access to everyone who needs it, and as a storage and
back-up location for all analyses datasets. Beyond constituting central storage locations, RIA
stores also ease dataset maintenance and queries: If all datasets of an institute are kept in a
single RIA store, questions such as “Which projects use this data as their input?”, “In which
projects was the student with this Git identity involved?”, “Give me a complete research log of
what was done for this publication”, or “Which datasets weren’t used in the last 5 years?” can be
answered automatically with Git tools, without requiring expert knowledge about the contents
of any of the datasets, or access to the original creators of the dataset. To find out more about
RIA stores, check out section Remote Indexed Archives for dataset storage and backup (page 294).

RIA store workflows

Configurations can hide the technical layers

Setting up a RIA store and appropriate siblings is fairly easy – it requires only the datalad
create-sibling-ria command. However, in the institute this usecase describes, in order to
spare users knowing about RIA stores, custom configurations are distributed via DataLad’s run-
procedures to simplify workflows further and hide the technical layers of the RIA setup:

A custom procedure631 performs the relevant sibling setup with a fully configured link to the
RIA store, and, on top of it, also creates an associated repository with a publication dependency

631 https://jugit.fz-juelich.de/inm7/infrastructure/inm7-datalad/blob/master/inm7_datalad/resources/procedure
s/cfg_inm7.py

28.3. Step-by-step 447

https://jugit.fz-juelich.de/inm7/infrastructure/inm7-datalad/blob/master/inm7_datalad/resources/procedures/cfg_inm7.py

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

on the RIA store to an institute’s GitLab instance632. With a procedure like this in place system-
wide, an individual researcher only needs to call the procedure right at the time of dataset
creation, and has a fully configured and set up analysis dataset afterwards:

$ datalad create -c inm7 <PATH>

Working in this dataset will require only datalad save and datalad push commands, and
configurations ensure that the projects history and results are published where they need to be:
The RIA store, for storing and archiving the project including data, and GitLab, for exposing
the projects progress to the outside and ease collaboration or supervision. Users do not need
to know the location of the store, its layout, or how it works – they can go about doing their
science, while DataLad handles publications routines.

In order to get input data from datasets hosted in the datastore without requiring users to know
about dataset IDs or construct ria+ URLs, superdatasets get a SIBLING on GITLAB or GITHUB

with a human readable name. Users can clone the superdatasets from the web hosting service,
and obtain data via datalad get. A concrete example for this is described in the usecase Scaling
up: Managing 80TB and 15 million files from the HCP release (page 433). While datalad get
will retrieve file or subdataset contents from the RIA store, users will not need to bother where
the data actually comes from.

Summary

The infrastructural and workflow changes around DataLad datasets in RIA stores improve the
efficiency of the institute:

With easy local version control workflows and DataLad-based data management routines, re-
searchers are able to focus on science and face barely any technical overhead for data manage-
ment. As file content for analyses is obtained on demand via datalad get, researchers selectively
obtain only those data they need instead of having complete copies of datasets as before, and
thus save disk space. Upon datalad push, computed results and project histories can be pushed
to the data store and the institute’s GitLab instance, and be thus backed-up and accessible for
collaborators or supervisors. Easy-to-reobtain input data can safely be dropped to free disk
space on the compute cluster. Sensible incentives for computing and limitations on disk space
prevent unmanaged clutter. With a RIA store full of bare git repositories, it is easily maintain-
able by data stewards or system administrators. Common compression or cleaning operations
of Git and git-annex are performed without requiring knowledge about the data inside of the
store, as are queries on interesting aspects of datasets, potentially across all of the datasets of
the institute. With a remote data store setup, the compute cluster is efficiently used for com-
putations instead of data storage. Researchers can not only compute their analyses faster and
on larger datasets than before, but with DataLad’s version control capabilities their work also
becomes more transparent, open, and reproducible.

632 To re-read about DataLad’s run-procedures, check out section Configurations to go (page 126). You can find the
source code of the procedure on GitLab633.

633 https://jugit.fz-juelich.de/inm7/infrastructure/inm7-datalad/blob/master/inm7_datalad/resources/procedure
s/cfg_inm7.py

448 Chapter 28. Building a scalable data storage for scientific computing

https://jugit.fz-juelich.de/inm7/infrastructure/inm7-datalad/blob/master/inm7_datalad/resources/procedures/cfg_inm7.py

CHAPTER

TWENTYNINE

USING GLOBUS AS A DATA STORE FOR THE CANADIAN OPEN
NEUROSCIENCE PORTAL

This use case shows how the Canadian Open Neuroscience Portal (CONP)634 disseminates data
as DataLad datasets using the Globus635 network with GIT-ANNEX, a custom git-annex SPECIAL

REMOTE, and Datalad. It demonstrates

1. How to enable the git-annex Globus special remote636 to access files content from
Globus.org637,

2. The workflows used to access datasets via the Canadian Open Neuroscience Portal
(CONP)638,

3. An example of disk-space aware computing with large datasets distributed across systems
that avoids unnecessary replication, eased by DataLad and GIT-ANNEX.

29.1 The Challenge

Every day, researchers from different fields strive to advance present state-of-the-art scientific
knowledge by generating and publishing novel results. Crucially, they must share such results
with the scientific community to enable other researchers to further build on existing data and
avoid duplicating work.

The Canadian Open Neuroscience Portal (CONP)639 is a publicly available platform that aims
to remove the technical barriers to practicing open science and improve the accessibility and
reusability of neuroscience research to accelerate the pace of discovery. To this end, the platform
will provide a unified interface that – among other things – enables sharing and open dissemina-
tion of both neuroscience data and methods to the global community. Managing the scientific
data ecosystem is extremely challenging given the amount of new data generated every day,
however. CONP must take a strategic solution to allow researchers to

• dynamically work on present data,

• upload new versions of the data, and

• generate additional scientific work.

634 https://conp.ca/
635 https://www.globus.org/
636 https://github.com/CONP-PCNO/git-annex-remote-globus
637 https://www.globus.org/
638 https://conp.ca/
639 https://conp.ca/

449

https://conp.ca/
https://www.globus.org/
https://github.com/CONP-PCNO/git-annex-remote-globus
https://www.globus.org/
https://conp.ca/
https://conp.ca/
https://conp.ca/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

An underlying data management system to achieve this must be flexible, dynamic and light-
weight. It would need to have the ability to easily distribute datasets across multiple locations
to reduce the need of re-collecting or replicating data that is similar to already existing datasets.

29.2 The Datalad Approach

CONP makes use of Datalad as a data management tool to enable efficient analysis and work on
datasets: Datalad minimizes the computational cost of holding full storage of datasets versions,
it allows files in a dataset to be distributed across multiple download sources, and to be retrieved
on demand only to save disk space. Therefore, it is common practice for researchers to both
download and publish research content in a dataset format via a CONP, which provides them
with a vast dataset repository.

M29.1 Basic principles of DataLad for new readers

If you are new to DataLad, the introduction of the handbook and the chapter DataLad
datasets (page 34) can give you a good idea of what DataLad and its underlying tools can
to, as well as a hands-on demonstration. This findoutmore, in the meantime, sketches a
high-level overview of the principles behind DataLad’s data sharing capacities.
Datalad is built on top of Git640 and git-annex641, and enables data version control. A
one-page overview can be found in section What you really need to know (page 27).
GIT-ANNEX is a useful tool that extends Git with the ability to manage repositories in a
lightweight fashion even if they contain large amounts of data. One main principle of
git-annex lies storing data that should not be stored in Git (e.g., due to size limits) in
an ANNEX. In its place, it generates symbolic links (SYMLINKs) to these annexed files that
encode their file content. Only the symlinks are committed into GIT while GIT-ANNEX

handles data management in the annex. A detailed explanation of this process can be
found in the section Data integrity (page 85), but the outcome of it is a light-weight
Git repository that can be cloned fast and yet contains access to arbitrarily large data
managed by GIT-ANNEX.
In the case of data sharing procedures, annexed data can be stored in various third party
hosting services configured as special remotes642. When retrieving data, GIT-ANNEX re-
quests access to the primary data source storing those files to retrieve actual files content
when the user needs it.
640 https://git-scm.com/
641 https://git-annex.branchable.com/
642 https://git-annex.branchable.com/special_remotes/

The workflows for users to get data are straightforward: Users log into the CONP portal and
install Datalad datasets with datalad install -r <dataset>. This gives them access to the
annexed files (as mentioned in the findoutmore above, large files replaced by their symlinks).
To request the content of the annexed files, they simply download those files locally in their
filesystem using datalad get path/to/file. So simple!

On a technical level, under the hood, GIT-ANNEX needs to have a connection established with the
primary data source, the SPECIAL REMOTE, that hosts and provides the requested files’ contents.
In some cases, annexed files are stored in Globus.org643. Globus is an efficient transfer files
system suitable for researchers to share and transfer files between so called endpoints, locations
in Globus.org where files get uploaded by their owners or get transferred to, that can be either

643 https://www.globus.org/

450 Chapter 29. Using Globus as a data store for the Canadian Open Neuroscience Portal

https://git-scm.com/
https://git-annex.branchable.com/
https://git-annex.branchable.com/special_remotes/
https://www.globus.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

private or public. Annexed file contents are stored in such Globus endpoints644. Therefore,
when users download annexed files, Globus communicates with git-annex to provide access to
files content. Given this functionality, we can say that Globus works as a data store for git-annex,
or in technical terms, that Globus is configured to work as a SPECIAL REMOTE for git-annex. This
is possible via the git-annex backend interface implementation for Globus called git-annex-
globus-remote645 developed by CONP. In conjunction, CONP and the git-annex-globus-remote
constitute the building blocks that enable access to datasets and its data: CONP hosts small-
sized datasets, and Globus.org is the data store that (large) file content can be retrieved from.

To sum up, CONP makes a variety of datasets available and provides them to researchers as
Datalad datasets that have the regular, advantageous Datalad functionality. All of this exists
thanks to the ability of git-annex and Datalad to interface with special remote locations across
the web such as Globus.org646 to request access to data. In this way, researchers have access to
a wide research data ecosystem and can use and reuse existing data, thus reducing the need of
data replication.

29.3 Step-by-Step

Globus as git-annex data store

A remote data store exists thanks to git-annex (which DataLad builds upon): git-annex uses a
key-value pair to reference files. In the git-annex object tree, large files in datasets are stored
as values while the key is generated from their contents and is checked into Git. The key is
used to reference the location of the value in the object tree653. The OBJECT-TREE (or keystore)
with the data contents can be located anywhere – its location only needs to be encoded using
a special remote. Therefore, thanks to the git-annex-globus-remote647 interface, Globus.org
provides git-annex with location information to retrieve values and access files content with the
corresponding keys. To ultimately enable end users’ access to data, git-annex registers Globus
locations by assigning them to Globus-specific URLs, such as globus://dataset_id/path/to/
file. Each Globus URL is associated with a the key corresponding to the given file. The use of
a Globus URL protocol is a fictitious mean to assign each file of the dataset a unique location
and source and therefore, it is a wrapper for additional validation that is performed by the git-
annex-globus-remote to check on the actual presence of the file within the Globus transfer file
ecosystem. In other words, the ‘Globus URL’ is simply an alias of an existing file located on the
web and specifically available in Globus.org. Registration of Globus URLs in git-annex is among
the configuration procedures carried out on an administrative, system-wide level, and users will
only deal with direct easy access of desired files.

With this, Globus is configured to receive data access requests from git-annex and to respond
back if data is available. Currently, the git-annex-globus-remote only supports data download
operations. In the future, it could be useful for additional functionality as well. When the globus
special remote gets initialized for the first time, the user has to authenticate to Globus.org using
ORCID648 , Gmail649 or a specific Globus account. This step will enable git-annex to then initial-

644 https://docs.globus.org/faq/globus-connect-endpoints/#what_is_an_endpoint
645 https://github.com/CONP-PCNO/git-annex-remote-globus
646 https://www.globus.org
653 More details on how GIT-ANNEX handles data underneath the hood and how the OBJECT-TREE works can be found

in section Data integrity (page 85).
647 https://github.com/CONP-PCNO/git-annex-remote-globus
648 https://orcid.org/
649 https://mail.google.com

29.3. Step-by-Step 451

https://docs.globus.org/faq/globus-connect-endpoints/#what_is_an_endpoint
https://github.com/CONP-PCNO/git-annex-remote-globus
https://github.com/CONP-PCNO/git-annex-remote-globus
https://www.globus.org
https://github.com/CONP-PCNO/git-annex-remote-globus
https://orcid.org/
https://mail.google.com

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

ize the globus special remote and establish the communication process. Instructions to use the
globus special remote are available at github.com/CONP-PCNO/git-annex-remote-globus650.
Guidelines specifying the standard communication protocol to implement a custom special re-
mote can be found at git-annex.branchable.com/design/external_special_remote_protocol651.

An example using Globus from a user perspective

It always starts with a dataset, installed with either datalad install or datalad clone.

$ datalad install -r <dataset>
$ cd <dataset>

In order to get access to annexed data stored on Globus.org, users need to install the globus-
special-remote. If it is the first time using Globus, users will need to authenticate to Globus.org
by running the git-annex-remote-globus setup command:

$ pip install git-annex-remote-globus
if first time
$ git-annex-remote-globus setup

After the installation of a dataset, we can see that most of the files in the dataset are annexed:
Listing a file with ls -l will reveal a SYMLINK to the dataset’s annex.

$ ls -l NeuroMap_data/cortex/mask/mask.mat
cortex/mask/mask.mat -> ../../../.git/annex/objects/object.mat

However, without having any content downloaded yet, the symlink currently points into a void,
and tools will not be able to open the file as its contents are not yet locally available.

$ cat NeuroMap_data/cortex/mask/mask.mat
NeuroMap_data/cortex/mask/mask.mat: No such file or directory

However, data retrieval is easy. At first, users have to enable the globus remote.

$ git annex enableremote globus
enableremote globus ok
(recording state in git...)

After that, they can download any file, directory, or complete dataset using datalad get:

$ datalad get NeuroMap_data/cortex/mask/mask.mat
get(ok): NeuroMap_data/cortex/mask/mask.mat (file) [from globus...]

$ ls -l NeuroMap_data/cortex/mask/mask.mat
cortex/mask/mask.mat -> ../../../.git/annex/objects/object.mat

$ cat NeuroMap_data/cortex/mask/mask.mat
you can now access the file !

Downloaded! Researchers could now use this dataset to replicate previous analyses and further
build on present data to bring scientific knowledge forward. CONP thus makes a variety of
datasets flexibly available and helps to disseminate data. The on-demand availability of files in

650 https://github.com/CONP-PCNO/git-annex-remote-globus
651 https://git-annex.branchable.com/design/external_special_remote_protocol/

452 Chapter 29. Using Globus as a data store for the Canadian Open Neuroscience Portal

https://github.com/CONP-PCNO/git-annex-remote-globus
https://git-annex.branchable.com/design/external_special_remote_protocol/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

datasets can help scientists to save disk space. For this, they could get only those data files that
they need instead of obtaining complete copies of the dataset, or they could locally drop data
that is hosted and thus easily re-available on Globus.org after their analyses are done.

29.4 Resources

The README at github.com/CONP-PCNO/git-annex-remote-globus652 provides an excellent and
in-depth overview of how to install and use the git-annex special remote for Globus.org.

652 https://github.com/CONP-PCNO/git-annex-remote-globus

29.4. Resources 453

https://github.com/CONP-PCNO/git-annex-remote-globus

CHAPTER

THIRTY

DATALAD FOR REPRODUCIBLE MACHINE-LEARNING ANALYSES

This use case demonstrates an automatically and computationally reproducible analyses in the
context of a machine learning (ML) project. It demonstrates on an example image classification
analysis project how one can

• link data, models, parametrization, software and results using datalad containers-run

• keep track of results and compare them across models or parametrizations

• stay computationally reproducible, transparent, and importantly, intuitive and clear

30.1 The Challenge

Chad is a recent college graduate and has just started in a wicked start-up that prides itself with
using “AI and ML for individualized medicine” in the Bay area. Even though he’s extraordinarily
motivated, the fast pace and pressure to deliver at his job are still stressful. For his first project,
he’s tasked with training a machine learning model to detect cancerous tissue in computer
tomography (CT)654 images. Excited and eager to impress, he builds his first image classification
ML model with state of the art Python libraries and a stochastic gradient descent (SGD)655

classifier. “Not too bad”, he thinks, when he shares the classification accuracy with his team
lead, “way higher than chance level!” “Fantastic, Chad, but listen, we really need a higher
accuracy than this. Our customers deserve that. Turn up the number of iterations. Also, try a
random forest classification instead. And also, I need that done by tomorrow morning latest,
Chad. Take a bag of organic sea-weed-kale crisps from the kitchen, oh, and also, you’re coming
to our next project pitch at the roof-top bar on Sunday?”

Hastily, Chad pulls an all-nighter to adjust his models by dawn. Increase iterations here, switch
classifier there, oh no, did this increase or decrease the overall accuracy? Tune some parameters
here and there, re-do that previous one just one more time just to be sure. A quick two-hour nap
on the office couch, and he is ready for the daily scrum656 in the morning. “Shit, what accuracy
belonged to which parametrization again?”, he thinks to himself as he pitches his analysis and
presents his results. But everyone rushes to the next project already.

A week later, when a senior colleague is tasked with checking his analyses, Chad needs to spend
a few hours with them to them guide through his chaotic analysis directory full of jupyter note-
books. They struggle to figure out which Python libraries to install on the colleagues computer,
have to adjust hard-code ABSOLUTE PATHs, and fail to reproduce the results that he presented.

654 https://en.wikipedia.org/wiki/CT_scan
655 https://en.wikipedia.org/wiki/Stochastic_gradient_descent
656 https://en.wikipedia.org/wiki/Scrum_(software_development)#Daily_scrum

454

https://en.wikipedia.org/wiki/CT_scan
https://en.wikipedia.org/wiki/CT_scan
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Scrum_(software_development)#Daily_scrum

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

30.2 The DataLad Approach

Machine learning analyses are complex: Beyond data preparation and general scripting, they
typically consist of training and optimizing several different machine learning models and com-
paring them based on performance metrics. This complexity can jeopardize reproducibility – it
is hard to remember or figure out which model was trained on which version of what data and
which has been the ideal optimization. But just like any data analysis project, machine learn-
ing projects can become easier to understand and reproduce if they are intuitively structured,
appropriately version controlled, and if analysis executions are captured with enough (ideally
machine-readable and re-executable) provenance.

DataLad has many concepts and tools that assist in creating transparent and computationally
and automatically reproducible analyses. From general principles on how to structure analyses
projects to linking and versioning software and data alongside to code or capturing analysis ex-
ecution as re-executable run-records. To make a machine-learning project intuitively structured
and transparent, Chad applies DataLad’s YODA principles to his work. He keeps the training
and testing data a reusable, standalone component, installed as a subdataset, and keeps his
analysis dataset completely self-contained with RELATIVE PATHs in all his scripts. Later, he can
share his dataset without the need to adjust paths. Chad also attaches a software container to
his dataset, so that others don’t need to recreate his Python environment. And lastly, he wraps
every command that he executes in a datalad containers-run call, such that others don’t need
to rely on his brain to understand the analysis, but can have a computer recompute every anal-
ysis step in the correct software environment. Using concise commit messages and TAGs, Chad
creates a transparent and intuitive dataset history. With these measures in place, he can ex-
periment flexibly with various models and data, and does not only have means to compare his
models, but can also set his dataset to the state in which his most preferred model is ready to
be used.

30.3 Step-by-Step

Required software

The analysis requires the Python packages scikit-learn657, scikit-image658, pandas659, and
numpy660. We have build a SINGULARITY SOFTWARE CONTAINER with all relevant software,
and the code below will use the datalad-containers extension672 to download the container
from SINGULARITY-HUB and execute all analysis in this software environment. If you do not
want to install the datalad-containers extension or Singularity, you can also create a VIR-
TUAL ENVIRONMENT with all necessary software if you prefer673, and exchange the datalad

657 https://scikit-learn.org/stable/
658 https://scikit-image.org/
659 https://pandas.pydata.org/
660 https://numpy.org/
672 You can install the datalad-containers extension from PIP via pip install datalad-container. You can find

out more about extensions in general in the section DataLad extensions (page 285), and you can more computa-
tionally reproducible analysis using datalad container in the chapter Computational reproducibility with software
containers (page 166) and the usecase An automatically and computationally reproducible neuroimaging analysis
from scratch (page 420).

673 Unsure how to create a VIRTUAL ENVIRONMENT? You can find a tutorial using PIP and the virtualenv module in
the Python docs674.

674 https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

30.2. The DataLad Approach 455

https://scikit-learn.org/stable/
https://scikit-image.org/
https://pandas.pydata.org/
https://numpy.org/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

containers-run commands below with datalad run commands.

Let’s start with an overview of the analysis plans: We’re aiming for an image classification
analysis. In this type of ML analysis, a classifier is trained on a subset of data, the training set,
and is then used for predictions on a previously unseen subset of data, the test set. Its task is to
label the test data with one of several class attributes it is trained to classify, such as “cancerous”
or “non-cancerous” with medical data661, “cat” or “dog”662 with your pictures of pets, or “spam”
versus “not spam” in your emails. In most cases, classification analyses are supervised learning
methods: The correct class attributes are known, and the classifier is tested on a labeled set
of training data. Its classification accuracy is calculated from comparing its performance on
the unlabeled testing set with its correct labels. As a first analysis step, train and testing data
therefore need to be labeled – both to allow model training and model evaluation. In a second
step, a classifier needs to be trained on the labeled test data. It learns which features are to
be associated with which class attribute. In a final step, the trained classifier classifies the test
data, and its results are evaluated against the true labels.

Below, we will go through a image classification analysis on a few categories in the Imagenette
dataset663, a smaller subset of the Imagenet dataset664, one of the most widely used large
scale dataset for bench-marking Image Classification algorithms. It contains images from ten
categories (tench (a type of fish), English springer (a type of dog), cassette player, chain saw,
church, French horn, garbage truck, gas pump, golf ball, parachute). We will prepare a subset
of the data, and train and evaluate different types of classifier. The analysis is based on this
tutorial665.

First, let’s create an input data dataset. Later, this dataset will be installed as a subdataset of
the analysis. This complies to the YODA principles (page 136) and helps to keep the input data
modular, reusable, and transparent.

$ datalad create imagenette
[INFO] Creating a new annex repo at /home/me/usecases/imagenette
create(ok): /home/me/usecases/imagenette (dataset)

The original Imagenette dataset contains 10 image categories can be downloaded as an archive
from Amazon (s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz666), but for this tu-
torial we’re using a subset of this dataset with only two categories. It is available as an archive
from the OPEN SCIENCE FRAMEWORK (OSF). The datalad download-url --archive not only
extracts and saves the data, but also registers the datasets origin such that it can re-retrieved on
demand from its original location.

$ cd imagenette
0.12.2 <= datalad < 0.13.4 needs the configuration option -c datalad.runtime.use-
→˓patool=1 to handle .tgz
$ datalad download-url \
--archive \
--message "Download Imagenette dataset" \
'https://osf.io/d6qbz/download'

[INFO] Downloading 'https://osf.io/d6qbz/download' into '/home/me/usecases/imagenette/'

(continues on next page)

661 https://www.nature.com/articles/d41586-020-00847-2
662 https://www.kaggle.com/c/dogs-vs-cats
663 https://github.com/fastai/imagenette
664 http://www.image-net.org/
665 https://realpython.com/python-data-version-control/
666 https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz

456 Chapter 30. DataLad for reproducible machine-learning analyses

https://www.nature.com/articles/d41586-020-00847-2
https://www.nature.com/articles/d41586-020-00847-2
https://www.kaggle.com/c/dogs-vs-cats
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette
http://www.image-net.org/
https://realpython.com/python-data-version-control/
https://realpython.com/python-data-version-control/
https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

[INFO] Adding content of the archive /home/me/usecases/imagenette/imagenette2-160.tgz␣
→˓into annex AnnexRepo(/home/me/usecases/imagenette)
[INFO] Initiating special remote datalad-archives
[INFO] Finished adding /home/me/usecases/imagenette/imagenette2-160.tgz: Files processed:␣
→˓2701, +annex: 2701
[INFO] Finished extraction
download_url(ok): /home/me/usecases/imagenette/imagenette2-160.tgz (file)
save(ok): . (dataset)
add-archive-content(ok): /home/me/usecases/imagenette (dataset)
action summary:
add (ok: 1)
add-archive-content (ok: 1)
download_url (ok: 1)
save (ok: 1)

Next, let’s create an analysis dataset. For a pre-structured and pre-configured starting point, the
dataset can be created with the yoda and text2git RUN PROCEDUREs675. These configurations
create a code/ directory, place some place-holding README files in appropriate places, and make
sure that all text files, e.g. scripts or evaluation results, are kept in GIT to allow for easier
modifications.

W30.1 Note for Windows-Users

Hey there! If you are using Windows 10 (not Windows Subsystem for Linux (WSL)667)
without the custom-built git-annex installer mentioned in the installation section, you
need a work-around.
Instead of running datalad create -c text2git -c yoda ml-project, please remove
the configuration -c text2git from the command and run only datalad create -c yoda
ml-project:

$ datalad create -c yoda ml-project
[INFO] Creating a new annex repo at C:\Users\mih\ml-project
[INFO] Detected a filesystem without fifo support.
[INFO] Disabling ssh connection caching.
[INFO] Detected a crippled filesystem.
[INFO] Scanning for unlocked files (this may take some time)
[INFO] Entering an adjusted branch where files are unlocked as this filesystem does␣
→˓not support locked files.
[INFO] Switched to branch 'adjusted/master(unlocked)'
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
create(ok): C:\Users\mih\ml-project (dataset)

Instead of the text2git configuration, you need to create a configuration by hand by
pasting the following lines of text into the (hidden) .gitattributes file in your newly
created dataset. Tuning datasets to your needs (page 112) can explain the details of this
procedure.
Here are lines that need to be appended to the existing lines in .gitattributes and will
mimic the configuration -c text2git would apply:

*.json annex.largefiles=nothing

You can achieve this by copy-pasting the following code snippets into your terminal (but

675 To re-read about RUN PROCEDUREs, check out section Configurations to go (page 126).

30.3. Step-by-Step 457

https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

you can also add them using a text editor of your choice):

$ echo\ >> .gitattributes && echo *.json annex.largefiles=nothing >> .gitattributes

Afterwards, these should be the contents of .gitattributes:

$ cat .gitattributes
* annex.backend=MD5E
**/.git* annex.largefiles=nothing
CHANGELOG.md annex.largefiles=nothing
README.md annex.largefiles=nothing
*.json annex.largefiles=nothing

Lastly, run this piece of code to save your changes:

$ datalad save -m "Windows-workaround: custom config to place text into Git" .
→˓gitattributes

667 https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

$ cd ../
$ datalad create -c text2git -c yoda ml-project
[INFO] Creating a new annex repo at /home/me/usecases/ml-project
[INFO] Running procedure cfg_text2git
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
create(ok): /home/me/usecases/ml-project (dataset)

Afterwards, the input dataset can be installed from a local path as a subdataset, using datalad
clone with the -d/--dataset flag and a . to denote the current dataset:

$ cd ml-project
$ mkdir -p data
install the dataset into data/
$ datalad clone -d . ../imagenette data/raw
[INFO] Cloning dataset to Dataset(/home/me/usecases/ml-project/data/raw)
[INFO] Attempting to clone from ../imagenette to /home/me/usecases/ml-project/data/raw
[INFO] Completed clone attempts for Dataset(/home/me/usecases/ml-project/data/raw)
[INFO] scanning for annexed files (this may take some time)
install(ok): data/raw (dataset)
add(ok): data/raw (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
install (ok: 1)
save (ok: 2)

Here are the dataset contents up to now:

show the directory hierarchy

(continues on next page)

458 Chapter 30. DataLad for reproducible machine-learning analyses

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

$ tree -d
.

code
data

raw
train

n03445777
n03888257

val
n03445777
n03888257

9 directories

Next, let’s add the necessary software to the dataset. This is done using the datalad containers
extension and the datalad container-add command. This command takes an arbitrary name
and a path or url to a SOFTWARE CONTAINER, registers the containers origin, and adds it under
the specified name to the dataset. If used with a public url, for example to SINGULARITY-HUB,
others that you share your dataset with can retrieve the container as well672.

$ datalad containers-add software --url shub://adswa/python-ml:1
[INFO] Initiating special remote datalad
add(ok): .datalad/config (file)
save(ok): . (dataset)
containers_add(ok): /home/me/usecases/ml-project/.datalad/environments/software/image␣
→˓(file)
action summary:
add (ok: 1)
containers_add (ok: 1)
save (ok: 1)

At this point, with input data and software set-up, we can start with the first step: Dataset
preparation. The imagenette dataset is structured in train/ and val/ folder, and each folder
contains one sub-folder per image category. To prepare the dataset for training and testing a
classifier, we create a mapping between file names and image categories.

In this example we only use two categories, “golf balls” (subdirectory n03445777) and
“parachutes” (subdirectory n03888257). The following script creates two files, data/train.csv
and data/test.csv from the input data. Each contains file names and category associations for
the files in those subdirectories. Note how, in accordance to the YODA principles (page 136),
the script only contains RELATIVE PATHs to make the dataset portable.

$ cat << EOT > code/prepare.py
#!/usr/bin/env python3

import pandas as pd
from pathlib import Path

FOLDERS_TO_LABELS = {"n03445777": "golf ball",
"n03888257": "parachute"}

def get_files_and_labels(source_path):
images = []
labels = []

(continues on next page)

30.3. Step-by-Step 459

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

for image_path in source_path.rglob("*/*.JPEG"):
filename = image_path
folder = image_path.parent.name
if folder in FOLDERS_TO_LABELS:

images.append(filename)
label = FOLDERS_TO_LABELS[folder]
labels.append(label)

return images, labels

def save_as_csv(filenames, labels, destination):
data_dictionary = {"filename": filenames, "label": labels}
data_frame = pd.DataFrame(data_dictionary)
data_frame.to_csv(destination)

def main(repo_path):
data_path = repo_path / "data"
train_path = data_path / "raw/train"
test_path = data_path / "raw/val"
train_files, train_labels = get_files_and_labels(train_path)
test_files, test_labels = get_files_and_labels(test_path)
save_as_csv(train_files, train_labels, data_path / "train.csv")
save_as_csv(test_files, test_labels, data_path / "test.csv")

if __name__ == "__main__":
repo_path = Path(__file__).parent.parent
main(repo_path)

EOT

Executing the here document668 in the code block above has created a script code/prepare.py:

$ datalad status
untracked: code/prepare.py (file)

We add it to the dataset using datalad save:

$ datalad save -m "Add script for data preparation for 2 categories" code/prepare.py
add(ok): code/prepare.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

This script can now be used to prepare the data. Note how it, in accordance to the YODA prin-
ciples (page 136), saves the files into the superdataset, and leaves the input dataset untouched.
When ran, it will create files with the following structure:

,filename,label
0,data/raw/imagenette2-160/val/n03445777/n03445777_20061.JPEG,golf ball
1,data/raw/imagenette2-160/val/n03445777/n03445777_9740.JPEG,golf ball
2,data/raw/imagenette2-160/val/n03445777/n03445777_3900.JPEG,golf ball
3,data/raw/imagenette2-160/val/n03445777/n03445777_5862.JPEG,golf ball

(continues on next page)

668 https://en.wikipedia.org/wiki/Here_document

460 Chapter 30. DataLad for reproducible machine-learning analyses

https://en.wikipedia.org/wiki/Here_document

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

4,data/raw/imagenette2-160/val/n03445777/n03445777_4172.JPEG,golf ball
5,data/raw/imagenette2-160/val/n03445777/n03445777_14301.JPEG,golf ball
6,data/raw/imagenette2-160/val/n03445777/n03445777_2951.JPEG,golf ball
7,data/raw/imagenette2-160/val/n03445777/n03445777_8732.JPEG,golf ball
8,data/raw/imagenette2-160/val/n03445777/n03445777_5810.JPEG,golf ball
9,data/raw/imagenette2-160/val/n03445777/n03445777_3132.JPEG,golf ball
[...]

To capture all provenance and perform the computation in the correct software environment,
this is best done in a datalad containers-run command:

$ datalad containers-run -n software \
-m "Prepare the data for categories golf balls and parachutes" \
--input 'data/raw/train/n03445777' \
--input 'data/raw/val/n03445777' \
--input 'data/raw/train/n03888257' \
--input 'data/raw/val/n03888257' \
--output 'data/train.csv' \
--output 'data/test.csv' \
"python3 code/prepare.py"

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
get(ok): data/raw/train/n03445777 (directory)
get(ok): data/raw/val/n03445777 (directory)
get(ok): data/raw/val/n03888257 (directory)
get(ok): data/raw/train/n03888257 (directory)
save(ok): . (dataset)
action summary:
add (ok: 2)
get (notneeded: 2, ok: 2704)
save (notneeded: 1, ok: 1)

Beyond the script execution and container name (-n/--container-name), this command can
take a human readable commit message to summarize the operation (-m/--message) and input
and output specifications (-i/--input, -o/--output). DataLad will make sure to retrieve every-
thing labeled as --input prior to running the command, and specifying --output ensures that
the files can be updated should the command be reran at a later point676. It saves the results of
this command together with a machine-readable run-record into the dataset history.

Next, the first model can be trained.

$ cat << EOT > code/train.py
#!/usr/bin/env python3

from joblib import dump
from pathlib import Path

import numpy as np
import pandas as pd
from skimage.io import imread_collection
from skimage.transform import resize
from sklearn.linear_model import SGDClassifier

(continues on next page)

676 The chapter DataLad, Run! (page 59) introduces the options of datalad run and demonstrates their use. Note
that --outputs don’t need to be individual files, but could also be directories or GLOBBING terms.

30.3. Step-by-Step 461

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

def load_images(data_frame, column_name):
filelist = data_frame[column_name].to_list()
image_list = imread_collection(filelist)
return image_list

def load_labels(data_frame, column_name):
label_list = data_frame[column_name].to_list()
return label_list

def preprocess(image):
resized = resize(image, (100, 100, 3))
reshaped = resized.reshape((1, 30000))
return reshaped

def load_data(data_path):
df = pd.read_csv(data_path)
labels = load_labels(data_frame=df, column_name="label")
raw_images = load_images(data_frame=df, column_name="filename")
processed_images = [preprocess(image) for image in raw_images]
data = np.concatenate(processed_images, axis=0)
return data, labels

def main(repo_path):
train_csv_path = repo_path / "data/train.csv"
train_data, labels = load_data(train_csv_path)
sgd = SGDClassifier(max_iter=10)
trained_model = sgd.fit(train_data, labels)
dump(trained_model, repo_path / "model.joblib")

if __name__ == "__main__":
repo_path = Path(__file__).parent.parent
main(repo_path)

EOT

This script trains a stochastic gradient descent classifier on the training data. The files in the
train.csv file a read, preprocessed into the same shape, and an SGD model is fitted to the
predict the image labels from the data. The trained model is then saved into a model.joblib
file – this allows to transparently cache the classifier as a Python object to disk. Later, the cached
model can be applied to various data with the need to retrain the classifier669. Let’s save the
script.

$ datalad save -m "Add SGD classification script" code/train.py
add(ok): code/train.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

669 https://scikit-learn.org/stable/modules/model_persistence.html

462 Chapter 30. DataLad for reproducible machine-learning analyses

https://scikit-learn.org/stable/modules/model_persistence.html
https://scikit-learn.org/stable/modules/model_persistence.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

The last analysis step needs to test the trained classifier. We will use the following script for
this:

$ cat << EOT > code/evaluate.py

#!/usr/bin/env python3

from joblib import load
import json
from pathlib import Path

from sklearn.metrics import accuracy_score

from train import load_data

def main(repo_path):
test_csv_path = repo_path / "data/test.csv"
test_data, labels = load_data(test_csv_path)
model = load(repo_path / "model.joblib")
predictions = model.predict(test_data)
accuracy = accuracy_score(labels, predictions)
metrics = {"accuracy": accuracy}
print(metrics)
accuracy_path = repo_path / "accuracy.json"
accuracy_path.write_text(json.dumps(metrics))

if __name__ == "__main__":
repo_path = Path(__file__).parent.parent
main(repo_path)

EOT

It will load the trained and dumped model and use it to test its prediction performance on
the yet unseen test data. To evaluate the model performance, it calculates the accuracy of the
prediction, i.e., the proportion of correctly labeled images, prints it to the terminal, and saves
it into a json file in the superdataset. As this script constitutes the last analysis step, let’s save it
with a TAG. Its entirely optional to do this, but just as commit messages are an easier way for
humans to get an overview of a commits contents, a tag is an easier way for humans to identify
a change than a commit hash. With this script set up, we’re ready for analysis, and thus can tag
this state ready4analysis to identify it more easily later.

$ datalad save -m "Add script to evaluate model performance" --version-tag "ready4analysis
→˓" code/evaluate.py
add(ok): code/evaluate.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Afterwards, we can train the first model:

$ datalad containers-run -n software \
-m "Train an SGD classifier on the data" \
--input 'data/raw/train/n03445777' \
--input 'data/raw/train/n03888257' \

(continues on next page)

30.3. Step-by-Step 463

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

--output 'model.joblib' \
"python3 code/train.py"

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_stochastic_gradient.py:573:␣
→˓ConvergenceWarning: Maximum number of iteration reached before convergence. Consider␣
→˓increasing max_iter to improve the fit.
ConvergenceWarning)

[INFO] == Command exit (modification check follows) =====
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 4)
save (notneeded: 1, ok: 1)

And finally, we’re ready to find out how well the model did and run the last script:

$ datalad containers-run -n software \
-m "Evaluate SGD classifier on test data" \
--input 'data/raw/val/n03445777' \
--input 'data/raw/val/n03888257' \
--output 'accuracy.json' \
"python3 code/evaluate.py"

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
{'accuracy': 0.7515842839036755}
save(ok): . (dataset)
action summary:
add (ok: 2)
get (notneeded: 4)
save (notneeded: 1, ok: 1)

Now this initial accuracy isn’t yet fully satisfying. What could have gone wrong? The model
would probably benefit from a few more training iterations for a start. Instead of 10, the
patch below increases the number of iterations to 100. Note that the code block below does this
change with the stream editor SED for the sake of automatically executed code in the handbook,
but you could also apply this change with a text editor “by hand”.

$ sed -i 's/SGDClassifier(max_iter=10)/SGDClassifier(max_iter=100)/g' code/train.py

Here’s what has changed:

$ git diff
diff --git a/code/train.py b/code/train.py
index 3b309e1..017a6bf 100644
--- a/code/train.py
+++ b/code/train.py
@@ -39,7 +39,7 @@ def load_data(data_path):
def main(repo_path):

train_csv_path = repo_path / "data/train.csv"
train_data, labels = load_data(train_csv_path)

- sgd = SGDClassifier(max_iter=10)
+ sgd = SGDClassifier(max_iter=100)

trained_model = sgd.fit(train_data, labels)

(continues on next page)

464 Chapter 30. DataLad for reproducible machine-learning analyses

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

dump(trained_model, repo_path / "model.joblib")

Let’s save the change. . .

$ datalad save -m "Increase the amount of iterations to 100" --version-tag "SGD-100" code/
→˓train.py
add(ok): code/train.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

. . . and try again.

As we need to retrain the classifier and re-evaluate its performance, we rerun every run-record
between the point in time we created the SGD tag and now. This will update both the model.
joblib and the accuracy.json files, but their past versions are still in the dataset history. One
was to do this is to specify a range between the two tags, but likewise, commit hashes would
work, or a specification using --since677.

$ datalad rerun -m "Recompute classification with more iterations" ready4analysis..SGD-100
[INFO] run commit 08f7604; (Train an SGD clas...)
[INFO] Making sure inputs are available (this may take some time)
unlock(ok): model.joblib (file)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): model.joblib (file)
save(ok): . (dataset)
[INFO] run commit 961a5be; (Evaluate SGD clas...)
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
{'accuracy': 0.7858048162230672}
[INFO] == Command exit (modification check follows) =====
add(ok): accuracy.json (file)
add(ok): code/__pycache__/train.cpython-37.pyc (file)
save(ok): . (dataset)
[INFO] skip-or-pick commit a729a18; a729a18 does not have a command; skipping or cherry␣
→˓picking
run(ok): /home/me/usecases/ml-project (dataset) [a729a18 does not have a command;␣
→˓skipping]
action summary:
add (ok: 3)
get (notneeded: 8)
run (ok: 1)
save (notneeded: 2, ok: 2)
unlock (notneeded: 2, ok: 1)

Any better? Mhh, not so much. Maybe a different classifier does the job better. Let’s switch
from SGD to a random forest classification670. The code block below writes the relevant changes
(highlighted) into the script.

677 In order to re-execute any run-record in the last five commits, you could use --since=HEAD~5, for example. You
could also, however, rerun the previous run commands sequentially, with datalad rerun <commit-hash>.

670 https://en.wikipedia.org/wiki/Random_forest

30.3. Step-by-Step 465

https://en.wikipedia.org/wiki/Random_forest

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ cat << EOT >| code/train.py
#!/usr/bin/env python3

from joblib import dump
from pathlib import Path

import numpy as np
import pandas as pd
from skimage.io import imread_collection
from skimage.transform import resize
from sklearn.ensemble import RandomForestClassifier

def load_images(data_frame, column_name):
filelist = data_frame[column_name].to_list()
image_list = imread_collection(filelist)
return image_list

def load_labels(data_frame, column_name):
label_list = data_frame[column_name].to_list()
return label_list

def preprocess(image):
resized = resize(image, (100, 100, 3))
reshaped = resized.reshape((1, 30000))
return reshaped

def load_data(data_path):
df = pd.read_csv(data_path)
labels = load_labels(data_frame=df, column_name="label")
raw_images = load_images(data_frame=df, column_name="filename")
processed_images = [preprocess(image) for image in raw_images]
data = np.concatenate(processed_images, axis=0)
return data, labels

def main(repo_path):
train_csv_path = repo_path / "data/train.csv"
train_data, labels = load_data(train_csv_path)
rf = RandomForestClassifier()
trained_model = rf.fit(train_data, labels)
dump(trained_model, repo_path / "model.joblib")

if __name__ == "__main__":
repo_path = Path(__file__).parent.parent
main(repo_path)

EOT

We need to save this change:

$ datalad save -m "Switch to random forest classification" --version-tag "random-forest"␣
→˓code/train.py
add(ok): code/train.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

And now we can retrain and reevaluate again. This time, in order to have very easy access to

466 Chapter 30. DataLad for reproducible machine-learning analyses

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

the trained models and results of the evaluation, we’re rerunning the sequence of run-records
in a new BRANCH678. This way, we have access to a trained random-forest model or a trained
SGD model or their respective results by simply switching branches.

$ datalad rerun --branch="randomforest" -m "Recompute classification with random forest␣
→˓classifier" ready4analysis..SGD-100
[INFO] checkout commit a254f4f;
[INFO] run commit 08f7604; (Train an SGD clas...)
[INFO] Making sure inputs are available (this may take some time)
unlock(ok): model.joblib (file)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): model.joblib (file)
save(ok): . (dataset)
[INFO] run commit 961a5be; (Evaluate SGD clas...)
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
{'accuracy': 0.8124207858048162}
[INFO] == Command exit (modification check follows) =====
add(ok): accuracy.json (file)
add(ok): code/__pycache__/train.cpython-37.pyc (file)
save(ok): . (dataset)
[INFO] skip-or-pick commit a729a18; a729a18 does not have a command; skipping or cherry␣
→˓picking
run(ok): /home/me/usecases/ml-project (dataset) [a729a18 does not have a command;␣
→˓skipping]
action summary:
add (ok: 3)
get (notneeded: 8)
run (ok: 1)
save (notneeded: 2, ok: 2)
unlock (notneeded: 2, ok: 1)

This updated the model.joblib file to a trained random forest classifier, and also updated
accuracy.json with the current models’ evaluation. The difference in accuracy between models
could now for example be compared with a git diff of the contents of accuracy.json to the
MASTER BRANCH:

$ git diff master -- accuracy.json
diff --git a/accuracy.json b/accuracy.json
index 9ff7e7c..f6e7ded 100644
--- a/accuracy.json
+++ b/accuracy.json
@@ -1 +1 @@
-{"accuracy": 0.7858048162230672}
\ No newline at end of file
+{"accuracy": 0.8124207858048162}
\ No newline at end of file

And if you decide to rather do more work on the SGD classier, you can go back to the previous
MASTER BRANCH:

678 Rerunning on a different BRANCH is optional but handy. Alternatively, you could checkout a previous state in the
datasets history to get access to a previous version of a file, reset the dataset to a previous state, or use commands
like git cat-file to read out a non-checked-out file. The section Back and forth in time (page 245) summarizes
a number of common Git operations to interact with the dataset history.

30.3. Step-by-Step 467

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ git checkout master
$ cat accuracy.json
Switched to branch 'master'
{"accuracy": 0.7858048162230672}

Your Git history becomes a log of everything you did as well as the chance to go back to and
forth between analysis states. And this is not only useful for yourself, but it makes your analyses
and results also transparent to others that you share your dataset with. If you cache your
trained models, there is no need to retrain them when traveling to past states of your dataset.
And if any aspect of your dataset changes – from changes to the input data to changes to
your trained model or code – you can rerun these analysis stages automatically. The attached
software container makes sure that your analysis will always be rerun in the correct software
environment, even if the dataset is shared with collaborators with systems that lack a Python
installation.

30.4 References

The analysis is adapted from the chapter Reproducible machine learning analyses: DataLad as
DVC (page 358), which in turn is based on this tutorial at RealPython.org671.

671 https://realpython.com/python-data-version-control/

468 Chapter 30. DataLad for reproducible machine-learning analyses

https://realpython.com/python-data-version-control/

CHAPTER

THIRTYONE

CONTRIBUTING

If you are using DataLad for a use case that is not yet in this chapter, we would be delighted to
have you tell us about it in the form of a usecase. Please see the contributing guide for more
info.

469

../contributing.html

Part V

Appendix

470

APPENDIX

A

GLOSSARY

absolute path The complete path from the root of the file system. Absolute paths always start
with /. Example: /home/user/Pictures/xkcd-webcomics/530.png. See also RELATIVE

PATH.

adjusted branch git-annex concept: a special BRANCH in a dataset. Adjusted branches refer
to a different, existing branch that is not adjusted. The adjusted branch is called “ad-
justed/<branchname>(unlocked)” and on an the adjusted branch”, all files handled by
GIT-ANNEX are not locked – They will stay “unlocked” and thus modifiable. Instead of ref-
erencing data in the ANNEX with a SYMLINK, unlocked files need to be copies of the data in
the annex. Adjusted branches primarily exist as the default branch on so-called CRIPPLED

FILESYSTEMs such as Windows.

annex git-annex concept: a different word for OBJECT-TREE.

annex UUID A UUID assigned to an annex of each individual CLONE of a dataset repository.
GIT-ANNEX uses this UUID to track file content availability information. The UUID is avail-
able under the configuration key annex.uuid and is stored in the configuration file of a
local clone (<dataset root>/.git/config). A single dataset instance (i.e. a local clone)
has exactly one annex UUID, but other clones of the same dataset each have their own
unique annex UUIDs.

bare Git repositories A bare Git repository is a repository that contains the contents of the .
git directory of regular DataLad datasets or Git repositories, but no worktree or checkout.
This has advantages: The repository is leaner, it is easier for administrators to perform
garbage collections, and it is required if you want to push to it at all times. You can find
out more on what bare repositories are and how to use them here679.

bash A Unix SHELL and command language.

Bitbucket Bitbucket is an online platform where one can store and share version controlled
projects using Git (and thus also DataLad project), similar to GITHUB or GITLAB. See
bitbucket.org680.

branch Git concept: A lightweight, independent history streak of your dataset. Branches can
contain less, more, or changed files compared to other branches, and one can MERGE the
changes a branch contains into another branch.

checksum An alternative term to SHASUM.

clone Git concept: A copy of a GIT repository. In Git-terminology, all “installed” datasets are
clones.

679 https://git-scm.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
680 https://bitbucket.org/

471

https://git-scm.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
https://bitbucket.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

commit Git concept: Adding selected changes of a file or dataset to the repository, and thus
making these changes part of the revision history of the repository. Should always have
an informative COMMIT MESSAGE.

commit message Git concept: A concise summary of changes you should attach to a datalad
save command. This summary will show up in your DATALAD DATASET history.

compute node A compute node is an individual computer, part of a HIGH-PERFORMANCE COM-
PUTING (HPC) or HIGH-THROUGHPUT COMPUTING (HTC) cluster.

conda A package, dependency, and environment management system for a number of program-
ming languages. Find out more at docs.conda.io681. It overlaps with PIP in functionality,
but it is advised to not use both tools simultaneously for package management.

container recipe A text file template that lists all required components of the computational
environment that a SOFTWARE CONTAINER should contain. It is made by a human user.

container image Container images are built from CONTAINER RECIPE files. They are a static
filesystem inside a file, populated with the software specified in the recipe, and some
initial configuration.

crippled filesystem git-annex concept: A file system that does not allow making symlinks or
removing write PERMISSIONS from files. Examples for this are FAT682 (likely used by your
USB sticks) or NTFS683 (used on Windows systems of the last three decades).

DataLad dataset A DataLad dataset is a Git repository that may or may not have a data annex
that is used to manage data referenced in a dataset. In practice, most DataLad datasets
will come with an annex.

DataLad extension Python packages that equip DataLad with specialized commands. The sec-
tion DataLad extensions (page 285) gives and overview of available extensions and links
to Handbook chapters that contain demonstrations.

DataLad subdataset A DataLad dataset contained within a different DataLad dataset (the par-
ent or DATALAD SUPERDATASET).

DataLad superdataset A DataLad dataset that contains one or more levels of other DataLad
datasets (DATALAD SUBDATASET).

dataset ID A UUID that identifies a dataset as a unit – across its entire history and flavors.
This ID is stored in a dataset’s own configuration file (<dataset root>/.datalad/config)
under the configuration key datalad.dataset.id. As this configuration is stored in a file
that is part of the Git history of a dataset, this ID is identical for all CLONEs of a dataset
and across all its versions.

Debian A common Linux distribution. More information here684.

debugging Finding and resolving problems within a computer program. To learn about de-
bugging a failed execution of a DataLad command, take a look at the section Debugging
(page 267).

Docker Docker685 is a containerization software that can package software into SOFTWARE

CONTAINERs, similar to SINGULARITY. Find out more on Wikipedia686.

681 https://docs.conda.io/en/latest/
682 https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
683 https://en.wikipedia.org/wiki/NTFS
684 https://www.debian.org/index.en.html
685 https://www.docker.com/
686 https://en.wikipedia.org/wiki/Docker_(software)

472 Appendix A. Glossary

https://docs.conda.io/en/latest/
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
https://en.wikipedia.org/wiki/NTFS
https://www.debian.org/index.en.html
https://www.docker.com/
https://en.wikipedia.org/wiki/Docker_(software)

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Docker-Hub Docker Hub687 is a library for DOCKER CONTAINER IMAGEs. Among other things, it
hosts and builds Docker container images. You can can pull CONTAINER IMAGEs built from
a publicly shared CONTAINER RECIPE from it.

DOI A digital object identifier (DOI) is a character string used to permanently identify a re-
source and link to in on the web. A DOI will always refer to the one resource it was
assigned to, and only that one.

extractor DataLad concept: A metadata extractor of the DATALAD EXTENSION datalad-metalad
enables DataLad to extract and aggregate special types of metadata.

environment variable A variable made up of a name/value pair. Programs using a given envi-
ronment variable will use its associated value for their execution. You can find out a bit
more on environment variable in this Findoutmore (page 125).

ephemeral clone dataset clones that share the annex with the dataset they were cloned from,
without GIT-ANNEX being aware of it. On a technical level, this is achieved via symlinks.
They can be created with the --reckless ephemeral option of datalad clone.

force-push Git concept; Enforcing a git push command with the --force option. Find out
more in the documentation of git push688.

fork Git concept on repository hosting sites (GitHub, GitLab, Gin, . . .) A fork is a copy of a
repository on a web-based Git repository hosting site. Find out more here689.

GIN A web-based repository store for data management that you can use to host and share
datasets. Find out more about GIN here690.

Git A version control system to track changes made to small-sized files over time. You can find
out more about git in this (free) book691 or these interactive Git tutorials692 on GITHUB.

git-annex A distributed file synchronization system, enabling sharing and synchronizing col-
lections of large files. It allows managing files with GIT, without checking the file content
into Git.

git-annex branch This BRANCH exists in your dataset if the dataset contains an ANNEX. The
git-annex branch is completely unconnected to any other branch in your dataset, and
contains different types of log files. Its contents are used for git-annex’s internal tracking
of the dataset and its annexed contents. The branch is managed by GIT-ANNEX, and you
should not tamper with it unless you absolutely know what you are doing.

Git config file A file in which GIT stores configuration option. Such a file usually exists on the
system, user, and repository (dataset) level.

GitHub GitHub is an online platform where one can store and share version controlled projects
using Git (and thus also DataLad project). See‘GitHub.com <https://github.com/>‘_.

Gitk A repository browser that displays changes in a repository or a selected set of commits. It
visualizes a commit graph, information related to each commit, and the files in the trees
of each revision.

687 https://hub.docker.com/
688 https://git-scm.com/docs/git-push#Documentation/git-push.txt---force
689 https://docs.github.com/en/github/getting-started-with-github/fork-a-repo
690 https://gin.g-node.org/G-Node/Info/wiki
691 https://git-scm.com/book/en/v2
692 https://try.github.io/

473

https://hub.docker.com/
https://git-scm.com/docs/git-push#Documentation/git-push.txt---force
https://docs.github.com/en/github/getting-started-with-github/fork-a-repo
https://gin.g-node.org/G-Node/Info/wiki
https://git-scm.com/book/en/v2
https://try.github.io/
https://github.com/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

GitLab An online platform to host and share software projects version controlled with GIT,
similar to GITHUB. See Gitlab.com693.

globbing A powerful pattern matching function of a shell. Allows to match the names of mul-
tiple files or directories. The most basic pattern is *, which matches any number of char-
acter, such that ls *.txt will list all .txt files in the current directory. You can read about
more about Pattern Matching in Bash’s Docs694.

high-performance computing (HPC) Aggregating computing power from a bond of comput-
ers in a way that delivers higher performance than a typical desktop computer in order to
solve computing tasks that require high computing power or demand a lot of disk space
or memory.

high-throughput computing (HTC) A computing environment build from a bond of comput-
ers and tuned to deliver large amounts of computational power to allow parallel process-
ing of independent computational jobs. For more information, see this Wikipedia entry695.

http Hypertext Transfer Protocol; A protocol for file transfer over a network.

https Hypertext Transfer Protocol Secure; A protocol for file transfer over a network.

logging Automatic protocol creation of software processes, for example in order to gain in-
sights into errors. To learn about logging to troubleshoot problems or remove or increase
the amount of information printed to your terminal during the execution of a DataLad
command, take a look at the section Logging (page 263).

log level Adjusts the amount of verbosity during LOGGING.

Makefile Makefiles are recipes on how to create a digital object for the build automation tool
Make696. They are used to build programs, but also to manage projects where some files
must be automatically updated from others whenever the others change. An example of
a Makefile is shown in the usecase Writing a reproducible paper (page 399).

manpage Abbreviation of “manual page”. For most Unix programs, the command man
<program-name> will open a PAGER with this commands documentation. If you have in-
stalled DataLad as a Debian package, man will allow you to open DataLad manpages in
your terminal.

master Git concept: For the longest time, master was the name of the default BRANCH in a
dataset. More recently, the name main is used. If you are not sure, you can find out if your
default branch is main or master by running git branch.

merge Git concept: to integrate the changes of one BRANCH/SIBLING/ . . . into a different
branch.

merge request See PULL REQUEST.

metadata “Data about data”: Information about one or more aspects of data used to summarize
basic information, for example means of create of the data, creator or author, size, or
purpose of the data. For example, a digital image may include metadata that describes
how large the picture is, the color depth, the image resolution, when the image was
created, the shutter speed, and other data.

nano A common text-editor.
693 https://about.gitlab.com/
694 https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Pattern-Matching
695 https://en.wikipedia.org/wiki/High-throughput_computing
696 https://en.wikipedia.org/wiki/Make_(software)

474 Appendix A. Glossary

https://about.gitlab.com/
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Pattern-Matching
https://en.wikipedia.org/wiki/High-throughput_computing
https://en.wikipedia.org/wiki/Make_(software)

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

object-tree git-annex concept: The place where GIT-ANNEX stores available file contents. Files
that are annexed get a SYMLINK added to GIT that points to the file content. A different
word for ANNEX.

Open Science Framework (OSF) An open source software project that facilitates open collab-
oration in science research.

pager A terminal paper697 is a program to view file contents in the TERMINAL. Popular examples
are the programs less and more. Some terminal output can be opened automatically in
a pager, for example the output of a git log command. You can use the arrow keys to
navigate and scroll in the pager, and the letter q to exit it.

permissions Access rights assigned by most file systems that determine whether a user can
view (read permission), change (write permission), or execute (execute permission)
a specific content.

• read permissions grant the ability to a file, or the contents (file names) in a directory.

• write permissions grant the ability to modify a file. When content is stored in the
OBJECT-TREE by GIT-ANNEX, your previously granted write permission for this content
is revoked to prevent accidental modifications.

• execute permissions grant the ability to execute a file. Any script that should be an
executable needs to get such permission.

pip A Python package manager. Short for “Pip installs Python”. pip install <package name>
searches the Python package index PyPi698 for a package and installs it while resolving
any potential dependencies.

provenance A record that describes entities and processes that were involved in producing or
influencing a digital resource. It provides a critical foundation for assessing authenticity,
enables trust, and allows reproducibility.

publication dependency DataLad concept: An existing SIBLING is linked to a new sibling so
that the existing sibling is always published prior to the new sibling. The existing sibling
could be a SPECIAL REMOTE to publish file contents stored in the dataset ANNEX auto-
matically with every datalad push to the new sibling. Publication dependencies can
be set with the option publish-depends in the commands datalad siblings, datalad
create-sibling, and datalad create-sibling-github/gitlab.

pull request Also known as MERGE REQUEST. Contributions to Git repositories/DataLad
datasets can be proposed to be MERGEd into the dataset by “requesting a pull/update”
from the dataset maintainer to obtain a proposed change from a dataset clone or sibling.
It is implemented as a feature in repository hosting sites such as GITHUB, GIN, or GITLAB.

relative path A path related to the present working directory. Relative paths never start with
/. Example: ../Pictures/xkcd-webcomics/530.png. See also ABSOLUTE PATH.

remote Git-terminology: A repository (and thus also DATALAD DATASET) that a given repository
tracks. A SIBLING is DataLad’s equivalent to a remote.

Remote Indexed Archive (RIA) store A Remote Indexed Archive (RIA) Store is a flexible and
scalable dataset storage solution, useful for collaborative, back-up, or storage workflows.
Read more about RIA stores in the section Remote Indexed Archives for dataset storage and
backup (page 294).

697 https://en.wikipedia.org/wiki/Terminal_pager
698 https://pypi.org/

475

https://en.wikipedia.org/wiki/Terminal_pager
https://pypi.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

run procedure DataLad concept: An executable (such as a script) that can be called with
the datalad run-procedure command and performs modifications or routine tasks in
datasets. Procedures can be written by users, or come with DataLad and its extensions.
Find out more in section Configurations to go (page 126)

run record A command summary of a datalad run command, generated by DataLad and in-
cluded in the commit message.

sed A Unix stream editor to parse and transform text. Find out more here699 and in its docu-
mentation700.

shasum A hexadecimal number, 40 digits long, that is produced by a secure hash algorithm,
and is used by GIT to identify COMMITs. A shasum is a type of CHECKSUM.

shebang The characters #! at the very top of a script. One can specify the interpreter (i.e.,
the software that executes a script of yours, such as Python) after with it such as in #! /
usr/bin/python. If the script has executable PERMISSIONS, it is henceforth able to call the
interpreter itself. Instead of python code/myscript.py one can just run code/myscript if
myscript has executable PERMISSIONS and a correctly specified shebang.

shell A command line language and programming language. See also TERMINAL.

special remote git-annex concept: A protocol that defines the underlying transport of annexed
files to and from places that are not GIT repositories (e.g., a cloud service or external
machines such as HPC systems).

squash Git concept; Squashing is a Git operation which rewrites history by taking a range of
commits and squash them into a single commit. For more information on rewriting Git
history, checkout section Back and forth in time (page 245) and the documentation701.

SSH Secure shell (SSH) is a network protocol to link one machine (computer), the client, to a
different local or remote machine, the server. See also: SSH SERVER.

SSH key An SSH key is an access credential in the SSH protocol that can be used to login
from one system to remote servers and services, such as from your private computer to an
SSH SERVER, without supplying your username or password at each visit. To use an SSH
key for authentication, you need to generate a key pair on the system you would like to
use to access a remote system or service (most likely, your computer). The pair consists
of a private and a public key. The public key is shared with the remote server, and the
private key is used to authenticate your machine whenever you want to access the remote
server or service. Services such as GITHUB, GITLAB, and GIN use SSH keys and the SSH
protocol to ease access to repositories. This tutorial by GitHub702 is a detailed step-by-step
instruction to generate and use SSH keys for authentication.

SSH server An remote or local computer that users can log into using the SSH protocol.

stdin Unix concept: One of the three standard input/output streams703 in programming. Stan-
dard input (stdin) is a stream from which a program reads its input data.

stderr Unix concept: One of the three standard input/output streams704 in programming. Stan-
dard error (stderr) is a stream to which a program outputs error messages, independent

699 https://en.wikipedia.org/wiki/Sed
700 https://www.gnu.org/software/sed/manual/sed.html
701 https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
702 https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-s

sh-agent
703 https://en.wikipedia.org/wiki/Standard_streams
704 https://en.wikipedia.org/wiki/Standard_streams

476 Appendix A. Glossary

https://en.wikipedia.org/wiki/Sed
https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/sed/manual/sed.html
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Standard_streams

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

from standard output.

stdout Unix concept: One of the three standard input/output streams705 in programming.
Standard output (stdout) is a stream to which a program writes its output data.

symlink A symbolic link (also symlink or soft link) is a reference to another file or path in the
form of a relative path. Windows users are familiar with a similar concept: shortcuts.

sibling DataLad concept: A dataset clone that a given DATALAD DATASET knows about. Changes
can be retrieved and pushed between a dataset and its sibling. It is the equivalent of a
REMOTE in Git.

Singularity Singularity706 is a containerization software that can package software into SOFT-
WARE CONTAINERs. It is a useful alternative to DOCKER as it can run on shared computa-
tional infrastructure. Find out more on Wikipedia707.

Singularity-Hub singularity-hub.org708 is a Singularity container portal. Among other things,
it hosts and builds Singularity container images. You can can pull CONTAINER IMAGEs built
from a publicly shared CONTAINER RECIPE from it.

software container Computational containers are cut-down virtual machines that allow you to
package software libraries and their dependencies in precise versions into a bundle that
can be shared with others. They are running instances of a CONTAINER IMAGE. On your
own and other’s machines, the container constitutes a secluded software environment
that contains the exact software environment that you specified but does not effect any
software outside of the container. Unlike virtual machines, software containers do not
have their own operating system and instead use basic services of the underlying operating
system of the computer they run on (in a read-only fashion). This makes them lightweight
and portable. By sharing software environments with containers, such as DOCKER or
SINGULARITY containers, others (and also yourself) have easy access to software without
the need to modify the software environment of the machine the container runs on.

submodule Git concept: a submodule is a Git repository embedded inside another Git reposi-
tory. A DATALAD SUBDATASET is known as a submodule in the GIT CONFIG FILE.

tab completion Also known as command-line completion. A common shell feature in which
the program automatically fills in partially types commands upon pressing the TAB key.

tag Git concept: A mark on a commit that can help to identify commits. You can attach a tag
with a name of your choice to any commit by supplying the --version-tag <TAG-NAME>
option to datalad save.

the DataLad superdataset /// DataLad provides unified access to a large amount of data at
an open data collection found at datasets.datalad.org709. This collection is known as “The
DataLad superdataset” and under its shortcut, ///. You can install the superdataset – and
subsequently query its content via metadata search – by running datalad clone ///.

tig A text-mode interface for git that allows you to easily browse through your commit history.
It is not part of git and needs to be installed. Find out more here710.

terminal The terminal (sometimes also called a shell, console, or CLI) is an interactive, text
based interface that allows you to access your computer’s functionality. The most common

705 https://en.wikipedia.org/wiki/Standard_streams
706 https://sylabs.io/docs/
707 https://en.wikipedia.org/wiki/Singularity_(software)
708 https://singularity-hub.org/
709 http://datasets.datalad.org/
710 https://jonas.github.io/tig/

477

https://en.wikipedia.org/wiki/Standard_streams
https://sylabs.io/docs/
https://en.wikipedia.org/wiki/Singularity_(software)
https://singularity-hub.org/
http://datasets.datalad.org/
https://jonas.github.io/tig/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

command-line shells use BASH or c-shell. You can get a short intro to the terminal and
useful commands in the section General prerequisites (page 22).

Ubuntu A common Linux distribution. More information here711.

UUID Universally Unique Identifier. It is a character string used for unambiguous, identification,
formatted according to a specific standard. This identification is not only unambiguous
and unique on a system, but indeed universally unique – no UUID exists twice anywhere
on the planet. Every DataLad dataset has a UUID that identifies a dataset uniquely as a
whole across its entire history and flavors called DATASET ID that looks similar to this
0828ac72-f7c8-11e9-917f-a81e84238a11. This dataset ID will only exist once, identifying
only one particular dataset on the planet. Note that this does not require all UUIDs to be
known in some central database – the fact that no UUID exists twice is achieved by mere
probability: The chance of a UUID being duplicated is so close to zero that it is negligible.

version control Processes and tools to keep track of changes to documents or other collections
of information.

vim A text editor, often the default in UNIX operating systems. If you are not used to using it,
but ended up in it accidentally: press ESC : q ! Enter to exit without saving. Here is help:
A vim tutorial712 and how to configure the default editor for git713.

virtual environment A specific Python installation with packages of your choice, kept in a self-
contained directory tree, and not interfering with the system-wide installations. Virtual
environments are an easy solution to create several different Python environments and
come in handy if you want to have a cleanly structured software setup and several appli-
cations with software requirements that would conflict with each other in a single system:
You can have one virtual environment with package A in version X, and a second one with
package A in version Y. There are several tools that create virtual environments such as
the built-in venv module, the virtualenv module, or CONDA. Virtual environments are
light-weight and you can switch between them fast.

WSL The Windows Subsystem for Linux, a compatibility layer for running Linux destributions
on recent versions of Windows. Find out more here714.

zsh A Unix shell.

711 https://ubuntu.com
712 https://www.openvim.com/
713 https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
714 https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

478 Appendix A. Glossary

https://ubuntu.com
https://www.openvim.com/
https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

APPENDIX

B

FREQUENTLY ASKED QUESTIONS

This section answers frequently asked questions about high-level DataLad concepts or com-
mands. If you have a question you want to see answered in here, please create an issue715 or a
pull request716. For a series of specialized command snippets for various use cases, please see
section Gists (page 273).

B.1 What is Git?

Git is a free and open source distributed version control system. In a directory that is initialized
as a Git repository, it can track small-sized files and the modifications done to them. Git thinks of
its data like a series of snapshots – it basically takes a picture of what all files look like whenever
a modification in the repository is saved. It is a powerful and yet small and fast tool with
many features such as branching and merging for independent development, checksumming of
contents for integrity, and easy collaborative workflows thanks to its distributed nature.

DataLad uses Git underneath the hood. Every DataLad dataset is a Git repository, and you can
use any Git command within a DataLad dataset. Based on the configurations in .gitattributes,
file content can be version controlled by Git or managed by git-annex, based on path pattern,
file types, or file size. The section More on DIY configurations (page 117) details how these
configurations work. This chapter717 gives a comprehensive overview on what Git is.

B.2 Where is Git’s “staging area” in DataLad datasets?

As mentioned in Populate a dataset (page 37), a local version control workflow with DataLad
“skips” the staging area (that is typical for Git workflows) from the user’s point of view.

B.3 What is git-annex?

git-annex (https://git-annex.branchable.com/) is a distributed file synchronization system writ-
ten by Joey Hess. It can share and synchronize large files independent from a commercial ser-
vice or a central server. It does so by managing all file content in a separate directory (the annex,
object tree, or key-value-store in .git/annex/objects/), and placing only file names and meta-
data into version control by Git. Among many other features, git-annex can ensure sufficient
amounts of file copies to prevent accidental data loss and enables a variety of data transfer
715 https://github.com/datalad-handbook/book/issues/new
716 http://handbook.datalad.org/en/latest/contributing.html
717 https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

479

https://github.com/datalad-handbook/book/issues/new
http://handbook.datalad.org/en/latest/contributing.html
https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F
https://git-annex.branchable.com/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

mechanisms. DataLad uses git-annex underneath the hood for file content tracking and trans-
port logistics. git-annex offers an astonishing range of functionality that DataLad tries to expose
in full. That being said, any DataLad dataset (with the exception of datasets configured to be
pure Git repositories) is fully compatible with git-annex – you can use any git-annex command
inside a DataLad dataset.

The chapter Under the hood: git-annex (page 83) can give you more insights into how git-
annex takes care of your data. git-annex’s website718 can give you a complete walk-through
and detailed technical background information.

B.4 What does DataLad add to Git and git-annex?

DataLad sits on top of Git and git-annex and tries to integrate and expose their functionality
fully. While DataLad thus is a “thin layer” on top of these tools and tries to minimize the use of
unique/idiosyncratic functionality, it also tries to simplify working with repositories and adds a
range of useful concepts and functions:

• Both Git and git-annex are made to work with a single repository at a time. For exam-
ple, while nesting pure Git repositories is possible via Git submodules (that DataLad also
uses internally), cleaning up after placing a random file somewhere into this repository
hierarchy can be very painful. A key advantage that DataLad brings to the table is that it
makes the boundaries between repositories vanish from a user’s point of view. Most core
commands have a --recursive option that will discover and traverse any subdatasets and
do-the-right-thing. Whereas git and git-annex would require the caller to first cd to the
target repository, DataLad figures out which repository the given paths belong to and then
works within that repository. datalad save . --recursive will solve the subdataset prob-
lem above for example, no matter what was changed/added, no matter where in a tree of
subdatasets.

• DataLad provides users with the ability to act on “virtual” file paths. If software needs
data files that are carried in a subdataset (in Git terms: submodule) for a computation
or test, a datalad get will discover if there are any subdatasets to install at a particular
version to eventually provide the file content.

• DataLad adds metadata facilities for metadata extraction in various flavors, and can store
extracted and aggregated metadata under .datalad/metadata.

•

B.5 Does DataLad host my data?

No, DataLad manages your data, but it does not host it. When publishing a dataset with annexed
data, you will need to find a place that the large file content can be stored in – this could be a
web server, a cloud service such as Dropbox719, an S3 bucket, or many other storage solutions –
and set up a publication dependency on this location. This gives you all the freedom to decide
where your data lives, and who can have access to it. Once this set up is complete, publishing
and accessing a published dataset and its data are as easy as if it would lie on your own machine.
You can find a typical workflow in the chapter Third party infrastructure (page 177).
718 https://git-annex.branchable.com/
719 https://www.dropbox.com/

480 Appendix B. Frequently Asked Questions

https://git-annex.branchable.com/
https://www.dropbox.com/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

B.6 How does GitHub relate to DataLad?

DataLad can make good use of GitHub, if you have figured out storage for your large files
otherwise. You can make DataLad publish file content to one location and afterwards au-
tomatically push an update to GitHub, such that users can install directly from GitHub and
seemingly also obtain large file content from GitHub. GitHub is also capable of resolving sub-
module/subdataset links to other GitHub repos, which makes for a nice UI.

B.7 Does DataLad scale to large dataset sizes?

In general, yes. The largest dataset managed by DataLad at this point is the Human Connectome
Project720 data, encompassing 80 Terabytes of data in 15 million files, and larger projects (up to
500TB) are currently actively worked on. The chapter Go big or go home (page 323) is a guide
to “beyond-household-quantity datasets”.

B.8 What is the difference between a superdataset, a subdataset, and a
dataset?

Conceptually and technically, there is no difference between a dataset, a subdataset, or a super-
dataset. The only aspect that makes a dataset a sub- or superdataset is whether it is registered
in another dataset (by means of an entry in the .gitmodules, automatically performed upon
an appropriate datalad install -d or datalad create -d command) or contains registered
datasets.

B.9 How can I convert/import/transform an existing Git or git-annex
repository into a DataLad dataset?

You can transform any existing Git or git-annex repository of yours into a DataLad dataset by
running:

$ datalad create -f

inside of it. Afterwards, you may want to tweak settings in .gitattributes according to your
needs (see sections DIY configurations (page 112) and More on DIY configurations (page 117) for
additional insights on this). The chapter Better late than never (page 353) guides you through
transitioning an existing project into DataLad.

B.10 How can I cite DataLad?

Please cite the official paper on DataLad:

Halchenko et al., (2021). DataLad: distributed system for joint management of code, data, and
their relationship. Journal of Open Source Software, 6(63), 3262, https://doi.org/10.21105/j
oss.03262.
720 http://www.humanconnectomeproject.org/

B.6. How does GitHub relate to DataLad? 481

http://www.humanconnectomeproject.org/
http://www.humanconnectomeproject.org/
https://doi.org/10.21105/joss.03262
https://doi.org/10.21105/joss.03262

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

B.11 How can I help others get started with a shared dataset?

If you want to share your dataset with users that are not already familiar with DataLad, it is
helpful to include some information on how to interact with DataLad datasets in your dataset’s
README (or similar) file. Below, we provide a standard text block that you can use (and adapt as
you wish) for such purposes. If you do not want to copy-and-paste these snippets yourself, you
can run datalad add-readme in your dataset, and have it added automatically.

M2.1 Textblock in .rst format:

482 Appendix B. Frequently Asked Questions

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

DataLad datasets and how to use them

This repository is a `DataLad <https://www.datalad.org/>`__ dataset. It provides
fine-grained data access down to the level of individual files, and allows for
tracking future updates. In order to use this repository for data retrieval,
`DataLad <https://www.datalad.org>`_ is required.
It is a free and open source command line tool, available for all
major operating systems, and builds up on Git and `git-annex
<https://git-annex.branchable.com>`__ to allow sharing, synchronizing, and
version controlling collections of large files. You can find information on
how to install DataLad at `handbook.datalad.org/en/latest/intro/installation.html
<http://handbook.datalad.org/en/latest/intro/installation.html>`_.

Get the dataset
^^^^^^^^^^^^^^^

A DataLad dataset can be ``cloned`` by running::

datalad clone <url>

Once a dataset is cloned, it is a light-weight directory on your local machine.
At this point, it contains only small metadata and information on the
identity of the files in the dataset, but not actual *content* of the
(sometimes large) data files.

Retrieve dataset content
^^^^^^^^^^^^^^^^^^^^^^^^

After cloning a dataset, you can retrieve file contents by running::

datalad get <path/to/directory/or/file>

This command will trigger a download of the files, directories, or
subdatasets you have specified.

DataLad datasets can contain other datasets, so called *subdatasets*. If you
clone the top-level dataset, subdatasets do not yet contain metadata and
information on the identity of files, but appear to be empty directories. In
order to retrieve file availability metadata in subdatasets, run::

datalad get -n <path/to/subdataset>

Afterwards, you can browse the retrieved metadata to find out about
subdataset contents, and retrieve individual files with ``datalad get``. If you
use ``datalad get <path/to/subdataset>``, all contents of the subdataset will
be downloaded at once.

Stay up-to-date
^^^^^^^^^^^^^^^

DataLad datasets can be updated. The command ``datalad update`` will *fetch*
updates and store them on a different branch (by default
``remotes/origin/master``). Running::

datalad update --merge

will *pull* available updates and integrate them in one go.

Find out what has been done
^^^^^^^^^^^^^^^^^^^^^^^^^^^

DataLad datasets contain their history in the ``git log``.
By running ``git log`` (or a tool that displays Git history) in the dataset or on
specific files, you can find out what has been done to the dataset or to individual␣
→˓files
by whom, and when.

More information
^^^^^^^^^^^^^^^^

More information on DataLad and how to use it can be found in the DataLad Handbook␣
→˓at
`handbook.datalad.org <http://handbook.datalad.org/en/latest/index.html>`_. The
chapter "DataLad datasets" can help you to familiarize yourself with the
concept of a dataset.

M2.2 Textblock in markdown format

B.11. How can I help others get started with a shared dataset? 483

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

[![made-with-datalad](https://www.datalad.org/badges/made_with.svg)](https://
→˓datalad.org)

DataLad datasets and how to use them

This repository is a [DataLad](https://www.datalad.org/) dataset. It provides
fine-grained data access down to the level of individual files, and allows for
tracking future updates. In order to use this repository for data retrieval,
[DataLad](https://www.datalad.org/) is required. It is a free and
open source command line tool, available for all major operating
systems, and builds up on Git and [git-annex](https://git-annex.branchable.com/)
to allow sharing, synchronizing, and version controlling collections of
large files. You can find information on how to install DataLad at
[handbook.datalad.org/en/latest/intro/installation.html](http://handbook.datalad.
→˓org/en/latest/intro/installation.html).

Get the dataset

A DataLad dataset can be `cloned` by running

```
datalad clone <url>
```

Once a dataset is cloned, it is a light-weight directory on your local machine.
At this point, it contains only small metadata and information on the
identity of the files in the dataset, but not actual *content* of the
(sometimes large) data files.

Retrieve dataset content

After cloning a dataset, you can retrieve file contents by running

```
datalad get <path/to/directory/or/file>`
```

This command will trigger a download of the files, directories, or
subdatasets you have specified.

DataLad datasets can contain other datasets, so called *subdatasets*.
If you clone the top-level dataset, subdatasets do not yet contain
metadata and information on the identity of files, but appear to be
empty directories. In order to retrieve file availability metadata in
subdatasets, run

```
datalad get -n <path/to/subdataset>
```

Afterwards, you can browse the retrieved metadata to find out about
subdataset contents, and retrieve individual files with `datalad get`.
If you use `datalad get <path/to/subdataset>`, all contents of the
subdataset will be downloaded at once.

Stay up-to-date

DataLad datasets can be updated. The command `datalad update` will
fetch updates and store them on a different branch (by default
`remotes/origin/master`). Running

```
datalad update --merge
```

will *pull* available updates and integrate them in one go.

Find out what has been done

DataLad datasets contain their history in the ``git log``.
By running ``git log`` (or a tool that displays Git history) in the dataset or on
specific files, you can find out what has been done to the dataset or to individual␣
→˓files
by whom, and when.

More information

More information on DataLad and how to use it can be found in the DataLad Handbook␣
→˓at
[handbook.datalad.org](http://handbook.datalad.org/en/latest/index.html). The␣
→˓chapter
"DataLad datasets" can help you to familiarize yourself with the concept of a␣
→˓dataset.

M2.3 Textblock without formatting

DataLad datasets and how to use them
This repository is a DataLad (https://www.datalad.org/) dataset. It provides fine-grained
data access down to the level of individual files, and allows for tracking future updates.
In order to use this repository for data retrieval, DataLad (https://www.datalad.org/)
is required. It is a free and open source command line tool, available for all major
operating systems, and builds up on Git and git-annex (https://git-annex.branchable.c
om/) to allow sharing, synchronizing, and version controlling collections of large files.
You can find information on how to install DataLad at http://handbook.datalad.org/en/
latest/intro/installation.html.
Get the dataset
A DataLad dataset can be “cloned” by running ‘datalad clone <url>’. Once a dataset is
cloned, it is a light-weight directory on your local machine. At this point, it contains only
small metadata and information on the identity of the files in the dataset, but not actual
content of the (sometimes large) data files.
Retrieve dataset content
After cloning a dataset, you can retrieve file contents by running ‘datalad get
<path/to/directory/or/file>’
This command will trigger a download of the files, directories, or subdatasets you have
specified.

484 Appendix B. Frequently Asked Questions

https://www.datalad.org/
https://www.datalad.org/
https://git-annex.branchable.com/
https://git-annex.branchable.com/
http://handbook.datalad.org/en/latest/intro/installation.html
http://handbook.datalad.org/en/latest/intro/installation.html

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

DataLad datasets can contain other datasets, so called “subdatasets”. If you clone the top-
level dataset, subdatasets do not yet contain metadata and information on the identity of
files, but appear to be empty directories. In order to retrieve file availability metadata in
subdatasets, run ‘datalad get -n <path/to/subdataset>’
Afterwards, you can browse the retrieved metadata to find out about subdataset
contents, and retrieve individual files with datalad get. If you use ‘datalad get
<path/to/subdataset>’, all contents of the subdataset will be downloaded at once.
Stay up-to-date
DataLad datasets can be updated. The command ‘datalad update’ will “fetch” updates and
store them on a different branch (by default ‘remotes/origin/master’). Running ‘datalad
update –merge’ will “pull” available updates and integrate them in one go.
Find out what has been done
DataLad datasets contain their history in the Git log. By running ‘git log’ (or a tool that
displays Git history) in the dataset or on specific files, you can find out what has been
done to the dataset or to individual files by whom, and when.
More information
More information on DataLad and how to use it can be found in the DataLad Handbook
at http://handbook.datalad.org/en/latest/index.html. The chapter “DataLad datasets”
can help you to familiarize yourself with the concept of a dataset.

B.12 What is the difference between DataLad, Git LFS, and Flywheel?

Flywheel721 is an informatics platform for biomedical research and collaboration.

Git Large File Storage722 (Git LFS) is a command line tool that extends Git with the ability to
manage large files. In that it appears similar to git-annex.

A more elaborate delineation from related solutions can be found in the DataLad developer
documentation723.

B.13 What is the difference between DataLad and DVC?

DVC724 is a version control system for machine learning projects. We have compared the two
tools in a dedicated handbook section, Reproducible machine learning analyses: DataLad as DVC
(page 358).
721 https://flywheel.io/
722 https://github.com/git-lfs/git-lfs
723 http://docs.datalad.org/en/latest/related.html
724 https://dvc.org/

B.12. What is the difference between DataLad, Git LFS, and Flywheel? 485

http://handbook.datalad.org/en/latest/index.html
https://flywheel.io/
https://github.com/git-lfs/git-lfs
http://docs.datalad.org/en/latest/related.html
http://docs.datalad.org/en/latest/related.html
https://dvc.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

B.14 DataLad version-controls my large files – great. But how much is
saved in total?

B.15 How can I copy data out of a DataLad dataset?

Moving or copying data out of a DataLad dataset is always possible and works in many cases just
like in any regular directory. The only caveat exists in the case of annexed data: If file content
is managed with git-annex and stored in the OBJECT-TREE, what appears to be the file in the
dataset is merely a symlink (please read section Data integrity (page 85) for details). Moving or
copying this symlink will not yield the intended result – instead you will have a broken symlink
outside of your dataset.

When using the terminal command cp733, it is sufficient to use the -L/--dereference option.
This will follow symbolic links, and make sure that content gets moved instead of symlinks.
Remember that if you are copying some annexed content out of a dataset without unlocking it
first, you will only have “read” PERMISSIONS on the files you have just copied. Therefore you can
: - either unlock the files before copying them out, - or copy them and then use the command
chmod to be able to edit the file.

this will give you 'write' permission on the file
$ chmod +w filename

If you are not familiar with how the chmod works (or if you forgot - let’s be honest we all google
it sometimes), this is a nice tutorial725 .

With tools other than cp (e.g., graphical file managers), to copy or move annexed content, make
sure it is unlocked first: After a datalad unlock copying and moving contents will work fine. A
subsequent datalad save in the dataset will annex the content again.

B.16 Is there Python 2 support for DataLad?

No, Python 2 support has been dropped in September 2019726.

B.17 Is there a graphical user interface for DataLad?

No, DataLad’s functionality is available in the command line or via it’s Python API.

B.18 How does DataLad interface with OpenNeuro?

OpenNeuro727 is a free and open platform for sharing MRI, MEG, EEG, iEEG, and ECoG data.
It publishes hosted data as DataLad datasets on GITHUB. The entire collection can be found
733 The absolutely amazing Midnight Commander734 mc can also follow symlinks.
734 https://github.com/MidnightCommander/mc
725 https://bids.github.io/2015-06-04-berkeley/shell/07-perm.html
726 https://github.com/datalad/datalad/pull/3629
727 https://openneuro.org/

486 Appendix B. Frequently Asked Questions

https://bids.github.io/2015-06-04-berkeley/shell/07-perm.html
https://github.com/datalad/datalad/pull/3629
https://openneuro.org/
https://github.com/MidnightCommander/mc

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

at github.com/OpenNeuroDatasets728. You can obtain the datasets just as any other DataLad
datasets with datalad clone or datalad install.

There is more info about this in the OpenNeuro Quickstart Guide.

B.19 BIDS validator issues in datasets with missing file content

As outlined in section Data integrity (page 85), all unretrieved files in datasets are broken
symlinks. This is desired, and not a problem per se, but some tools, among them the BIDS
validator729, can be confused by this. Should you attempt to validate a dataset in which all
or some file contents are missing, for example after cloning a dataset or after dropping file
contents, the validator may fail to report on the validity of the complete dataset or the specific
unretrieved files. If you aim for a complete validation of your dataset, re-do the validation after
retrieving all necessary file contents. If you only aim to validate file names and structure, invoke
the bids validator with the additional flags --ignoreNiftiHeaders and --ignoreSymlinks.

B.20 What is the git-annex branch?

If your DataLad dataset contains an annex, there is also a git-annex BRANCH that is created,
used, and maintained solely by GIT-ANNEX. It is completely unconnected to any other branches
in your dataset, and contains different types of log files. The contents of this branch are used
for git-annex internal tracking of the dataset and its annexed contents. For example, git-annex
stores information where file content can be retrieved from in a .log file for each object, and
if the object was obtained from web-sources (e.g., with datalad download-url), a .log.web
file stores the URL. Other files in this branch store information about the known remotes of
the dataset and their description, if they have one. You can find out much more about the
git-annex branch and its contents in the documentation730. This branch, however, is managed
by git-annex, and you should not tamper with it.

B.21 Help - Why does Github display my dataset with git-annex as the
default branch?

If your dataset is represented on GitHub with cryptic directories instead of actual file names,
GitHub probably declared the GIT-ANNEX BRANCH to be your repositories “default branch”. Here
is an example:

This is related to GitHub’s decision to make main the default branch for newly created reposito-
ries731 – datasets that do not have a main branch (but for example a master branch) may end
up with a different branch being displayed on GitHub than intended.

To fix this for present and/or future datasets, the default branch can be configured to a branch
name of your choice on a repository- or organizational level via GitHub’s web-interface732.
Alternatively, you can rename existing master branches into main using git branch -m master
main (but beware of unforeseen consequences - your collaborators may try to update the master

728 https://github.com/OpenNeuroDatasets
729 https://github.com/bids-standard/bids-validator
730 https://git-annex.branchable.com/internals/
731 https://github.blog/changelog/2020-10-01-the-default-branch-for-newly-created-repositories-is-now-main/
732 https://github.blog/changelog/2020-08-26-set-the-default-branch-for-newly-created-repositories/

B.19. BIDS validator issues in datasets with missing file content 487

https://github.com/OpenNeuroDatasets
https://github.com/bids-standard/bids-validator
https://github.com/bids-standard/bids-validator
https://git-annex.branchable.com/internals/
https://github.blog/changelog/2020-10-01-the-default-branch-for-newly-created-repositories-is-now-main/
https://github.blog/changelog/2020-10-01-the-default-branch-for-newly-created-repositories-is-now-main/
https://github.blog/changelog/2020-08-26-set-the-default-branch-for-newly-created-repositories/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

488 Appendix B. Frequently Asked Questions

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

branch but fail, continuous integration workflows could still try to use master, etc.). Lastly, you
can initialize new datasets with main instead of master – either with a global Git configuration735

for init.defaultBranch, or by using the --initial-branch option of datalad create.

735 See the section DIY configurations (page 112) for more info on configurations

B.21. Help - Why does Github display my dataset with git-annex as the default branch? 489

APPENDIX

C

SO. . . WINDOWS. . . EH?

DataLad and its underlying tools work different on Windows machines. This makes the user
experience less fun than on other operating systems – an honest assessment.

Many software tools for research or data science are first written and released for Linux, then
for Mac, and eventually Windows. TensorFlow for Windows was released only a full year after
it became open source736, for example, and Python only became easy to install on Windows
in 2019737. The same is true for DataLad and its underlying tools. There is Windows support
and user documentation, but it isn’t as far developed as for Unix-based systems. This page
summarizes core downsides and deficiencies of Windows, DataLad on Windows, and the user
documentation.
736 https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html
737 https://devblogs.microsoft.com/python/python-in-the-windows-10-may-2019-update/

490

https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html
https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html
https://devblogs.microsoft.com/python/python-in-the-windows-10-may-2019-update/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

C.1 Windows-Deficiencies

Updates

We have succeeded in building git-annex with MagicMime for mimeencoding (that’s a good
thing). While we’re working on packaging everything into a single, conda-based DataLad in-
stallation bundle, you can find a standalone git-annex installer at http://datasets.datalad.org/d
atalad/packages/windows/.

Windows works fundamentally different than macOS or Linux-based operating systems. This
results in missing dependencies, altered behavior, and inconvenient workarounds. Beyond this,
Windows uses a different file system than Unix based systems. Given that DataLad is a data
management software, it is heavily affected by this, and the Basics part of the handbook is
filled with “Windows-Wits”, dedicated sections that highlight different behavior on native Win-
dows installations of DataLad, or provide adjusted commands – nevertheless, standard DataLad
operations on Windows can be much slower than on other operating systems.

A major annoyance and problem is that some tools that DataLad or DATALAD EXTENSIONs use
are not available on Windows. If you are interested in adding SOFTWARE CONTAINERs to your
DataLad dataset (with the datalad-container extension), for example, you will likely not be
able to do so on a native Windows computer – SINGULARITY, a widely used containerization
software, doesn’t exit for Windows, and while there is some support for DOCKER on Windows,
it does not apply to most private computers753.

Windows also has insufficient support for SYMLINKing and locking files (i.e., revoking write PER-
MISSIONS), which alters how GIT-ANNEX works, and may make interoperability of datasets be-
tween Windows and non-Windows operating systems not as smooth as between various flavours
of Unix-like operating systems.

In addition, Windows has a (default) maximum path length limitation of only 260 characters738.
However, DataLad (or rather, GIT-ANNEX) relies on file content hashing739 to ensure file integrity.
Usually, the longer the hash that is created, the more fail-safe it is. For a general idea about the
length of hashes, consider that many tools including GIT-ANNEX use SHA256 (a 256 characters
long hash) as their default. As git-annex represents files with their content hash as a name,
though, a secure 256 character file name is too long for Windows. Datasets thus adjust this
default to a 128 character hash754, but still, if you place a DataLad dataset into a deeply nested
directory location, you may run into issues due to hitting the path length limit756. You can
753 If you are thinking, “Well, why would you use SINGULARITY, DOCKER is available on Windows!”: True, and

datalad-container can indeed use Docker. But Docker can only be installed on Windows Pro or Enterprise, but
not on Windows Home. Eh. :(

738 https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation
739 https://en.wikipedia.org/wiki/Hash_function
754 The path length limitation on Windows is the reason that DataLad datasets always use hashes based on MD5755,

a hash function that produces a 128 character hash value. This wouldn’t be necessary on Unix-based operating
systems, but is required to ensure portability of datasets to Windows computers.

755 https://en.wikipedia.org/wiki/MD5
756 The path length limitation certainly isn’t only a problem for DataLad and its underlying tools.

Many users run into a Path length related problems at least once, by accident. Download-
ing or copying files with long names into a folder that itself has a long name, for example,
can become an unexpected issue (especially if you are not aware of the limit). Imagine trans-
ferring pictures from your friends camera into C:\Users\"Bob McBobface"\Desktop\Pictures\"Vacation
Pictures"\2020\Saint-Remy-en-Bouzemont-Saint-Genest-et-Isson\"From Alice and Sasha"\Camera\ – those
file names shouldn’t be too long to fit in the limit. Likewise, when git cloneing a GIT repository that was created
on a Unix computer and contains very long file names could fail.

C.1. Windows-Deficiencies 491

http://datasets.datalad.org/datalad/packages/windows/
http://datasets.datalad.org/datalad/packages/windows/
https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/MD5

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

enable long paths in recent builds of Windows 10, but it requires some tweaking740.

Windows also doesn’t really come with a decent TERMINAL. It is easy to get a nice and efficient
terminal set up on macOS or Linux, it is harder on Windows. For example, its TAB COMPLETION

is deemed inefficient by many, it takes some poking and clicking741 to enable copy-pasting, most
standard command line tools are not pre-installed, and many aren’t even available or easy to
access from the terminal. Usually, Windows users aren’t bothered much by this, but DataLad
is a command line tool, and with a command line that is difficult to use, command line tools
become difficult to use, too. Are you a Windows user and have tips for setting up a decent
terminal? Please tell us, we’re eager to learn from you742.

Sadly, even the non-commandline parts of Windows bear inconveniences. Windows’ File Ex-
plorer does not display common file extensions by default, and some editors (such as notepad)
add their own file extensions to files, even when they already have an extension. This can cause
confusion.

Unfortunately, issues that affect Windows itself are out of our hands. We can adapt to limita-
tions, but in many cases it is not possible to overcome them. That sucks, and we’re really sorry
for this. Its not that we pick dependencies that only work on Unix-based systems – we try to use
tools that are as cross-platform-compatible as possible, but certain tools, functions, or concepts
simply don’t (yet) work on Windows:

• As there is no way to install SINGULARITY or DOCKER on regular Windows machines, none
of the functionality that the datalad-container extension provides can be used.

• As there is insufficient support for symlinking and locking, datasets will have a higher disk
usage on Windows machines. Section Data integrity (page 85) has the details on this.

• The Windows terminals are much less user friendly, and errors that are thrown on Win-
dows systems are typically much more complex.

• DataLad and its underlying tools are slower on Windows.

C.2 DataLad-on-Windows-Deficiencies

DataLad is developed and predominantly used on Linux-based operating systems. There is
a broad suite of unit tests743 and continuous integration744 to ensure that functions and com-
mands work under Windows, but given that development and user base is mostly not Windows-
based, many bugs that would only surface during complete workflows (as opposed to atomic
unit testing) or on machines with specific configurations, versions, or software environments
(as opposed to the simplistic and isolated Windows test environments on continuous integra-
tion) have not been discovered yet. And a typical Windows user may also use their computer
differently than a Linux-based developer imagines computers to be used.

Thus, when using DataLad under Windows it is likely that you encounter bugs. We’re trying
to prevent this, but it is a normal part of (scientific) software development. What you can do
to help us improve your experience is to talk to us at github.com/datalad/datalad745 about
740 https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation#enable-long-paths-in-

windows-10-version-1607-and-later
741 https://www.howtogeek.com/353200/how-to-enable-copy-and-paste-keyboard-shortcuts-in-windows-10s-ba

sh-shell/
742 https://github.com/datalad/datalad
743 https://en.wikipedia.org/wiki/Unit_testing
744 https://en.wikipedia.org/wiki/Continuous_integration
745 https://github.com/datalad/datalad

492 Appendix C. So. . . Windows. . . eh?

https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation#enable-long-paths-in-windows-10-version-1607-and-later
https://www.howtogeek.com/353200/how-to-enable-copy-and-paste-keyboard-shortcuts-in-windows-10s-bash-shell/
https://github.com/datalad/datalad
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Continuous_integration
https://github.com/datalad/datalad

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

problems or bugs you ran into, about your typical workflows, and the usecases you are trying
to achieve.

C.3 User documentation deficiencies

The DataLad Handbook is tested on DEBIAN and predominantly created by Unix users757. Being
written by many converted Linux users, is filled with start-to-end instructions and tips for Unix
systems that have sufficient detail to help Unix newcomers to get started, and it aims to be
accessible to everyone – you don’t need to be a Linux crank to be able to use the handbook.

However, you may need to be a Windows crank (or a fearless experimentalist) if you want to
use all of the handbook on a Windows computer, though. There hasn’t been nearly as much
time invested into finding, describing, and solving caveats or edge cases, and there isn’t enough
“daily Windows usage” expertise to be able to give all of the advice that may be needed to
identify or prevent problems or improve the user experience to the maximum.

The workflow-based and user-centric narrative of the Basics has been developed on a Unix-
based system – Windows-related enhancements are solely adjustments or workarounds. So far,
only the Basics (page 33) have been tested with a Windows computer (Windows 10, build-
version 2004) and adjusted where necessary. We’re working on more adjustments, testing, and
general improvements, but its a process. You can help us prioritize Windows by getting in touch
to voice general interest, discover and report bugs, or contribute to the user documentation
with your own advice and experiences.

C.4 So, overall. . .

You won’t get the best possible DataLad experience on a Windows computer. While basic func-
tionality is ensured, it is smoother and more fail-safe to use DataLad on anything but a Native
Windows installation, at least for the time being. When sticking to Windows, though, you
could find out about interesting aspects of your operating system and help us improve Windows
functionality if you tell us about your workflows or report bugs.

C.5 Are there feasible alternatives?

If you want to use DataLad, but fear problems when on Windows, what is there that you can
do? Should you switch your operating system?

Its quite easy to say “Just use Linux” but tough to do when you have no experience, support,
or spare time and are hence reluctant to completely overhaul your operating system and re-
duce your productivity while you get a hang on it – or if you rely on software that is native to
Windows, such as Microsoft or Adobe products. Its also easy to say “Just use a Mac, its much
more user-friendly and Unix-based” when an Apple product is a very expensive investment that
only few people can or want to afford. Its a bit like recommending a MatLab user (proprietary,
expensive, closed-source software) to switch to Python, R, Julia, or a similar open source al-
ternative. Yes, there are real benefits to it that make the change worthwhile to many, but that
757 Its not written by Windows-lynching ideologists and Linux cranks, though. The lead author switched from Win-

dows to Debian 1.5 years before starting to write the handbook, coming from more than a decade of happy
Windows experience. She doesn’t regret having made the change at all, but she respects and understands reluc-
tance to switch.

C.3. User documentation deficiencies 493

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

doesn’t change the fact that it is effortful and may be frustrating. But how about switching from
MatLab to Octave746, an open source programming language, made to be compatible to Mat-
Lab? There definitely is work and adjustment involved, but much less work than when trying
to rewrite your analyses in Go or C++. It is tough if you have been using “a thing” for decades
without much hassle and now someone tells you to change. If you feel that you lack the time,
resources, support, or knowledge, then throwing yourself into cold water and making a harsh
change not only sucks, but its also not likely to succeed. If you’re juggling studies (or the gen-
eral publish-or-perish-work-life-misery that Academia too often is), care-giving responsibilities,
and surviving a pandemic, all while being in a scientific lab that advocates using Windows and
works exclusively with Microsoft Excel, then switching to Arch Linux would widely be seen as
a bad idea.

But is there a middle-ground, the “Octave” of switching Operating Systems or alternative solu-
tions? It depends on what you need and what you want to do. Below, we have listed solutions
that may be feasible for you as an alternative to native Windows so that you can debate indi-
vidual pros and cons of each alternative with yourself.

Use a compute cluster

If you are a researcher, chances are that your institution runs a large compute cluster. Those
things run on Linux distributions, they have knowledgeable system administrators, and typically
institute-internal documentation. Even if you are on a Windows computer, you can log into such
a cluster (if you have an account), and use tools made for Unix-like operating systems there –
without having to deal with any of the set-up, installation, or maintenance, and with access
to documentation and experienced users. The section Installation and configuration (page 10)
also contains installation instructions for such shared compute clusters (“Linux machines with
no root access”).

The Windows Subsystem for Linux (version 2)

If you want to have a taste of Unix on your own computer, but in the most safe and reversible
way, or have essential software that only runs under Windows and really need to keep a Win-
dows Operating System, then the Windows Subsystem for Linux (WSL2) may be a solution.
Microsoft acknowledges that a lot of software is assuming that the environment in which they
run behaves like Linux, and has added a real Linux kernel to Windows with the WSL2747. If you
enable WSL2 on your Windows 10 computer, you have access to a variety of Linux distributions
in the Microsoft store, and you can install them with a single click. The Linux distribution(s) of
your choice becomes an icon on your task bar, and you can run windows and Linux in parallel.

What should you be mindful of? WSL is a minimalist tool in that it is made to run BASH or core
Linux commands. It does not support graphical user (GUI) interfaces or applications. So while
common Linux distributions have GUIs for various software, in WSL2 you will only be able to
use a terminal. Also, it is important to know that older versions of WSL did not allow accessing
or modifying Linux files via Windows748. Recent versions (starting with Windows 10 version
1903) allow accessing Linux files with Windows tools749, although some tweaking, explained
in Cross-OS filesharing with symlinks (WSL2 only) (page 91), is necessary.

746 https://www.gnu.org/software/octave/
747 https://docs.microsoft.com/en-us/windows/wsl/faq
748 https://devblogs.microsoft.com/commandline/do-not-change-linux-files-using-windows-apps-and-tools/
749 https://devblogs.microsoft.com/commandline/whats-new-for-wsl-in-windows-10-version-1903/

494 Appendix C. So. . . Windows. . . eh?

https://www.gnu.org/software/octave/
https://docs.microsoft.com/en-us/windows/wsl/faq
https://docs.microsoft.com/en-us/windows/wsl/faq
https://devblogs.microsoft.com/commandline/do-not-change-linux-files-using-windows-apps-and-tools/
https://devblogs.microsoft.com/commandline/do-not-change-linux-files-using-windows-apps-and-tools/
https://devblogs.microsoft.com/commandline/whats-new-for-wsl-in-windows-10-version-1903/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

How do I start? Microsoft has detailed installation instructions here750.

Linux Mint

There isn’t much that holds you to Windows? The software you use is either already open source
or available on Linux or easily replaceable by available alternatives (e.g., libre office instead of
Microsoft Word, the Spotify player in a web browser instead of as an App)? But you’re reluctant
to undergo huge changes when switching operating systems? Then Linux Mint may be a good
starting point. Its user interface is not identical to Windows, but also not that far away, it is
a mature operating system, its very user-friendly, there is a helpful and welcoming community
behind it, and – like all Linux distributions – it is free.

What should I be mindful of? If you’re changing your operating system, create a backup of
your data (unless you do it on a new computer of course). You can’t install a new OS and have
all data where you left it – pull it onto an external drive, and copy it back to your new OS later.
Also, take a couple of minutes and google whether the hardware of your computer is compatible
with Linux. Go to your system’s settings and find out the name and version of your computer,
your graphics card and CPU, and put all of it into a Google search that starts with “Install
Linux on <hardware specifications>”. Some hardware may need additional configuration or
be incompatible with Linux, and you would want to know about this upfront. And don’t be
afraid to ask or look for help. The internet is a large place and filled with helpful posts and
people. Take a look at user forums such as forums.linuxmint.com/751 – they likely contain the
answers to the questions you may have.

How do I start? A nice and comprehensive overview is detailed in this article752.

750 https://docs.microsoft.com/en-us/windows/wsl/install-win10
751 https://forums.linuxmint.com/
752 https://uk.pcmag.com/adobe-photoshop-cc/124238/how-to-make-the-switch-from-windows-to-linux

C.5. Are there feasible alternatives? 495

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://forums.linuxmint.com/
https://uk.pcmag.com/adobe-photoshop-cc/124238/how-to-make-the-switch-from-windows-to-linux

APPENDIX

D

DATALAD CHEAT SHEET

496

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Fig. D.1: A high-resolution version of this cheatsheet is available for download at https://gith
ub.com/datalad-handbook/artwork/raw/master/src/datalad-cheatsheet.pdf

497

https://github.com/datalad-handbook/artwork/raw/master/src/datalad-cheatsheet.pdf
https://github.com/datalad-handbook/artwork/raw/master/src/datalad-cheatsheet.pdf

APPENDIX

E

CONTRIBUTING

Thanks for being curious about contributing! We greatly appreciate and welcome contributions
to this book, be it in the form of an issue758, quick feedback on DataLad’s usability759, a pull
request, or a discussion you had with anyone on the team via a non-GitHub communication
channel! To find out how we acknowledge contributions, please read the paragraph Acknowl-
edging Contributors (page 504) at the bottom of this page.

If you are considering doing a pull request: Great! Every contribution is valuable, from fixing
typos to writing full chapters. The steps below outline how the book “works”. It is recommended
to also create an issue to discuss changes or additions you plan to make in advance.

E.1 Software setup

Depending on the size of your contribution, you may want to be able to build the book locally
to test and preview your changes. If you are fixing typos, tweak the language, or rewrite a
paragraph or two, this should not be necessary, and you can safely skip this paragraph and
instead take a look into the paragraph Easy pull requests (page 501). If you want to be able to
build the book locally, though, please follow these instructions:

• datalad install the repository recursively. This ensures that dependent subdatasets are
installed as well

$ datalad install -r https://github.com/datalad-handbook/book.git

• optional, but recommended: Create a virtual environment
758 https://github.com/datalad-handbook/book/issues/new
759 https://forms.gle/FkNEc7HVaZU5RTYP6

498

https://github.com/datalad-handbook/book/issues/new
https://forms.gle/FkNEc7HVaZU5RTYP6

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

$ virtualenv --python=python3 ~/env/handbook
$. ~/env/handbook/bin/activate

• install the requirements and a custom Python helper for the handbook

navigate into the installed dataset
$ cd book
install required software
$ pip install -r requirements.txt
$ pip install -e .

• install librsvg2-bin (a tool to render .svgs) with your package manager

$ sudo apt-get install librsvg2-bin

The code examples that need to be executed to build the book (see also the paragraph “Code” in
Directives and demos (page 499) to learn more about this) are executed inside of the directory
/home/me. This means that this directory needs to exist on your machine. Essentially, /home/me
is a mock directory set up in order to have identical paths in code snippets regardless of the
machine the book is build on: Else, code snippets created on one machine might have the path
/home/adina, and others created on a second machine /home/mih, for example, leading to some
potential confusion for readers. Therefore, you need to create this directory, and also – for
consistency in the Git logs as well – a separate, mock Git identity (we chose Elena Piscopia760,
the first woman to receive a PhD. Do not worry, this does not mess with your own Git identity):

$ sudo mkdir /home/me
$ sudo chown $USER:$USER /home/me
$ HOME=/home/me git config --global user.name "Elena Piscopia"
$ HOME=/home/me git config --global user.email "elena@example.net"

Once this is configured, you can build the book locally by running make build in the root of the
repository, and open it in your browser, for example with firefox docs/_build/html/index.
html.

In case you need to remove the build files, you can just run make clean-build.

E.2 Directives and demos

If you are writing larger sections that contain code, gitusernotes, findoutmores, or other spe-
cial directives, please make sure that you read this paragraph.

The book is build with a number of custom directives. If applicable, please use them in the same
way they are used throughout the book.

Code: For code that runs inside a dataset such as DataLad-101, working directories exist in-
side of /home/me. The DataLad-101 dataset for example lives in /home/me/dl-101. This comes
with the advantage that code is tested immediately – if the code snippet contains an error,
this error will be written into the book, and thus prevent faulty commands from being pub-
lished. Running code in a working directory will furthermore build up on the existing history
of this dataset, which is very useful if some code relies on working with previously created

760 https://en.wikipedia.org/wiki/Elena_Cornaro_Piscopia

E.2. Directives and demos 499

https://en.wikipedia.org/wiki/Elena_Cornaro_Piscopia

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

content or dataset history. Build code snippets that add to these working directories by us-
ing the runrecord directive. Commands wrapped in these will write the output of a com-
mand into example files stored inside of the DataLad Handbook repository clone in docs/PART/
_examples (where PART is basics, beyond_basics, or usecases). Make sure to name these
files according to the following schema, because they are executed sequentially: _examples/
DL-101-1<nr-of-section>-1<nr-of-example>, e.g., _examples/DL-101-101-101 for the first ex-
ample in the first section of the given part. Here is how a runrecord directive can look like:

.. runrecord:: _examples/DL-101-101-101 # give the path to the resulting file, start␣
→˓with _examples

:language: console
:workdir: dl-101/DataLad-101 # specify a working directory here. This translates to␣

→˓/home/me/dl-101/DataLad-101

this is a comment
$ this line will be executed

Afterwards, the resulting example files need to be committed into Git. To clear existing examples
in docs/PART/_examples and the mock directories in /home/me, run make clean (to remove
working directories and examples for all parts of the book) or make clean-examples (to remove
only examples and workdirs of the Basics part).

However, for simple code snippets outside of the narrative of DataLad-101, simple code-block::
directives are sufficient.

Other custom directives: Other custom directives are gitusernote (for additional Git-related
information for Git-users), and findoutmore (foldable sections that contain content that goes
beyond the basics). Make use of them, if applicable to your contribution.

Creating live code demos out of runrecord directives: The book has the capability to turn
code snippets into a script that the tool cast_live761 can use to cast and execute it in a demonstra-
tion shell. This feature is intended for educational courses and other types of demonstrations.
The following prerequisites exist:

• A snippet only gets added to a cast, if the :cast: option in the runrecord specifies a
filename where to save the demo to (it does not need to be an existing file).

• If :realcommand: options are specified, they will become the executable part of the cast.
If note, the code snippet in the code-block of the runrecord will become the executable
part of the cast.

• An optional :notes: lets you add “speakernotes” for the cast.

• Demos are produced upon make, but only if the environment variable CAST_DIR is set. This
should be a path that points to any directory in which demos should be created and saved.
An invocation could look like this:

$ CAST_DIR=/home/me/casts make

This is a fully specified runrecord:

.. runrecord:: _examples/DL-101-101-101
:language: console
:workdir: dl-101/DataLad-101
:cast: dataset_basics # name of the cast file (will be created/extended in CAST_DIR)

(continues on next page)

761 https://github.com/datalad/datalad/blob/master/tools/cast_live

500 Appendix E. Contributing

https://github.com/datalad/datalad/blob/master/tools/cast_live

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

(continued from previous page)

:notes: This is an optional speaker note only visible to presenter during the cast

this is a comment and will be written to the cast
$ this line will be executed and written to the cast

IMPORTANT! Code snippets will be turned into casts in the order of execution of runrecords.
If you are adding code into an existing cast, i.e., in between two snippets that get written to the
same cast, make sure that the cast will still run smoothly afterwards!

Running live code demos from created casts: If you have created a cast, you can use the tool
live_cast in tools/ in the DataLad Course762 to execute them:

~ course$ tools/cast_live path/to/casts

The section Teaching with the DataLad Handbook (page 505) outlines more on this and other
teaching materials the handbook provides.

E.3 Easy pull requests

The easiest way to do a pull request is within the web-interface that GitHub and readthedocs763

provide. If you visit the rendered version of the handbook at handbook.datalad.org764 and click
on the small, floating v:latest element at the lower right-hand side, the Edit option will take
you straight to an editor that lets you make your changes and submit a pull request.

Fig. E.1: You can find an easy way to submit a pull request right from within the handbook.

But you of course are also welcome to submit a pull request with whichever other workflow
suites you best.

E.4 Desired structure of the book

The book consists of four major parts: Introduction, Basics, Beyond Basics, and Use Cases, plus
an appendix. Purpose and desired content of these parts are outlined below. When contributing
to one of these sections, please make sure that your contribution stays in the scope of the
respective section.

762 https://github.com/datalad-handbook/course
763 https://readthedocs.org
764 http://handbook.datalad.org/

E.3. Easy pull requests 501

https://github.com/datalad-handbook/course
https://readthedocs.org
http://handbook.datalad.org/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Introduction

• An introduction to DataLad, and the problems it aims to be a solution for.

• This part is practically free of hands-on content, i.e., no instructions, no demos. Instead,
it is about concepts, analogies, general problems.

• In order to avoid too much of a mental split between a reader’s desire to learn how to
actually do things vs. conceptual information, the introduction is purposefully kept short
and serves as a narrated table of contents with plenty of references to other parts of the
book.

Basics

• This part contains hands-on-style content on skills that are crucial for using DataLad pro-
ductively. It aims to be a continuous tutorial after which readers are able to perform the
following tasks:

– Create and populate own datasets from scratch

– Consume existing datasets

– Share datasets on shared an third party infrastructure and collaborate

– Execute commands or scripts (computationally) reproducible

– Configure datasets or DataLad operations as needed

– Use DataLad’s metadata capabilities

• The order of topics in this part is determined by the order in which they become relevant
for a novice DataLad user.

• Content should be written in a way that explicitly encourages executing the shown com-
mands, up to simple challenges (such as: “find out who the author of the first commit in
the installed subdataset XY is”).

Beyond Basics

• This part goes beyond the Basics and is a place for documenting advanced or special
purpose commands or workflows. Examples for this sections are: Introductions to special-
purpose extensions, hands-on technical documentation such as “how to write your own
DataLad extension”, or rarely encountered use cases for DataLad, such as datasets for
large-scale projects.

• This section contains chapters that are disconnected from each other, and not related to
any narrative. Readers are encouraged to read chapters or sections that fit their needs in
whichever order they prefer.

• Care should be taken to not turn content that could be a usecase into an advanced chapter.

Use Cases

• Topics that do not fit into the introduction or basics parts, but are DataLad-centric, go into
this part. Ideal content are concrete examples of how DataLad’s concepts and building

502 Appendix E. Contributing

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

blocks can be combined to implement a solution to a problem.

• Any chapter is written as a more-or-less self-contained document that can make frequent
references to introduction and basics, but only few, and more general ones to other use
cases. This should help with long-term maintenance of the content, as the specifics of how
to approach a particular use case optimally may evolve over time, and cross-references to
specific functionality might become invalid.

• There is no inherent order in this part, but chapters may be grouped by domain, skill-level,
or DataLad functionality involved (or combinations of those).

• Any content in this part can deviate from the examples and narrative used for introduction
and basics whenever necessary (e.g., concrete domain specific use cases). However, if
possible, common example datasets, names, terms should be adopted, and the broadest
feasible target audience should be assumed. Such more generic content should form the
early chapters in this part.

• Unless there is reason to deviate, the following structure should be adopted:

1. Summary/Abstract (no dedicated heading)

2. The Challenge: description what problem will be solved, or which conditions are
present when DataLad is not used

3. The DataLad Approach: high-level description how DataLad can be used to address
the problem at hand.

4. Step-by-Step: More detailed illustration on how the “DataLad approach” can be im-
plemented, ideally with concrete code examples.

Intersphinx mapping

The handbook tries to provide stable references to commands, concepts, and use cases for
Intersphinx Mappings765. This can help to robust-ify links – instead of long URLs that are
dependent on file or section titles, or references to numbered sections (both can break easily),
intersphinx references are meant to stick to contents and reliably point to it via a mapping in
the index766 under Symbols. An example intersphinx mapping is done in DataLad767.

The references take the following shape: .. _1-001:

The leading integer indicates the category of reference:

1: Command references
2: Concept references
3: Usecase references

The later integers are consecutively numbered in order of creation. If you want to create a new
reference, just create a reference one integer higher than the previously highest. The currently
existing intersphinx references are:

• 1-001: DataLad cheat sheet (page 496)

• 1-002: DataLad, Run! (page 59)

• 2-001: YODA: Best practices for data analyses in a dataset (page 136)

765 https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html
766 http://handbook.datalad.org/en/latest/genindex.html
767 https://github.com/datalad/datalad/pull/4046

E.4. Desired structure of the book 503

https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html
http://handbook.datalad.org/en/latest/genindex.html
https://github.com/datalad/datalad/pull/4046

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

• 2-002: Data integrity (page 85)

• 2-003: DataLad’s result hooks (page 287)

• 3-001: Building a scalable data storage for scientific computing (page 443)

E.5 Tweaking the CSS of the book

The custom CSS of the book is controlled by the file docs/_static/custom.css. If you have
build the book locally by running make build, you can directly tweak the custom CSS file
in docs/_build/html/_static/custom.css to view the changes without having to rebuild the
book. But once you have found the proper CSS style you are happy with make sure to save and
commit those changes in docs/_static/custom.css

E.6 Acknowledging Contributors

If you have helped this project, we would like to acknowledge your contribution in the GitHub
repository768 in our README with allcontributors.org769, and the project’s .zenodo770 (you can
add yourself as second-to-last, i.e. just above Michael) and CONTRIBUTORS.md771 files. The
allcontributors bot772 will give credit for various types of contributions773. We may ask you to
open a PR to add yourself to all of our contributing acknowledgements or do it ourselves and
let you know.

768 https://github.com/datalad-handbook/book
769 https://allcontributors.org/
770 https://github.com/datalad-handbook/book/blob/master/.zenodo.json
771 https://github.com/datalad-handbook/book/blob/master/CONTRIBUTORS.md
772 https://github.com/all-contributors
773 https://allcontributors.org/docs/en/emoji-key

504 Appendix E. Contributing

https://github.com/datalad-handbook/book
https://github.com/datalad-handbook/book
https://allcontributors.org/
https://github.com/datalad-handbook/book/blob/master/.zenodo.json
https://github.com/datalad-handbook/book/blob/master/CONTRIBUTORS.md
https://github.com/all-contributors
https://allcontributors.org/docs/en/emoji-key

APPENDIX

F

TEACHINGWITH THE DATALAD HANDBOOK

The handbook is a free and open source educational instrument made available under a Creative
Commons Attribution-ShareAlike (CC-BY-SA) license780. We are happy if the handbook serves
as a helpful tool for other trainers, and try to provide many useful additional teaching-related
functions and contents. Below, you can find them listed:

F.1 Use the handbook as a textbook/syllabus

The Basics sections of the handbook is a stand-alone course that you can refer trainees to. Re-
gardless of background, users should be able to work through this part of the book on their
own. From our own teaching experiences, it is feasible and useful to work through any individ-
ual basics chapter in one go, and assign them as weekly or bi-weekly readings.

F.2 Use slides from the DataLad course

In parallel to the handbook, we are conducting data management workshops with attendees of
every career stage (MSc students up to PIs). The sessions are either part of a lecture series (with
bi-weekly 90 minute sessions) or workshops of different lengths. Sessions in the lecture series
are based on each chapter. Longer workshops combine several chapters. You can find the slides
for the workshops in the companion course repository774. Slides are made using reveal.js775.
They are available as PDFs in talks/PDFs/, or as the source html files in talks/.
780 CC-BY-SA means that you are free to

• share - copy and redistribute the material in any medium or format

• adapt - remix, transform, and build upon the material for any purpose, even commercially

under the following terms:

1. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses
you or your use.

2. ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

774 https://github.com/datalad-handbook/course
775 https://github.com/hakimel/reveal.js/

505

https://github.com/datalad-handbook/course
https://github.com/hakimel/reveal.js/

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

F.3 Enhance talks and workshops with code demos

Any number of code snippets in the handbook that are created with the runrecord directive
can be aggregated into a series of commands that can be sequentially executed as a code demo
using the cast_live776 tool provided in the companion course repository777. These code demos
allow you to remote-control a second terminal that executes the code snippets upon pressing
Enter and can provide you with simultaneous speaker notes.

A number of demos exist that accompany the slides for the data management sessions in casts,
but you can also create your own. To find out how to do this, please consult the section direc-
tives and demos778 in the contributing guide. To use the tool, download the cast_live script
and the cast_bash.rc file that accompanies it (e.g., by simply cloning/installing the course
repository), and provide a path to the demo you want to run:

$ cast_live casts/01_dataset_basics

For existing code demos, the chapter Code from chapters contains numbered lists of code snip-
pets to allow your audience to copy-paste what you execute to follow along.

F.4 Use artwork used in the handbook

The handbook’s artwork779 repository contains the sources for figures used in the handbook.

F.5 Use the handbook as a template for your own teaching material

If you want to document a different software tool in a similar way the handbook does it, please
feel free to use the handbook as a template.

776 https://github.com/datalad-handbook/course/blob/master/tools/cast_live
777 https://github.com/datalad-handbook/course
778 http://handbook.datalad.org/en/latest/contributing.html#directives-and-demos
779 https://github.com/datalad-handbook/artwork

506 Appendix F. Teaching with the DataLad Handbook

https://github.com/datalad-handbook/course/blob/master/tools/cast_live
https://github.com/datalad-handbook/course
http://handbook.datalad.org/en/latest/contributing.html#directives-and-demos
http://handbook.datalad.org/en/latest/contributing.html#directives-and-demos
code_from_chapters/intro.html
https://github.com/datalad-handbook/artwork

APPENDIX

G

ACKNOWLEDGEMENTS

DataLad development is supported by a US-German collaboration in computational neuro-
science (CRCNS) project “DataGit: converging catalogues, warehouses, and deployment logis-
tics into a federated ‘data distribution’” (Halchenko781/Hanke782), co-funded by the US National
Science Foundation (NSF 1429999783) and the German Federal Ministry of Education and Re-
search (BMBF 01GQ1411784). Additional support is provided by the German federal state of
Saxony-Anhalt and the European Regional Development Fund (ERDF), Project: Center for Be-
havioral Brain Sciences785, Imaging Platform. This work is further facilitated by the ReproNim
project (NIH 1P41EB019936-01A1786).

781 http://haxbylab.dartmouth.edu/ppl/yarik.html
782 https://www.psychoinformatics.de/
783 https://www.nsf.gov/awardsearch/showAward?AWD_ID=1429999
784 https://www.gesundheitsforschung-bmbf.de/de/datagit-kombination-von-katalogen-datenbanken-und-verteilu

ngslogistik-in-eine-daten-5607.php
785 http://cbbs.eu/en/
786 https://projectreporter.nih.gov/project_info_description.cfm?projectnumber=1P41EB019936-01A1

507

http://haxbylab.dartmouth.edu/ppl/yarik.html
https://www.psychoinformatics.de/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1429999
https://www.gesundheitsforschung-bmbf.de/de/datagit-kombination-von-katalogen-datenbanken-und-verteilungslogistik-in-eine-daten-5607.php
http://cbbs.eu/en/
http://cbbs.eu/en/
https://projectreporter.nih.gov/project_info_description.cfm?projectnumber=1P41EB019936-01A1

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

germany-usa

01GQ1411
01GQ1112

1429999
1129855

508 Appendix G. Acknowledgements

APPENDIX

H

BOXES, FIGURES, TABLES

H.1 List of important notes
Feedback on installation instructions . 10
Empty files can be confusing . 53
version requirement for –assume-ready . 76
Put explicit first! . 80
More on public data sharing . 92
Use DataLad in languages other than Python . 143
Turn data analysis into dynamically generated documents 144
Additional software requirements: pandas, seaborn, sklearn 149
Template for introduction to DataLad . 150
Demo needs a GitHub account or alternative . 153
GitHub deprecated User Password authentication . 153
Learn how to push “on the job” . 154
Cave! Your default branch may be git-annex . 155
Additional requirement: Singularity . 168
There can never be “too much” documentation . 178
Publication dependencies are strictly local configuration 196
AWS account usage can incur costs . 198
Ensure main is set as default branch for newly-created repositories 200
GitHub deprecated its User Password authentication 203
No drop from LFS . 207
Go further for dataset access from GIN . 208
Take the URL in the browser, not the copy-paste URL 211
push availability . 219
copy-file availability . 233
Untracking is different for Git versus git-annex! . 248
Implications of git-ignored outputs for re-running . 284
RIA availability . 294
If you code along, make sure to check the next findoutmore! 299
Use case for clone priorities . 312
Version requirement for datalad copy-file . 313
This workflow has an update! . 332
Reading prerequisite for distributed computing . 332
FAIR and parallel: more than one way to do it . 334
This workflow has an update! . 342
Create desired subdatasets first . 356
Running this tutorial requires DataLad version 0.13.4 or higher 360
How to become a Git pro . 394

509

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

Take a look at the real manuscript dataset . 400
Many files need more planning . 430
HCP dataset version requirements . 440
Use case target audience . 443
Note on the generality of the described setup . 445

H.2 List of notes for Git users
G2.1 For (future) Git experts . 6
G6.1 Create internals . 36
G6.2 There is no staging area in DataLad . 40
G6.3 Clone internals . 49
G6.4 Get internals . 51
G8.1 Speedy branch switches . 88
G9.1 Get a clone . 99
G9.2 Update internals . 104
G9.3 Remote siblings . 106
G11.1 Create-sibling-github internals . 154
G11.2 Pushing tags . 155
G11.3 Push internals . 156
G13.1 Get DataLad features ahead of time by installing from a commit 189
G13.2 siblings as a common data source . 214
G13.3 Push internals . 219
G14.1 git annex fix . 229
G19.1 Terminology . 360
G19.2 Remotes . 368
G19.3 Status . 369

H.3 List of info boxes
M2.1 For curious minds . 6
M2.2 I can not/do not want to code along. 9
M3.1 Python 2, Python 3, what’s the difference? . 11
M3.3 What’s this modification exactly? . 14
M3.2 Install DataLad via pip on MacOSX . 15
M3.4 What if it contains other content than this? . 17
M3.5 Troubleshooting inode quotas . 17
M6.1 What is the description option of datalad-create? 34
M6.2 “Oh no! I forgot the -m option for datalad-save!” 39
M6.3 DOs and DON’Ts for commit messages . 40
M6.4 How to save already tracked dataset components only? 41
M6.5 How does a here-document work? . 44
M6.6 git log has many more useful options . 46
M6.7 Do I have to install from the root of datasets? . 48
M6.8 What if I do not install into an existing dataset? 48
M6.9 Do I have to navigate into the subdataset to see it’s history? 55
M7.1 Why is there a “notneeded” in the command summary? 62
M7.2 What if there are several inputs? . 72
M7.3 But what if I have a lot of outputs? . 75
M7.4 What if I have multiple inputs or outputs? . 77

510 Appendix H. Boxes, Figures, Tables

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M7.5 . . . wait, what if I need a curly bracket in my datalad run call? 77
M8.1 more about paths, checksums, object trees, and data integrity 89
M9.1 What is this location, and what if I provided a description? 95
M9.2 datalad clone versus datalad install . 98
M9.3 What if I mistyped the name or want to remove the sibling? 107
M10.1 If things go wrong during Git config . 116
M10.3 Some more general information on environment variables 125
M10.4 Applying multiple procedures . 128
M10.5 Applying procedures in subdatasets . 128
M10.2 Disecting a Git config file further . 131
M10.6 Write your own procedures . 132
M11.1 More best practices for organizing contents in directories 139
M11.4 What is a tag? . 148
M11.5 Saving contents with Git regardless of configuration with –to-git 151
M11.6 What is GitHub? . 152
M11.2 DataLad’s Python API . 158
M11.3 Creating an independent input dataset . 160
M11.7 On the looks and feels of this published dataset 161
M12.2 More on how save can operate on nested datasets 165
M12.3 How to make a Singularity Image . 168
M12.4 How do I add an Image from Dockerhub, Amazon ECR, or a local container? . . 169
M12.6 How can I list available containers or remove them? 170
M12.1 More on datalad status . 173
M12.5 What changes in .datalad/config when one adds a container? 175
M13.1 What is a special remote . 180
M13.2 What is an SSH key and how can I create one? 185
M13.3 How does the authentication storage work? . 190
M13.4 What is a special remote . 197
M13.5 How do I know if my repository is private? . 212
M13.6 Help! I accidentally saved sensitive information to Git! 217
M13.7 all of the ways to configure siblings . 219
M13.8 Pushing more than the current branch . 221
M13.9 On the datalad publish command . 223
M14.1 Renaming with Git tools . 226
M14.2 Why a move between directories is actually a content change 228
M14.3 Symlinks! . 232
M14.4 If a renamed/moved dataset is a sibling. 236
M14.6 Git terminology: branches and HEADs? . 249
M14.7 Reverting more than a single commit . 256
M14.8 Log levels . 263
M14.9 . . . and how does it look when using environment variables or configurations? . 266
M14.5 Changing the commit messages of not-the-most-recent commits 278
M15.1 Rules for .gitignore files . 284
M15.2 Globally ignoring files . 284
M15.3 How does the authentication work? . 291
M15.4 Which authentication and credential types are possible? 291
M15.5 What is a bare Git repository? . 296
M15.6 Software Requirements . 297
M15.7 What is a special remote? . 297
M15.8 If necessary, adjust the submodule path! . 299
M15.9 Take a look into the store . 300

H.3. List of info boxes 511

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

M15.10 Take another look into the store . 302
M15.11 Take a look into the RIA store after a second dataset has been added 304
M15.12 Configure an alias for a dataset . 306
M15.13 What about creating RIA stores and cloning from RIA stores with different

protocols . 308
M15.14 On cloning datasets with subdatasets from RIA stores 308
M15.15 Cloning specific dataset versions . 309
M15.16 What are the “default” costs for preexisting clone candidates? 312
M16.1 How do simulations like this work? . 325
M16.2 Installing git-filter-repo . 329
M17.1 How is a job scheduler used? . 333
M17.2 Why do I add the pipeline as a subdataset? . 336
M17.3 What are common analysis types to parallelize over? 336
M17.4 how does one create throw-away clones? . 337
M17.5 How can I get a unique location? . 337
M17.6 Fine-tuning: Safe-guard concurrency issues . 339
M17.7 Variable definition . 339
M17.8 HTCondor submit file . 340
M17.9 What is an octopus merge? . 341
M17.10 pipeline dataset creation . 343
M17.11 Fine-tuning: Enable re-running . 347
M17.12 See the complete bash script . 348
M17.13 HTCondor submit file . 350
M17.14 How to fix this? . 351
M18.1 The Basics for the impatient . 354
M18.2 What if my directory is already a Git repository? 354
M18.3 One or many datasets? . 355
M18.4 Example bash loops . 355
M18.5 Save things to Git or to git-annex? . 356
M19.1 Required software for coding along . 362
M19.2 How does DVC represent modifications to data? 365
M19.3 How does DataLad represent modifications to data? 366
M19.4 Really? . 370
M23.1 How about figures? . 404
M27.1 How exactly did the datasets came to be? . 436
M27.2 How would a datalad clone from a RIA store look like? 439
M27.3 Resetting AWS credentials . 440
M29.1 Basic principles of DataLad for new readers . 450
M2.1 Textblock in .rst format: . 482
M2.2 Textblock in markdown format . 483
M2.3 Textblock without formatting . 484

H.4 List of Windows-wits
W2.1 For Windows users only . 7
W3.1 Avoid installing Python from the Windows store 12
W3.2 Install DataLad using the Windows Subsystem 2 for Linux 13
W3.3 Install Unix command-line tools on Windows with Conda 20
W6.1 Your Git log may be more extensive - use “git log master” instead! 36
W6.2 Terminals other than Git Bash can’t handle multi-line commands 37

512 Appendix H. Boxes, Figures, Tables

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

W6.3 You can use curl instead of wget . 38
W6.4 Heredocs don’t work under non-Git-Bash Windows terminals 44
W6.5 tree -d may fail . 49
W7.1 Here’s a script for Windows users . 60
W7.2 Be mindful of hidden extensions when creating files! 61
W7.3 Here’s a script adjustment for Windows users . 64
W7.4 please use datalad diff –from master –to HEAD 1 67
W7.5 use “git log master – recordings/podcasts.tsv” . 68
W7.6 Tool installation . 70
W7.7 Good news! Here is something that is easier on Windows 72
W7.8 What happens if I run this on Windows? . 74
W7.9 Wait, would I need to specify outputs, too? . 75
W8.1 This will look different to you . 85
W8.2 What happens on Windows? . 87
W8.3 Accessing symlinked files from your Windows system 91
W9.1 Please use datalad diff –from master –to remotes/roommate/master 108
W9.2 Please use git diff master..remotes/roommate/master 108
W11.1 You may need to use “python”, not “python3” 149
W11.2 Your shell will not display credentials . 154
W30.1 Note for Windows-Users . 457

H.4. List of Windows-wits 513

LIST OF FIGURES

4.1 A terminal window in a standard desktop environment. 22

6.1 Virtual directory tree of a nested DataLad dataset 56
6.2 A simple, local version control workflow with DataLad. 57

7.1 Overview of datalad run. 82

8.1 A simplified overview of the tools that manage data in your dataset. 84

11.1 Data are modular components that can be re-used easily. 139
11.2 Schematic illustration of two standalone data datasets installed as subdatasets

into an analysis project. 140
11.3 In a dataset that complies to the YODA principles, modular components (data,

analysis results, papers) can be shared or published easily. 141

13.1 An overview of all elements potentially included in a publication workflow. 177
13.2 Schematic difference between the Git and git-annex aspect of your dataset, and

where each part usually gets published to. 180
13.3 Webinterface of GIN during the creation of a new repository. 185
13.4 Webinterface of GITHUB during the creation of a new repository. 186
13.5 Webinterface to generate an authentication token on GitHub. One typically has

to set a name and permission set, and potentially an expiration date. 192
13.6 Create a new AWS access key from “My Security Credentials” 199
13.7 A newly created public S3 bucket . 202
13.8 The public S3 bucket with annexed file content pushed 204
13.9 The public GitHub repository with the DataLad dataset 205
13.10 Some repository hosting services such as Gin have annex support, and can thus

hold the complete dataset. This makes publishing datasets very easy. 208
13.11 Upload your SSH key to GIN . 209
13.12 Create a new repository on Gin using the web interface. 210
13.13 A published dataset in a Gin repository at gin.g-node.org. 211

14.1 It’s not as bad as this . 262

28.1 Trinity of research data handling: The data store ($DATA) is managed and backed-
up. The compute cluster ($COMPUTE) has an analysis-appropriate structure with
adequate resources, but just as users workstations/laptops ($HOME), it is not con-
cerned with data hosting. 446

514

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

D.1 A high-resolution version of this cheatsheet is available for download at https://
github.com/datalad-handbook/artwork/raw/master/src/datalad-cheatsheet.pdf . 497

E.1 You can find an easy way to submit a pull request right from within the handbook. 501

List of Figures 515

https://github.com/datalad-handbook/artwork/raw/master/src/datalad-cheatsheet.pdf
https://github.com/datalad-handbook/artwork/raw/master/src/datalad-cheatsheet.pdf

LIST OF TABLES

14.1 Examples of possible git-annex issues. 267

15.1 Selection of available DataLad extensions. A more up-to-date list can be found
on PyPi . 285

15.2 Common result keys and their values. This is only a selection of available key-
value pairs. The actual set of possible key-value pairs is potentially unlimited,
as any third-party extension could introduce new keys, for example. If in doubt,
use the -f/--output-format option with the command of your choice to explore
how your matching criteria may look like. 288

516

INDEX

Symbols
1-001, 495
1-002, 58
2-001, 135
2-002, 85
2-003, 287
2-004, 111
3-001, 442

A
absolute path, 471
adjusted branch, 471
annex, 471
annex UUID, 471

B
bare Git repositories, 471
bash, 471
Bitbucket, 471
branch, 471
broken symlink, 90

C
Chapter

1. DataLad datasets, 34
10. Advanced Options, 282
2. DataLad Run, 59
3. git-annex, 83
4. Collaboration, 92
5. Configuration, 112
6. Data analysis (YODA), 135
7. Software container, 164
8. Third party infrastructure, 177
9. Help yourself, 224
Special purpose showrooms, 358

Cheatsheet, 496
checksum, 471
clone, 471
command Line, 22
commit, 472
commit message, 472

compute node, 472
conda, 472
Config files

.datalad/config, 123

.git/config, 114

.gitattributes, 117

.gitmodules, 119
container, 167
container image, 472
container recipe, 472
crippled filesystem, 472

D
datalad command

addurls, 435
clone, 46, 47, 57, 93, 94, 98, 211, 305,

310, 390
containers-add, 168
containers-list, 170
containers-remove, 170
containers-run, 168
copy-file, 314
create, 34
create-sibling, 275, 371, 392
create-sibling-github, 152, 195, 219,

370
create-sibling-gitlab, 153, 219
create-sibling-ria, 219, 297, 298, 447
datalad subdatasets, 145
diff, 66
drop, 51, 241
get, 50
install, 47
push, 154
remove, 243
rerun, 64
run, 61
run-procedure, 127
save, 39
save --to-git, 151
siblings, 106

517

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

status, 38
uninstall, 243
unlock, 74
update, 103
wtf, 259

DataLad dataset, 472
DataLad extension, 472
DataLad subdataset, 472
DataLad superdataset, 472
dataset ID, 472
Debian, 472
Debugging, 262
debugging, 472
Docker, 472
Docker-Hub, 473
DOI, 473

E
environment variable, 473
environment variable, 124
ephemeral clone, 473
extensions, 285
extractor, 473

F
force-push, 473
fork, 473

G
GIN, 473
Git, 473
git config, 113
Git config file, 473
Git identity, 20
git-annex, 473
git-annex branch, 473
GitHub, 473
Gitk, 473
GitLab, 474
globbing, 474

H
high-performance computing (HPC), 474
high-throughput computing (HTC), 474
hooks, 287
http, 474
https, 474
Human Connectome Project (HCP), 434

L
log level, 474
logging, 474

M
Make, 405
Makefile, 474
manpage, 474
master, 474
merge, 474
merge request, 474
metadata, 474

N
nano, 474
nesting, 53, 164

O
object-tree, 475
Open Science Framework (OSF), 475

P
pager, 475
paths, 24
permissions, 475
pip, 475
procedures, 126
provenance, 475
publication dependency, 475
pull request, 475

R
relative path, 475
remote, 475
Remote Indexed Archive (RIA) store, 475
Remote Indexed Archive (RIA) store, 438
result hooks, 287
run procedure, 476
run record, 476
run-procedures, 126

S
sed, 476
shasum, 476
shebang, 476
shell, 476
shell, 22
sibling, 477
Singularity, 477
Singularity-Hub, 477
software container, 477
software container, 167
special remote, 476
squash, 476
SSH, 476
SSH key, 476

518 Index

The DataLad Handbook, Release v0.15+142.g64a82e10.dirty

SSH server, 476
stderr, 476
stdin, 476
stdout, 477
submodule, 477
symlink, 477
symlink (broken), 90

T
tab completion, 477
tab completion, 26
tag, 477
terminal, 477
terminal, 22
the DataLad superdataset ///, 477
tig, 477

U
Ubuntu, 478
Usecase

Basic provenance tracking, 394
Basic Reproducible Neuroimaging, 412
Collaboration, 389
Machine Learning Analysis, 454
Remote Indexed Archive (RIA) store,

443
Reproducible Neuroimaging, 420
reproducible paper, 399
Scaling up: 80TB and 15 million files,

433
Student supervision, 407
Using Globus as data store, 449

UUID, 478

V
version control, 478
vim, 478
virtual environment, 478

W
WSL, 478

Y
YODA principles, 136

Z
zsh, 478

Index 519

	I Introduction
	A brief overview of DataLad
	On Data
	The DataLad Philosophy

	How to use the handbook
	For whom this book is written
	How to read this book
	Let’s get going!

	Installation and configuration
	Install DataLad
	Installation instructions for the JSC (JURECA and JUDAC)
	Standard installation instructions
	Initial configuration

	General prerequisites
	The Command Line
	Command Syntax
	Basic Commands
	The Prompt
	Paths
	Text Editors
	Shells
	Tab Completion

	What you really need to know
	DataLad datasets
	Simplified local version control workflows
	Consumption and collaboration
	Dataset linkage
	Full provenance capture and reproducibility
	Third party service integration
	Metadata handling
	All in all…

	II Basics
	DataLad datasets
	Create a dataset
	Populate a dataset
	Modify content
	Install datasets
	Dataset nesting
	Summary

	DataLad, Run!
	Keeping track
	DataLad, Re-Run!
	Input and output
	Clean desk
	Summary

	Under the hood: git-annex
	Data safety
	Data integrity

	Collaboration
	Looking without touching
	Where’s Waldo?
	Retrace and reenact
	Stay up to date
	Networking
	Summary

	Tuning datasets to your needs
	DIY configurations
	More on DIY configurations
	Configurations to go
	Summary

	Make the most out of datasets
	A Data Analysis Project with DataLad
	YODA: Best practices for data analyses in a dataset
	YODA-compliant data analysis projects
	Summary

	One step further
	More on Dataset nesting
	Computational reproducibility with software containers
	Summary

	Third party infrastructure
	Beyond shared infrastructure
	Publishing datasets to Git repository hosting
	Walk-through: Dropbox as a special remote
	Walk-through: Amazon S3 as a special remote
	Walk-through: Git LFS as a special remote on GitHub
	Walk-through: Dataset hosting on GIN
	Built-in data export
	Keeping (some) dataset contents private
	Overview: The datalad push command
	Summary

	Help yourself
	What to do if things go wrong
	Miscellaneous file system operations
	Back and forth in time
	How to get help
	Gists

	III Advanced
	Advanced options
	How to hide content from DataLad
	DataLad extensions
	DataLad’s result hooks
	Configure custom data access
	Remote Indexed Archives for dataset storage and backup
	Prioritizing subdataset clone locations
	Subsample datasets using datalad copy-file

	Go big or go home
	Going big with DataLad
	Calculate in greater numbers
	Fixing up too-large datasets
	Summary

	Computing on clusters
	DataLad on High Throughput or High Performance Compute Clusters
	DataLad-centric analysis with job scheduling and parallel computing
	Walkthrough: Parallel ENKI preprocessing with fMRIprep

	Better late than never
	Transitioning existing projects into DataLad

	Special purpose showrooms
	Reproducible machine learning analyses: DataLad as DVC

	DataLad internals
	DataLad’s internal design
	Contributing to DataLad

	IV Use cases
	A typical collaborative data management workflow
	The Challenge
	The DataLad Approach
	Step-by-Step

	Basic provenance tracking
	The Challenge
	The DataLad Approach
	Step-by-Step

	Writing a reproducible paper
	The Challenge
	The DataLad Approach
	Step-by-Step
	Automation with existing tools

	Student supervision in a research project
	The Challenge
	The DataLad Approach
	Step-by-Step

	A basic automatically and computationally reproducible neuroimaging analysis
	The Challenge
	The DataLad Approach
	Step-by-Step

	An automatically and computationally reproducible neuroimaging analysis from scratch
	The Challenge
	The DataLad Approach
	Step-by-Step

	Scaling up: Managing 80TB and 15 million files from the HCP release
	The Challenge
	The DataLad Approach
	Step-by-Step

	Building a scalable data storage for scientific computing
	The Challenge
	The DataLad approach
	Step-by-step

	Using Globus as a data store for the Canadian Open Neuroscience Portal
	The Challenge
	The Datalad Approach
	Step-by-Step
	Resources

	DataLad for reproducible machine-learning analyses
	The Challenge
	The DataLad Approach
	Step-by-Step
	References

	Contributing

	V Appendix
	Glossary
	Frequently Asked Questions
	What is Git?
	Where is Git’s “staging area” in DataLad datasets?
	What is git-annex?
	What does DataLad add to Git and git-annex?
	Does DataLad host my data?
	How does GitHub relate to DataLad?
	Does DataLad scale to large dataset sizes?
	What is the difference between a superdataset, a subdataset, and a dataset?
	How can I convert/import/transform an existing Git or git-annex repository into a DataLad dataset?
	How can I cite DataLad?
	How can I help others get started with a shared dataset?
	What is the difference between DataLad, Git LFS, and Flywheel?
	What is the difference between DataLad and DVC?
	DataLad version-controls my large files – great. But how much is saved in total?
	How can I copy data out of a DataLad dataset?
	Is there Python 2 support for DataLad?
	Is there a graphical user interface for DataLad?
	How does DataLad interface with OpenNeuro?
	BIDS validator issues in datasets with missing file content
	What is the git-annex branch?
	Help - Why does Github display my dataset with git-annex as the default branch?

	So… Windows… eh?
	Windows-Deficiencies
	DataLad-on-Windows-Deficiencies
	User documentation deficiencies
	So, overall…
	Are there feasible alternatives?

	DataLad cheat sheet
	Contributing
	Software setup
	Directives and demos
	Easy pull requests
	Desired structure of the book
	Tweaking the CSS of the book
	Acknowledging Contributors

	Teaching with the DataLad Handbook
	Use the handbook as a textbook/syllabus
	Use slides from the DataLad course
	Enhance talks and workshops with code demos
	Use artwork used in the handbook
	Use the handbook as a template for your own teaching material

	Acknowledgements
	Boxes, Figures, Tables
	List of important notes
	List of notes for Git users
	List of info boxes
	List of Windows-wits

	Index

